淀粉接枝水溶性聚合物的合成及其在赤泥分离中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用水溶液聚合法、反相乳液聚合法合成了淀粉接枝聚丙烯酰胺二元共聚物及淀粉-丙烯酰胺-丙烯酸(钠)三元共聚物,将其应用于拜耳法氧化铝赤泥工业化分离试验,取得了良好的处理效果。
     采用水溶液聚合法合成了淀粉接枝丙烯酰胺聚合物,研究了聚合反应动力学和聚合反应机理。以过硫酸铵为引发剂,淀粉与丙烯酰胺在水溶液中进行接枝共聚反应,研究了反应温度、原料比例、淀粉种类、糊化方式对接枝反应的单体转化率、接枝率、接枝效率以及产品特性粘度的影响。结果表明,在反应温度50℃、丙烯酰胺与淀粉的质量比2:1的条件下,70℃下糊化30 min,产品接枝率71%,接枝效率84%,单体转化率97%,支链聚合物的相对分子质量700万。在接枝反应初期、低引发剂浓度下,建立了聚合反应的动力学方程:表明淀粉与丙烯酰胺单体的接枝聚合反应过程符合自由基加聚反应机理,接枝共聚反应的链终止既有双基终止,又有初始自由基终止。
     采用反相乳液聚合法,合成了淀粉接枝聚丙烯酰胺的反相乳液产品,研究了反相乳液聚合工艺条件与聚合反应动力学。考察了乳化剂种类,乳化剂组成、乳化剂用量以及乳液形成方式对单体转化率、接枝率、乳胶粒径和产品特性粘度的影响。结果表明,以脂肪酸(盐)为乳化剂,乳液具有良好的稳定性和低温溶解性;将表面活性剂进行复配得到的混合乳化剂的乳化效果优于单一乳化剂。以油酸与油酸钠复配物为乳化剂时,合成了单体转化率99%,接枝率82.5%,特性粘度1300 ml/g的淀粉接枝丙烯酰胺反相乳液产品。考察了过硫酸铵、过硫酸铵-尿素和过氧化苯甲酰-亚硫酸钠三种引发剂体系对单体转化率、产品特性粘度的影响。结果表明,在接枝反应初期、低引发剂浓度下淀粉接枝丙烯酰胺反相乳液聚合反应动力学关联式为:符合反相乳液聚合反应规律。
     采用反相乳液聚合法,在淀粉接枝丙烯酰胺二元共聚体系中,加入离子型单体丙烯酸(钠),合成了具有不同电荷分布、电荷密度的淀粉-丙烯酰胺-丙烯酸(钠)三元共聚物。在过硫酸铵-尿素的引发下,考察了pH、单体比例对接枝反应转化率、接枝率的影响。结果表明,在pH值为6-7条件下,可得到负电荷在支链上均匀分布的接枝聚合物产品。考察了氨羧络合剂、EDTA2Na及其复配物E-N对过硫酸铵-尿素引发体系的催化作用。结果表明,三种催化剂均能有效降低过硫酸铵-尿素的引发温度,提高单体转化率和产品的特性粘度。在过硫酸铵-尿素-(E-N)催化引发下,丙烯酰胺与丙烯酸钠质量比为7:3,乙烯基单体与淀粉质量比为2:1,30℃反应6h时,合成了单体转化率99%,接枝率80.5%,产品特性粘度1650 ml/g的淀粉-丙烯酰胺-丙烯酸(钠)三元共聚反相乳液产品。
     用红外光谱、偏光显微镜、扫描电镜分析等手段表征了淀粉接枝二元和三元共聚物的化学结构、形态结构和反相乳液聚合物的乳胶粒粒度。结果表明,合成的淀粉接枝共聚物符合预期结构,未糊化的淀粉接枝后,聚合物保持团粒结构,表面接枝上了乙烯基均聚物;糊化的淀粉接枝后,形成了均匀的淀粉接枝共聚物。
     在比较淀粉接枝共聚物产品和已有的合成高分子絮凝剂产品的基础上,将产品应用于拜耳法氧化铝溶出赤泥的工业分离过程。考察了絮凝剂种类与用量对沉降速度、浮游物含量及底流固含等沉降分离指标的影响。结果表明,在进料量为820 m~3/h,絮凝剂用量为300 mg/Kg时,沉降速度高于16cm/min,浮游物含量低于0.15g/L,底流固含高于470 g/L,满足赤泥分离生产要求。
A binary starch graft polyacrylamide copolymer and a ternary starch-acrylamide-acrylate acid (sodium acrylate) copolymer were synthesized by aqueous solution polymerization and inverse emulsion polymerization. The two starch graft copolymers were employed in the red-mud separation of alumina industrial processing, and both of them showed the excellent separation ability.
