混杂型光引发剂的合成、光引发行为及其有机/无机杂化材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过分子设计合成了一系列新型混杂型光引发剂,进行了其结构表征及光引发聚合行为的研究,并以此引发制备了聚氨酯丙烯酸酯/LDH纳米复合材料、聚氨酯丙烯酸酯/SiO_2纳米杂化材料以及聚环氧丙烯酸酯/SiO_2纳米杂化材料,对于它们的微观结构、热稳定性能、热机械性能及力学性能进行了重点研究,并取得了初步结果,具体内容如下:
     1.二苯甲酮基复合型超支化大分子光引发剂的合成及其紫外光引发聚合活性研究
     在超支化多元醇(Boltorn~(TM) P1000)分子外围引入不同比例的二苯甲酮(BP)、哌啶叔胺基团和丙烯酸双键,成功合成了一系列二苯甲酮基复合型超支化大分子光引发剂(HPPIs)。采用1H NMR和FTIR光谱对分子结构进行了表征。HPPIs具有与BP相似的紫外-可见吸收光谱。采用Photo-DSC方法研究了HPPIs引发三官能度单体三羟甲基丙烷三丙烯酸酯(TMPTA)的聚合反应动力学。结果表明,与BP相比,在相同引发色团含量情况下,采用HPPIs引发的最大聚合速率及最终双键转化率均较低,这是由于大分子自由基迁移受阻所致。当HPPI的分子末端叔胺与BP基团的摩尔比为2:1时,其引发活性最高。另外,采用HPPIs和BP分别引发双酚A环氧丙烯酸酯EB605的聚合反应,经动态机械热分析(DMTA)研究表明,前者所得固化膜的玻璃化转变温度高于后者。
     2.层状双氢氧化物-光引发剂复合物的合成及其聚合物纳米复合材料的制备与性能研究
     采用4-羟基-4’-(2-羟乙氧基)-2-甲基苯丙酮(Irgacure 2959)改性的层状双氢氧化物(LDH)前躯体作为光引发剂复合物,引发丙烯酸酯低聚物聚合交联,制备了层离型聚合物/LDH纳米复合材料。将Irgacure 2959依次与巯基乙酸,3-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH-560)反应,得到三甲基硅基团改性的大分子光引发剂(TMS-2959),再通过硅氧烷基和羟基之间的反应,将TMS-2959插入十二烷基硫酸钠(SDS)改性的LDH(LDH-DS)层间,得到了光引发剂复合物LDH-2959,采用1H NMR和FTIR对其结构进行了表征。为了比较,采用LDH-2959单独及其与Irgacure 2959共同引发丙烯酸酯聚合,分别得到了层离型和插层型的聚合物/LDH纳米复合材料。依据XRD测试及HR-TEM观察结果分析,在使用5 wt%的LDH-2959引发制备的纳米复合材料中LDH失去了原来的有序堆积结构,且均匀地分散于聚合物基体。而在LDH-2959和Irgacure 2959共同引发的形貌结构中发现了多片层的团聚体。与纯聚合物相比,该层离型的纳米复合材料的玻璃化转变温度从55°C升高到了64°C,拉伸强度从10.1 MPa提高到25.2 MPa,硬度也从2 H提高到4 H,而断裂伸长率略有下降。而插层型的纳米复合材料的性能改善有限。
     3.三甲氧基硅基光引发剂的合成及其有机/无机纳米杂化材料的制备与性能研究
     采用三甲氧基硅修饰的Irgacure 2959光引发剂(TMS-2959)引发丙烯酸酯聚合,制备了光固化有机/无机纳米杂化材料(Nano-TMS)。巯基乙酸与Irgacure 2959进行酯化反应后,再与KH-560进行加成反应,制得TMS-2959。化合物的结构由1H NMR和FTIR表征。将TEOS在乙醇和水中经盐酸催化水解缩合而得到正硅酸四乙酯的预聚物(oligo-TEOS)。TMS-2959与Irgacure 2959具有相似的吸光性能,但由于前者光引发基团含量低,其摩尔吸光系数也较低。采用Photo-DSC研究比较了TMS-2959与Irgacure 2959的光引发活性,结果表明,采用TMS-2959引发的体系的最大聚合速率及最终双键转化率略低。从扫描电子显微镜观察结果发现,在采用TMS-2959引发的Nano-TMS固化膜中SiO_2纳米粒子均匀分散于聚合物基体;而在Irgacure 2959引发的Nano-Irg固化膜中观察到了SiO_2纳米粒子的聚集及相分离现象。与采用4 wt%的Irgacure 2959引发的不含oligo-TEOS的纯丙烯酸酯固化膜相比,采用6 wt%的TMS-2959引发的Nano-TMS6固化膜的玻璃化转变温度从55.3°C升高到了66.1°C,橡胶态储能模量从36.4 MPa提高到54.3 MPa,采用6 wt%的Irgacure 2959引发的Nano-Irg6固化膜则为40.5 MPa。Nano-TMS6的拉伸强度也从纯聚合物膜的7.5 MPa提高到17.5 MPa, Nano-Irg6则为9.7 MPa。另外,Nano-TMSs固化膜的硬度也得到了大大提高,而断裂伸长率却略有下降。
     4.乙氧基硅基多官能团大分子光引发剂的合成及其有机/无机纳米杂化材料的制备与性能研究