     One starch graft acrylamide copolymer was synthesized by graft copolymerization of starch and acrylamide in solution, and the polymerization kinetics and its mechanism was discussed. The influence of temperature, mass ratio of raw materials, types of starch and gelatinization on monomer conversion rate, grafting ratio, graft efficiency and intrinsic viscosity of products, when copolymerization was conducted in solution, with starch and acrylamide as raw materials and ammonium persulfate as initiator. The results showed that the grafting ratio is 71%, the graft efficiency is 84%, the monomer conversion rate is 97%, and the molecular weight of polyacrylamide grafted on starch is 7 million, when the reaction temperature was 50℃, the mass ratio of acrylamide to starch was 2:1, the gelatinization temperature was 70℃, and the gelatinization time was 30 min. The correlation equation of initial reaction stage was derived at low initiator concentration, shown as follows:
     Therefore, it can be concluded that the graft polymerization of starch and acrylamide is a free radical polymerization. The free radical termination undergoes between initial free radicals, as well as free radicals initiated by initial free radicals.
     Starch graft acrylamide copolymer was also synthesized by inverse emulsion polymerization, and the polymerization process conditions and the polymerization kinetics were studied. The types, composition and amounts of emulsifiers and emulsification methods affected the monomer conversion rate, grafting ratio, latex particle size and the intrinsic viscosity of the product. It showed that the emulsion is of good stability and solubility at low temperature with fatty acid (salt) as emulsifier, and the mixing emulsifier of surfactants reveals better emulsification property than a single emulsifier. So we synthesized the starch graft acrylamide by inverse emulsion polymerization using the mixture of oleic acid and sodium oleate as emulsifier, with the monomer conversion rate 99%, the graft ratio 82.5%, and the intrinsic viscosity 1300 ml/g. The effect of three kinds of initiators, including ammonium persulfate, ammonium persulfate-urea and benzoyl peroxide-sodium sulfite, on the monomer conversion rate and the intrinsic viscosity was investigated. The results show that the correlation equation of the inverse emulsion polymerization of starch graft acrylamide was derived at low initiator concentration for the initial reaction stage, shown as follows:It is according with the reaction regularity of inverse emulsion polymerization.
     The ternary starch-acrylamide-acrylate acid (sodium acrylate) copolymer with different electricity distributing and electricity consistency was synthesized by adding acrylate acid or sodium acrylate into the emulsion of binary starch graft polyacrylamide copolymer. With the polymerization initiated by ammonium persulfate-urea, the effect of pH and monomer mass ratio on monomer conversion rate and grafting ratio was studied. A novel ternary starch graft copolymer was prepared at around pH 6-7. The catalysis of complexon, EDTA2Na and their mixture (E-N) in the initiation reaction was studied. The results showed that the three catalysts can reduce the initiation reacting temperature, and can improve the monomer conversion rate and the intrinsic viscosity. At last, the ternary starch-acrylamide-acrylate acid (sodium acrylate) copolymer was synthesized by inverse emulsion polymerization using the mixture of ammonium persulfate-urea-(E-N) as catalyst and initiator. When the mass ratio of acrylamide to sodium acrylate was 7:3, the mass ratio of vinyl monomer and starch was 2:1, the reaction temperature was 30℃and the reaction time was 6 h, the monomer conversion rate reaches 99%, the graft ratio is 80.5%, and the intrinsic viscosity is 1650 ml/g.
     The chemical structure, morphology and the latex particle size of binary and ternary starch graft copolymers were characterized by FT-IR, polarizing microscope and SEM. The chemical structure of the products was proved by FT-IR. After the graft reaction of ungelatinized starch, the morphology of the copolymers kept the aggregate structure of starch, and vinyl copolymer is grafted on its surface; while the gelatinized starch forms homogeneous polymer which is totally different with ungelatinized products.
     The starch graft copolymers and commercial synthetic polymeric flocculants were applied in the red-mud separation of alumina production. The effects of the types and amounts of flocculants on settling velocity, the amount of supernatants and underflow were investigated. The results showed that the amount of the feed and the flocculant of 820 m~3/h and 300 mg/Kg, respectively, resulted in settling rate higher than 16 cm/min, the amount of supernatants and underflow of 0.15 g/L and 470 g/L, which totally fulfilled the separation of red-mud requirements.
引文
[1] 梁为民.凝聚与絮凝.北京:冶金工业出版社,1987
    [2] 杨守志,何方.固液分离.北京:冶金工业出版社,2003
    [3] 吕子剑.PAS-1絮凝剂的选择和专门处理技术研究.轻金属,1998,234(3):18-22.
    [4] 吴若琼,刘今.氧化铝工业絮凝沉降进展.轻金属,1994,180(7):17-20.
    [5] Spitze D P. Development of new bayer process flocculants. A Collection of papers from the TMS Annual meeting, Light Metals, 1991: 167-171.
    [6] Faneitte M, Galarraga A, Foster T. Utilization of new polymer in aluminum industry.A Collection of papers from the TMS Annual meeting. Light Metals, 1994:129-131.
    [7] Keendy R L. Simple reagent techniques to improve aluminu m oxide processing. A Collection of papers from the TMS Annual meeting, Light Metals, 1990: 141-145.
    [8] Weir S, Moody G M. The importance of flocculant choice with consideration to mixing energy to achieve efficient solid-liquid separation. Minerals Engineering. 2003, 16(2): 109-113.
    [9] Lester A D Chin. Chemical additives in bayer process. A Collection of papers from the TMS Annual meeting. Light Metals, 1991: 155-158.
    [10] Flory P J. Principles of polymer chemistty. New York, Cornell University Press.1995: 495-541
    [11] 卢寿慈.矿物浮选原理.北京:冶金工业出版社,1988
    [12] 王淀佐,胡岳华.浮选溶液化学.长沙:胡南科学技术出版社,1988
    [13] 赵彦生,李万捷.淀粉-丙烯酰胺接枝共聚物的合成及其性能.水处理技术,1994,20(6),13-16
    [14] 常文越,韩雪.接枝淀粉高分子絮凝剂的合成及其应用.环境保护科学,1996,22(4),4-7
    [15] Angus McFarlane, Kristen Bremmell, Jonas Addai-Mensah. Improved dewatering behavior of clay minerals dispersions via interfacial chemistry and particle interactions optimization. Journal of Colloid and Interface Science, 2006, 293 (1) :116-127.
    [16] McFarlane A J, Bremmell K E, Addai Mensah J. Optimising the dewatering behaviour of clay tailings through interfacial chemistry, orthokinetic flocculation and controlled shear. Powder Technology, 2005, 160(1): 27-34.
    [17] Jill R Pan, Huang Chihpin, Jiang W, et al. Treatment of wastewater containing nano-scale silica particles by dead-end microfiltration: evaluation of pretreatment methods. Desalination, 2005, 179(1): 31-40.
    [18] Das K Kalyan, Somasundaran P. A kinetic investigation of the flocculation of alumina with polyacrylic acid. Journal of Colloid and Interface Science, 2004, 271(1): 102-109.
    [19] Shin H J, Lee S O, Kim S J, et al. Study on the effect of humate and its removal on the precipitation of aluminium trihydroxide from the Bayer process, Minerals Engineering, 2004, 17(3): 87-91.
    [20] Yan Y D, Glover S M, Jameson G, et al. The flocculation efficiency of polydisperse polymer flocculants, International Journal of Mineral Processing, 2004, 73 (4):161-175.