     采用乙氧基硅修饰的多官能团大分子光引发剂(Si-m-PI)引发丙烯酸酯聚合,制备了紫外光固化有机无机纳米杂化材料(Nano-Si-m-PI)。将Irgacure 2959与巯基乙酸进行酯化反应,再与双季戊四醇六丙烯酸酯(EM265)和3-氨基丙基三乙氧基硅烷(KH-550)进行加成反应合成了Si-m-PI,采用1H NMR,FTIR证实化合物的结构。通过TEOS的水解缩合制得了TEOS预聚物(oligo-TEOS),以形成无机交联网络。Si-m-PI与Irgacure 2959具有接近的摩尔吸光系数。Photo-DSC测试结果表明,6 wt% Si-m-PI引发的固化膜Nano-Si-m-PI具有较高的最大聚合速率和最终双键转化率,分别为6.8 J g~(-1)s~(-1)和78.4%,而采用Irgacure 2959引发的固化膜Nano-Irg6分别为5.5 J g~(-1)s~(-1)和67.9%。经扫描电子显微镜观察发现,在Nano-Si-m-PI杂化膜中SiO_2纳米粒子均匀分散于聚合物基体,而在Nano-Irg杂化膜中却存在纳米粒子的聚集。Nano-Si-m-PI膜的热稳定性较高,当失重率为10%时,其分解温度比纯固化膜提高22 oC,而Nano-Irg杂化膜提高12 oC。与Nano-Irg膜相比,Nano-Si-m-PI膜的储能模量提高16 MPa,玻璃化转变温度(Tg)提高10 oC。与采用4 wt%的Irgacure 2959引发的光固化纯聚合物膜相比,Nano-Si-m-PI膜的拉伸强度从32.6 MPa提高到了45.8 MPa。
The present thesis was aimed on the synthesis, characterization and photoinitiating behavior of benzophenone (BP)-based polymeric photoinitiators, as well 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959)-based hybrid photoinitiators. The hybrid photoinitiators were used to prepare the polyurethane/LDH nanocomposites, polyurethane/SiO_2 hybrid nanocomposites and polyepoxyacrylate SiO_2 hybrid nanocomposites. The morphology, thermal behavior and mechanical properties of the UV-cured nanacomposites were studied in detail. The outline is elaborated as the follows:
     1. Synthesis and photoinitiating behaviors of benzophenone-based hybrid hyperbranched polymeric photoinitiators
     A series of benzophenone (BP)-terminated hyperbranched polymeric photoinitiators (HPPIs) based on hyperbranched polyester/polyether (BoltornTM P1000) bearing amine moiety, which was obtained by reacting with piperidine, were synthesized. For comparison, the polymerizable hyperbranched photoinitiators were also prepared by introducing acrylate group at the terminals. The chemical structures were characterized by FTIR and 1H NMR spectroscopy. HPPIs exhibited the similar UV-Vis absorption as BP. The photoinitiating behavior of HPPIs with trimethylolpropane triacrylate (TMPTA) as a trifunctional monomer was investigated by using photo-DSC analysis. The results indicated that the maximum photopolymerization rate and unsaturation conversion of in the cured TMPTA film initiated by HPPIs were both lower than that by BP. Among them, the HPPI with twice tertiary amine moiety of BP moiety was found to be the most efficient in initiating reaction. Additionally, the cured bisphenol A epoxy acrylate (EB605) films initiated by HPPIs showed the uniform microstructures and high Tg from DMTA due to their better compatibility and incorporation of hyperbranched structure.