    [21] 严瑞暄.水溶性聚合物.北京:化学工业出版社,1998
    [22] 王淀佐.浮选剂作用原理及应用.北京:冶金工业出版社,1982
    [23] 侯万国,孙德军,张春光.应用胶体化学.科学出版社,1998
    [24] Chang J C, Lange F F, Pearson D S. Viscosity and Yield Stress of Alumina Slurries Containing Large Concentrations of Electrolyte. Ceram Soc., 1994, 77(1): 19-26
    [25] Vermohlen K, Lewandowski H, Narres H D, et al. Adsorption of polyelectrolytes onto oxides-the influence of ionic strength, molar mass, and Ca~(2+) ions, Colloids and Surfaces, 2000,163: 45-53
    [26] 李善仁,李风亭.无机和有机复合高分子絮凝剂的现状和发展方向.煤矿环境保护,2002,16(2):15-19
    [27] 陆柱.水处理药剂.北京:化学工业出版社,2002
    [28] 石宝友,汤鸿霄.聚合铝与有机高分子复合絮凝剂絮凝性能及其吸附特性.环境科学,2002,21(1):1-22
    [29] 严瑞喧.水处理应用手册.北京:化学工业出版社,2003
    [30] 杨通在,刘亦军.阳离子型改性高分子絮凝剂对轻工废水的处理.工业水处理,1998,18(3):27-29
    [31] Ceresa R J. Block and graft copolymer. Washington D.C., Butterworths, 1992.8
    [32] 葛学武,徐相凌,张志成等.淀粉接枝丙烯酰胺制备絮凝剂的研究方法.高分子材料科学与工程,1999,15(4):130-132
    [33] 吴平平,袁汉珍.Ce~(4+)引发淀粉与丙烯酰胺接枝共聚反应.中国科学技术大学学报, 1981,11(4):70-72
    [34] 于九皋,田汝川.过渡金属乙烯丙酮配合物引发淀粉与烯基单体接枝共聚.天津大学学报,1993,(6):71-77
    [35] 巫拱生,张大鹏.Fe~(2+)-H_2O_2引发丙烯腈与淀粉接枝共聚反应与高吸水性树脂的应用研究.精细化工,1989,6(3):26-31
    [36] 巫拱生,鲁德忠.过氧化氢-硫脲引发丙烯酰胺与玉米淀粉接枝共聚反应规律的研究.吉林大学自然科学学报,1989,(1):86-90
    [37] 巫拱生,陈辉.DPS-TU体系甲基丙烯酸与淀粉接枝共聚物的制备与应用.精细化工,1991,8(5):49-53
    [38] 蒋先明,曾宪家.引发淀粉接枝共聚的氧化还原体系.淀粉与淀粉糖,1993,(3):45-51
    [39] Paramijit S, Madhur G. Dispersed phase copolymerization of acryamide and dimethyl diallylammunium chloride in xylene. J Pplym Mater, 1997,14(1): 57-63
    [40] 喻发全,黄世英.紫外光引发淀粉接枝丙烯腈的研究(Ⅱ).高分子材料科学与工程,1999,15(1):142-144
    [41] 叶强,葛学武,徐相凌.水溶性超高分子量聚丙烯酰胺的辐射反相乳液合成.辐射研究与辐射工艺学报,1998,16(2):94-96
    [42] Gu L, Hrymak A N, Zhu S. Synthesis and flocculation performance of graft copolymer of N-vinyl form amide and poly(dimethylamino ethyl meth acrylate) methyl chloride macro monomer. Colloid and polymer science, 2002, 280(2):167-175
    [43] Khalil M I, Aly A A.Preparation and evaluation of some anionic starch derivatives as flocculants. Egypt Starch, 2002, 54 (3-4): 132-139
    [44] 徐庆源.用于废水净化与资源化的新型化学絮凝剂.化工环保,1994,14(5):281-284
    [45] 马育山.絮凝化学和絮凝剂.北京:中国环境科学出版社,1988
    [46] 巫拱生,鲁德忠,贾翠红等.Ce(Ⅲ)引发丙烯酸乙酯与玉米淀粉的接枝共聚反应规律及产物酶解性能的研究:乙烯基类单体与淀粉的接枝共聚反应.吉林大学自然科学学报,1988,(3):123-124
    [47] 李旭祥,周新艳.改性淀粉絮凝剂处理印染废水.化工环保,1994,14(5):313-315
    [48] 夏晓明,侯文华.天然高分子改性阳离子絮凝剂SFC的制备及其絮凝性能的研究.环境化学,1990,9(5):1-5
    [49] 金易,夏天喜.羧基高交联淀粉阳离子交换剂的合成及应用.环境工程,1991,9(4):57-59
    [50] 金易,夏晓明,侯文华.新型絮凝剂SFC在污泥溶解中应用的研究.环境科学,1991,12(1):24-27
    [51] 马晓鸥,康思琦.含硼聚硅硫酸铁混凝剂的制备及性能研究.现代化工,2000,20(11):42-44
    [52] 袁宗宣,郑怀扎,舒型武.絮凝科学与技术进展.重庆大学学报,2001,24(2):143-147
    [53] 郑怀礼,龙腾锐,袁宗宣.聚合硫酸铁制备方法研究及其发展.污染治理技术与设备环境,2001,1(5):21-28
    [54] 郑怀礼,龙腾锐,舒型武.聚合硫酸铁絮凝剂絮凝机理分析.重庆环境科学,2000,22(5):51-54
    [55] 王东升,天奇藩,韦朝海.新型无机高分子絮凝剂含铁聚侍酸的研制及其应用.环境科学,1997,18(3):17-19
    [56] 宋永会,栾兆坤.新型聚铝偶合絮凝剂的制备及性能研究.环境化学,1997,16(6):541-545
    [57] Larroyd F B, Petter C O. Sampaio C H. Purification of north Brazilian kaolin by selective flocculation. Minerals Engineering, 2002, 15(12): 191-192
    [58] 肖锦,杞永亮.我国絮凝剂发展的现状与对策.现代化工,1997,17(12):6-9
    [59] 王艳菊,温其标.吸水性学分接枝共聚树脂.现代化工,2001,21(1):61-64
    [60] 潘松汉,黎国康,王真智.接枝型聚丙烯酰胺高分子藏凝剂结构和性能的研究.精细化工,1991,8(3):12-15
    [61] 葛学武,徐相凌,张志成等.淀粉接技丙烯酰胺制备絮凝剂的研究方法.高分子材料科学与工程.1999,15(4):130-132
    [62] 郭玲香,胡明星,郭世玲.新型阳离子聚合物治理煤泥废水的应用研究.上海环境科学,1999,18(3):2127-132
    [63] 尹华,彭辉,刘慧璇.淀粉改性阳离子絮凝剂的制备及其絮凝性能研究.环境科学与技术,2000,(1):13-15
    [64] 严瑞瑄,胡宇,杞永亮.我国水处理剂的现状及发战略.现代化工,1999,19(2):3-7
    [65] 杨安乐,陈长春,孙康.甲壳素的改性研究及其在功能材料上的应用.现代化工,1999,19(4):50-52
    [66] Qu Rongjun, Liu Qinjian. Preparation and Adsorption Properties for Metal Ions of chitosan Crosslinked by PEG Bisglycidyl Ethers. Environmental Chemistry, 1996, 15 (1): 41-43
    [67] Chai Ponghai, Zhang Wenping, Li Xnrong. The new Exploiting and Researching Trends of Chitin/Chitosan. Chemistry, 1999, (7): 8-10
    [68] 李琳.橡宛单宁去除水中有毒重金属离子的研究.环境工程,1997,15(5):14-16
    [69] 赵立志.阳离子丹宁絮凝剂的制备及其性能评介.重庆环境科学,1993,15(6):33-35
    [70] 曹炳明.CS-1型絮凝剂的制备及其在污水处理方面的应用.工业水处理,1987,7(6):27-29