     2. Preparation, and properties of polymer/LDH nanocomposite by UV-initiated photopolymerization of acrylate through LDH/photoinitiator hybrid complex
     The exfoliated polymer/layered double hydroxide (LDH) nanocomposite by UV-initiated photopolymerization of acrylate system through 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959)-modified LDH precursor (LDH-2959) as a polymeric photoinitiator complex was prepared. The LDH-2959 was obtained by the esterification of Irgacure 2959 with thioglycolic acid, following by the addition reaction with 3-(2, 3-epoxypropoxy)propyltrimethoxysilane (KH-560), finally intercalation into the sodium dodecyl sulfate-modified LDH. Moreover the intercalated polymer/LDH nanocomposite was obtained by using additive Irgacure 2959 except for LDH-2959. From the X-ray diffraction (XRD) measurement and HR-TEM observation for the UV-cured exfoliated nanocomposite film with 5 wt% LDH-2959 loading, the LDH lost the ordered stacking-structure and well dispersed in the polymer matrix. But for the nanocomposite with Irgacure 2959 addition the LDH was not completely exfoliated and shows the partly intercalation into the thin tactoids. Compared with the pure polymer without LDH addition the UV-cured exfoliated nanocomposite showed the increased Tg of 64°C from 55°C; the tensile strength of 25.2 MPa from 10.1 MPa; as well the greatly enhanced Persoz hardness, while an acceptable level of the elongation at break.
     3. Preparation, and properties of UV-cured organic-inorganic hybrid nanocomposite initiated by trimethoxysilane-modified fragmental photoinitiator
     An effective approach is proposed to prepare the UV-cured organic-inorganic hybrid nanocomposite (Nano-TMS) through the photopolymerization of acrylic resin initiated by trimethoxysilane-modified Irgacure 2959 (TMS-2959). The TMS-2959 as a hybrid photoinitiator was obtained by the esterification of 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) with thioglycolic acid, following by the addition reaction with 3-(2, 3-epoxypropoxy)propyltrimethoxysilane (KH-560). The chemical structure was characterized by FTIR and 1H NMR spectroscopy. The oligomeric tetraethylorthosilicate (oligo-TEOS) was prepared by a sol-gel process. The TMS-2959 exhibits the similar UV-vis absorption as Irgacure 2959 except for a lower molar extinction coefficient. The photoinitiating activity of TMS-2959 was investigated through photo-DSC analysis in comparison with Irgacure 2959. The results showed that the lower photopolymerization rate at the peak maximum and final unsaturation conversion in the cured film were obtained with the TMS-2959 initiating system but at an acceptable level compared with Irgacure 2959. From the SEM observation, the SiO_2 nanoparticles dispersed uniformly in the Nano-TMS film, whereas the aggregation of nanoparticals occurred in the UV-cured hybrid nanocomposite (Nano-Irg) initiated by Irgacure 2959. Compared with the UV-cured pure polymer initiated by 4 wt% Irgacure 2959 without oligo-TEOS addition, for the cured Nano-TMS6 film obtained with 6 wt% TMS-2959, the Tg increased to 66.1°C from 55.3°C; the rubbery storage modulus increased to 54.3 MPa from 36.4 MPa, which is higher than 40.5 MPa of Nano-Irg6 initiated with 6 wt% Irgacure 2959; the tensile strength was greatly improved to 17.5 MPa from 7.5 MPa, which was also higher than 9.7 MPa of Nano-Irg6. Moreover, the Persoz hardness enhanced greatly, while the elongation at break remained at an acceptable level.
     4. Preparation, and properties of UV-cured organic-inorganic hybrid nanocomposite initiated by ethoxysilane-modified multifunctional polymeric photoinitiator
     The UV-cured organic-inorganic hybrid nanocomposite (nano-Si-m-PI) was prepared through the photopolymerization of acrylic resin initiated by ethoxysilane-modified multifunctional oligomeric photoinitiator (Si-m-PI). The esterification reaction of 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) with thioglycolic acid, and the following addition reactions with dipentaerythritol hexaacrylate and then 3-aminpropyltriethoxysilan were carried out for preparing the Si-m-PI. An oligomeric tetraethylorthosilicate was prepared by the hydrolysis of TEOS through a sol-gel process, and used as an inorganic component for forming the crosslinked organic-inorganic network. The Si-m-PI exhibits the similar UV-vis absorption and a molar extinction coefficient as Irgacure 2959. The photoinitiating activity study by photo-DSC analysis showed that the Si-m-PI possesses high photopolymerization rate at the peak maximum and final unsaturation conversion (Pf) in the cured hybrid films, reaching to 6.8 J g~(-1)s~(-1) and 78.4%, respectively, compared with 5.5 J g~(-1)s~(-1) and 67.9% of the UV-cured hybrid nanocomposite (Nano-Irg) initiated by Irgacure 2959 both with 6 wt% chromophoric moiety loading. From the SEM observation, the SiO_2 nanoparticles dispersed uniformly in the formed Nano-Si-m-PI, whereas the aggregation of nanoparticals occurred in Nano-Irg. Moreover, compared with the UV-cured pure polymer and Nano-Irg, the Nano-Si-m-PI showed remarkably enhanced thermal stability. The increase in decomposition temperature of over 22 oC for Nano-Si-m-PI with 6 wt% Irgacure 2959 moiety loading was obtained at 10% weight loss, compared with only 12 oC increase for Nano-Irg than the pure polymer. The enhancements of around 16 MPa in storage modulus and 10 oC in Tg for Nano-Si-m-PI than that for Nano-Irg were observed. The tensile strength for Nano-Si-m-PI increased to 45.8 MPa from 32.6 MPa of pure polymer with 4 wt% Irgacure 2959 moiety loading.
引文
[1] Fouassier JP, Rabek JF. Radiation Curing in Polymer Science and Technology, London, Chapman & Hall, 1993.
    [2] Mehnert R, Pincus A, Janovsky. UV and EB Curing Technology and Equipment, London, Wiley-SITA, 1998.
    [3] Decker C, Zahouily K. Light-stabilization of polymeric materials by grafted UV-cured coatings. J Polym Sci Pol Chem, 1998, 36, 2571.
    [4] Mühlebach A, Müller B, Pharisa C, Hofmann M, Seiferling B, Guerry D. New water-solubale photo-crosslinkable polymers based on modified poly(vinyl alcohol). J Polym Sci Pol Chem, 1997, 35, 3603.
    [5] Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002, 23, 4307.
    [6] Bender M, Otto M, Hadam B, Vratzov B, Spangcnberg B, Kurz H. Fabrication of nanostructures using a UV-based imprint technique. Microelectro Eng, 2000, 53, 233.
    [7] Anseth KS, Newman SM, Bowman CN. Polymeric dental composites: properties and reaction behavior of multimethacrylate dental restorations. Adv Polym Sci, 1995, 122, 177.
    [8] Ferracane JL. Current trends in dental composites. Crir Rev Oral Biol Med, 1995, 6, 302.
    [9] Fouassier JP. Photoinitiation, Polymerization, and Photocuring: Fundamentals and applications. New Yoyk, Hanser, 1995.
    [10] Jonsson S, Sundell PE, Hultgren J. Radiation chemistry aspects of polymerization and crosslinking: A review and future environmental trends in‘non-acrylate’chemistry. Prog Org Coat, 1996, 27, 107.