    [71] 吴冰艳.新型脱色絮凝剂木质窜季铵盐的研制及其絮凝性能与机理的研究.化工环保,1997,7(5):268-272
    [72] 陆兴章,高华星,程树军等.H型阳离子高分子絮凝剂的絮凝性能及其应用研究.环境污染与防治,1994,16(6):6-10
    [73] 高华星,陆兴章,赵德仁.阳离子高分子絮凝剂用于印刷油墨废水处理.环境污染与防治,1995,17(3):9-12
    [74] 肖遥,邓皓,陈尚冰.有机高分子絮凝剂的合成及应用.工业水处理,1994,14(3):17-19
    [75] 严瑞渲.水处理剂应用手册.第一版.北京:化学工业出版社,2000
    [76] 茹国军.高级阳离子淀粉的生产方法.中国专利,1043435A.1990-06-02
    [77] 黎钢,张松海.高密度电荷阳离子聚电解质的制备及应用.中国环境科学,1999,(2):145-148
    [78] 畅通在,刘亦农,杨君. 阳离子改性高分子絮凝剂对轻工废水的处理.工业水处理,1998,18(3):27-29
    [79] 朱红,施秀屏,跟深.新型有机复合阳离子絮凝剂的研究.工业水处理,1996,16(1):24-27
    [80] 董银卯,梁瀛洲.新型阳离子有机絮凝剂的研制.工业水处理,1996,20(2):20-22
    [81] 李万捷,赵彦生,温亚龙.两性有机高分子絮凝剂的合成.水处理技术,1994,20(1):33-38
    [82] 林芸,李万捷.两性聚丙烯酰胺的絮凝性能研究.高聚物材料科学与工程,1996,12(4):136-139
    [83] 赵华章,高宝玉,岳钦艳等.二甲基二烯丙基氯化铵(DMDAAC)聚合物的研究进展.工业水处理,1999,19(6):1-4
    [84] 刘祥义,徐晓军.改性淀粉絮凝剂的制备与应用研究进展.胶体与聚合物,2004,22(2):38-40
    [85] 常文越,韩雪.接枝淀粉高分子絮凝剂的合成及其应用.环境保护科学, 1996.22(4).4-7
    [86] 王琛.天然改性淀粉絮凝剂的研制应用.现代化工,2001,21(10):17-20
    [87] 潘松汉,黎国康,王真智等.接技型聚丙烯酰胺高分子絮凝剂结构和性能的研究.精细化工,1991,8(3):12-15
    [88] 许涌深,李红兵,袁才登等.纤维素醚的乳液接枝共聚合.合成橡胶业,2000,23(2):101-103
    [89] 杨安乐,陈长春,孙康等.甲壳素的接枝共聚合反应.功能高分子学报,1999,12(2):192-196
    [90] 曾德芳,沈我钢,余刚等.壳聚糖复合絮凝剂在城市生活汗水处理中的应用.环境化学,2002,21(5):505-508
    [91] 卢红梅,钟宏.新型高分子絮凝剂在赤泥沉降中的应用实验研究.矿冶工程,2002.22(4):47-50.
    [92] 马自俊,金日辉.丙烯酰胺水溶液聚合的几种氧化还原引发体系的研究.精细石油化工,1997,(1):41-43,59
    [94] 张志成,徐相凌,张曼维.过硫酸铵引发丙烯酰胺乳液聚合.高分子学报,1995,(1):23-27
    [95] 李小伏,李锦贵.丙烯酰胺的反相悬浮聚合.石油化工.1994,24(10):641-646
    [96] 徐相凌,张志成,张曼维.辐射引发丙烯酰胺微乳液聚合.高分子学报,1995,(3):377-379
    [97] 侯斯健,哈润华.近年来丙烯酰胺聚合反应的发展.高分子通报.1995,(4):217-219
    [98] 王久芬,蔡开勇,李德水.沉淀聚合法成聚丙烯酰胺.华北工学院学报.2000,21(4):312-315
    [99] 崔玉,张书香,杨金虎.分散聚合法制备高分子量聚丙烯酰胺.济南大学学报,2002.16(4):327-329
    [100] 张志成,徐相,张曼维.丙烯酰胺微乳液聚合.高分子学报,1994.(4):426-431
    [101] 陆柱.水处理药剂.北京:化学工业出版社.2002
    [102] 常青.水处理絮凝学.北京:化学工业出版社.2003
    [103] 夏峥,李绵贵.几种Mannich反应改性聚丙烯酰胺阳离子絮凝剂的比较.水处理技术,2004,30(1):13-16
    [104] 邹新禧.超强吸水剂.北京:化学工业出版社.1998
    [105] 赵春凤,刘昆元.反相悬浮聚合法合成超高分子量聚丙烯酸钠.北京化工学报,2002,(1):52-55
    [106] 严瑞喧.水溶性高分子.北京:化学工业出版社.1998.