    [11] Yang B. Weathering resistant oligomers, RadTech Asia 1995 Proceedings, China, 1995, 43.
    [12]金养智。持续快速发展的中国光固化产业。精细与专用化学品,2004, 20, 3.
    [13] Moszner N, Salz U. New developments of polymeric dental composites. Prog Polym Sci, 2001, 26, 535.
    [14]自新得,查萍,尹应武,紫外光固化涂料的研究现状.清华大学学报(自然科学版) 2001, 41, 30.
    [15]陈用烈,曾兆华,杨建文.辐射固化材料及其应用,北京,化学工业出版社,2003.
    [16]山西化工研究院所编。聚氨酯弹性体手册,北京,化学工业出版社,2001, 99.
    [17]陶永红,唐凯。有机硅/丙烯酸酯/聚氨酯光固化树脂的合成及应用。有机硅材料,2004, 1, 18.
    [18]胡波年,王金银。紫外光固化聚氨酯丙烯酸酯的合成及涂料的性能。化学世界,2004, 6, 302.
    [19]陈乐培,王海杰,武志明。光敏树脂及其紫外光固化涂料发展新动向。热固性树脂,2003, 18, 33.
    [20] Yang JW, Neckers DC. Research Report for Spectra Group Ltd. Maumee, Ohio, 2002.
    [21] Hoyle CE, Clark SC. Photopolymerization using maleimides as photoinitiators. Polymer, 1997, 38, 5695.
    [22]杨建文,曾兆华,张一平,庞来兴,陈用烈。羟基化甲基酚醛环氧丙烯酸酯的合成及光交联研究。高分子材料科学与工程,2003, 19, 57.
    [23] Jung SJ. Synthesis and properties of UV curable waterborne unsaturated poly-ester for wood coating. J Appl Polym Sci, 1998, 69, 695.
    [24]胡玉民,吴良义。固化剂。北京,化学工业出版社,2000, 56.
    [25]肖寅。涂料化学。北京,科学出版社,1997, 312.
    [26] Zahora EP, Lapin SC, Norenetal GK. New reactive diluent agent. Modern paint and coatings, 1994, 10, 120.
    [27] Andrzejewska E. Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci, 2001, 26, 605.
    [28] Decker C. Photoinitiated crosslinking polymerization. Prog Polym Sci, 1996, 21, 593.
    [29] Allen NS. Photoinitiators for UV and visible curing of coatings: mechanisms and properties. J Photochem Photobiol A: Chem, 1996, 100, 101.
    [30] Fouassier JP, Yamashita K. Visible light-induced polymerization reactions: The seven-role of the electron transfer process in the dye/iron arene complex/amine system. J Appl Polym Sci, 1996, 62, 1877.
    [31]魏杰,金养智。光固化涂料。北京,化学工业出版社,2005.
    [32] Turro N.现代分子光学。北京,科学出版社,1987.
    [33]李善军。高分子光化学原理及应用。上海,复旦大学出版社,1993.
    [34]郑耀臣,魏无际。光固化涂料用光引发剂的进展。涂料工业,2002, 1, 31.
    [35] Holman R, Oldring P.UV and EB Curing Formulation for Printing Inks, Coatings and Paints. London, SITA, 1986.
    [36]张兴华,莫清兰。光固化材料及其应用。信息记录材料,2004, 5, 27.
    [37] Monroe BM, Weed GC. Photoinitiators for free-radical-initiated photoimaging systems. Chem Rev, 1993, 93, 435.
    [38] Lipson M, Turro NJ.Picosecond investigation of the effect of solvent on the photochemistry of benzoin.J Photochem Photobiol A: Chem, 1996, 99, 93.
    [39] Maxwell BE, Wilson RC. Understanding benzoin’s mode of action in powder coatings.Prog Org Coat, 2001, 43, 158.
    [40] Adam W, Amold, MA. Comparative photomechanistic study(spin trapping, EPR spectroscopy, transient kinetics, Photoproducts) of nucleoside oxidation (dG and 8-oxodG) by triplet-excited acetophtmones and by the radicals generated fromα-oxy-subsfituted derivatives through Norrish-type I cleavage. J Am Chem Soc, 2002, 124, 3893.
    [41] Kizilean NJ. Ketonic resins as free radical photoinitiators. J Appl Polym Sci, 1999, 72, 927.
    [42] Doytcheva M, Dotcheva D, Smmenova R, Orahovats A, Tsvdauov Ch, Leder J. Ultraviolet-induced crosslinking of solid poly(ethylene oxide). J Appl Polym Sci, 1997, 64, 2299.
    [43] Lewis NL, Katsamberis D. Ultraviolet-curable, abrasion-resistant, and weathereble coatings with improved adhesion. J Appl Polym Sci, 1991, 42, 1551.
    [44] Dietz EJ, Peppas NA. Reaction kinetics and chemical changes during polymerization of multifonetional (meth)acrylates for the production of highly crosslinked polymers used in information storage systems. Polymer, 1997, 38, 3767.
    [45] Hu KS, Popielarz R, Neckers DC. Fluorescence probe techniques (FPT) for measuring the relative efficiencies of free-radical photoinitiators. Macromolecules, 1998, 31, 4107.
    [46] Fouassier JP, Borer A. Sensitization ofα-amninoketone photoinitintors: a time-resolved CIDNP and laser spectroscopy investigation. Macromolecules, 1992, 25, 4182.
    [47] Step EN, Turro NJ, Gande ME, Klemchuk PP. Mechanism of polymer stabilization by Hindered-Amine Light Stabilizers (HALS). Model investigations of the interaction of peroxy radicals with HALS amines and amino ethers. Macromolecules, l994, 27, 2529.
    [48] Decker C, Elzaonk B. Laser-induced crosslinking polymerization of acrylic photoresists. J Appl Polym Sci, 1997, 65, 833.
    [49] Costela A, Garcfa-Moreno L, Dabrio J, Sastre R. Photochemistry and photopolymerization activity of p-nitroaniline in the presence of N,N-dimethylaniline as a bimolecular photoinitiator system J Polym Sci PolChem, 1997, 35, 3801.
    [50] Colley CS, Grills DC, Besley NA. Probing the reactivity of photoinitiators for free radical polymerization: time-resolved infrared spectroscopic study of benzoyl radicals. J Am Chem Soc, 2002, 124, 14952.
    [51]谢川,王绅典,李绚。α-氨基苯乙酮衍生物的合成及光引发性能测试。精细化工,2000, 17, 237.
    [52] Schwalm R, Reih W. Tuning the mechanical properties of UV coatings towards hard and flexible systems. Prog Org Coat, 1997, 32, 191.
    [53] Rees MTL, Russell GT, Zammit MD. Visible light pulsed-OPO-laser polymerization at 450 nm employing a bis(acylphosphine oxide) photohlitiator. Macromolecules, l998, 31, 1763.
    [54] Allen NS, Edge M, Catalina F. Photochemistry and photocuring activities of novel substituted 4’-(4-meIhylphenylthio)benzophenones as photoinitiators. J Photochem Potobiol A: Chem, 1997, 110, 183.
    [55] George B, Dhamodharan R. A study of the photopolymerization kinetics of methyl methacrylate using novel benzophenone initiators. Polym Int, 2001, 50, 897.
    [56] Bo P, Kalyanmaman V. Photoinitiated grafting of maleic anhydride onto polypropylene. J Polym Sci Pol Chem, 2004, 42, 1953.
    [57] Wrzyszezynski A, Bartoszewicz J, Hug GL. Photochemical studies of a photodissociative initiator based on a benzophenone derivative possessing a thioether moiety. J Photochem Potobiol A: Chem, 2003, 155, 253.
    [58] Davidson RS, Dias AA, 1llsley D. A new series of typeⅡ(benzophenone) polymeric photoinitiators. J Photochem Potobiol A: Chem, 1995, 89, 75.