    [107] 卢绍杰,孙希明,刘瑞贤等.淀粉与DAMAC-AM接枝共聚反相胶乳.高分子材料科学与工程,1999.15(5):52-19
    [108] 李建宗,程时远,黄鹤.反相乳液聚合研究进展.高分子通报,1993,(2):71-76
    [109] 王晓茹,潘智存.反相乳液聚合的最新进展.现代化工,1996,16(4):18-21
    [110] 徐克强,田慕川.丙烯酸-丙烯酰胺的反向乳液聚合.北京化纤工学院学报,1986,(2):45-52
    [111] 蒋婵杰,潘春跃.丙烯酸-丙烯酰胺共聚物研究进展.高分子通报,2001,(3):64-69
    [112] 哈润华,冀兰英.丙烯酰胺反相乳液共聚合:提高聚合物分子量和胶乳固含量的研究.化学工业与工程,1991,8(4):1-5
    [113] 刘庆普,哈润华.反相乳液聚合法合成高分子量聚丙烯酰胺研究.塑料工业,1989,(3):36-38
    [114] 张志成,吴相.丙烯酰胺辐射反相乳液聚合动力学研究.辐射研究与辐射工艺学报,1990,8(1):5-8
    [115] 刘庆普,王燕军,哈润华等.聚丙烯酰胺高浓度胶乳的性能评定及应用.油田化学,1998,5(4):258-262
    [116] Driwet B, Kissel T, Wslter E. Synthesis of bio adhesive poly(acrylic acid)nano-and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates. Journal of Controlled Release,1998, 56 (1-3): 149-158
    [117] 廖刚.二甲基二烯丙基氯化铵的反相乳液共聚合.西南石油学院学报,1997,19(4):102-105
    [118] 吴会才.PDA阳离子型絮凝剂合成及应用的研究.工业水处理,1997,17(004):40-42
    [119] 侯斯健,哈润华.二烯丙基二甲基氯化铵-丙烯酰胺反相乳液聚合的动力学特征研究.高分子学报,1995,3(2):349-354
    [120] 徐相凌,张志成,费宾等.丙烯酸钠反相乳液聚合.高分子学报,1998(2):134-138
    [121] 易昌凤,程时远.丙烯酰胺/DBMA反相共聚物乳液粒子形态及大小的研究.胶体与聚合物,1999,17(1):17-20
    [122] 思勤,夏清,刘庆普等.W/O型聚丙烯酰胺胶乳减阻性能的研究.石油化工,1994,(8):523-526
    [123] 李东,李静秋.ROOH-Na_2S_2O_5体系反相乳液聚合法制备高分子量PAM.山东 化工,1995,(1):27-28
    [124] 程原,杜拴丽.丙烯酰胺反相乳液聚合的研究.华北工学院学报,1999,20(1):79-82
    [125] 李建宗,程时远.反相乳液聚合研究进展.高分子通报,1993(2):71-76,104
    [126] 吴存雷,白萍,贺飞峰.三次采油用聚丙烯酰胺乳液的合成.上海化工,1994,19(2):15-17
    [127] 曹亚峰,杨锦宗,刘兆丽等.反相乳液法合成淀粉接枝AM、DM共聚物的研究.大连理工大学学报,2003,6:743-746
    [128] 杨锦宗,曹亚峰,刘兆丽等.非离子乳化剂对淀粉接枝丙烯酰胺-丙烯酸反相乳液聚合反应的作用.应用化学,2003,8:768-771
    [129] Rath S H, Singh R P. On the Characterization of Grafted and Ungrafted Starth Amylose and Amylopctin. J Appl Polymer Sci, 1998, 70(9): 1795-1810
    [130] 刘详,李谦定,史俊.淀粉丙烯酰胺接枝共聚物降淀粉丙烯酰胺接枝共聚物降滤湿剂的合成及性能.西安石油学院学报(自然科学版),2000,(1):34-38
    [131] 李雅丽.高吸水性树脂对微肥吸持作用的研究.化工科技,2003,11(3):21-23
    [132] 夏春娟,吴岳英,邓慧红.几种不同引发剂在玉米淀粉与丙烯酰胺接枝共聚中的应用.上海大学学报,2001,(6):239-243
    [133] 杨通在,刘亦农,杨君.阳离子型改性絮凝剂的结构及其性能.塑料工业,1998,26(2):116-118
    [134] 潘松汉,王贞,黎国康等.淀粉糊化对淀粉——丙烯酰胺接枝聚合的影响.淀粉与淀粉糖,1993,(2):17-22
    [135] 中华人民共和国国家技术监督局.GB12005.2-89.北京:中国标准出版社,1989
    [136] Gao J P, Tian R C, Yu J G, et al. Graft copolymers of methyl methacrylate onto canna starch using maganic pyrophosphate as an initiator. J Appl Polym Sci.1994(53) :1091-1102
    [137] 耿耀宗,曹同玉.合成聚合物乳液制造与应用技术.北京:轻工业出版社,1999
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.