    [59] Andrzejewska E, Hug GL, Andr∞jewski M, Marciniak B. Trithianes as coinitiators in benzophenone-induced photopolymerizations. Macromolecules, l999, 32, 2173.
    [60] Tasis DA, Siskos MG. 4-[Diphenyl(U'imcthylsilyl)methyl]benzophenone as initiator in the photopolymerization of methyl methanrylate and styrene. Macromol Chem Phys, 1998, 199, 1981.
    [61] Costela A, Dabrio J, Figurea JM. Photochemistry of the photoinitiator 4-[2’-N,N-(diethylamino)ethoxy]-benzophenoe. Spectroscopy, radical generation and quenching. J Photochem Potobiol A: Chem, 1995, 92, 213.
    [62] Allen NS, Salleh NG, Edge M. Photochemistry and photoinitiator properties of4-substituted amidobenzophenones and imidobenzophenones. J Photochem Potobiol A: Chem, 1996, 99, 191.
    [63] Encinas MV, Rufs AM, Corrales T. The influence of the photophysics of 2-substituted thioxanthones on their activity as photoinitiators. Polymer, 2002, 43, 3909.
    [64] Corrales T, Peinado c, Catalina E. Photopolymerization of methyl methacrylatc initiated by thioxanthone derivatives: photoinitiation mechanism. Polymer, 2000, 41, 9103.
    [65] Allen NS, Salleh NG, Edge M. Photochemistry and photoinitiator properties of novel 1-chloro-substituted thioxanthones PartⅠ: Influence of 4-acyloxy substituation. J Photochem Potobiol A: Chem, 1997, 103, 185.
    [66] Dossot M, Burget D, Allonas X. From Rehm-Weller to exciplex mechanisms by a structural effect: fluorescence quenching of a thioxanthone derivative by methoxy- and methyl-substituted benzenes in acetonitrile. New J Chem, 2001, 25, 194.
    [67] Anderson DG, Davidson RS, Elvery JJ. Thioxanthones: their fate when used as Photoinitiators. Polymer, 1996, 37, 2477.
    [68] Nenmann MG, Gehlen MH, Encinas MV. Photophysics and photoreactivity of substituted thioxanthones. J Chem Soc Faradar Trans, 1997, 93, 1517.
    [69] Yates SF, Schuster GB. Photoreduction of triplet thioxanthone by amines: charge transfer generates radicals that initiate polymerization of olefins. J org Chem, 1984, 49, 3349.
    [70] Fouassier JP, Wu SK. Visible laser lights in photoinduced polymerization. VI. Thioxanthones and ketocoumarins as photoinitiators. J Appl Polym Sci, 1992, 44, 1779.
    [71] Lougno DJ, Turk C, Fouassier JP. Water-soluble polymerization initiators based on the thioxanthone structure: a spectroscopic and laser photolysis study. Macromolecules, 1989, 22, 108.
    [72] Shah M, Allen NS, Salleh NG. Photochemistry end photoinitiator properties of novel 1-chlorosubstituted thioxanthones.Ⅲ: Preliminary study of the photoacid generation. J Photochem Potobiol A: Chem, 1997, 111, 229.
    [73]万超生,王金娣,硫杂蒽酮羧酸及其衍生物的合成。华东理工大学学报,1995, 21, 582.
    [74] Fouassier JP, Lougnot DJ. Keto-sulfoxide derivatives as photoinitiators ofpolymerization. Polymer, 1995, 36, 5005.
    [75] Faraday T. Photochemistry and photocuring activity of novel 1-halogeno-4- propoxythioxanthones. J Chem Soc, 1994, 90, 83.
    [76] Allen NS, Pullen G, Shah M. Photochemistry and photoinitiator properties of 2-substituted anthraquinones: 2. Photopolymerization and flash photolysis. Polymer, 1995, 36, 4665.
    [77] Allen NS, Pullen G, Shah M. Photochemistry and photoinitiator properties of 2-substituted anthraquinones: 1. Absorption aad luminescence characteristics. J Photochem Potobiol A: Chem, 1995, 91, 73.
    [78] Allen NS, Pullen G, Shah M. Anthraquinone photoinitiators for free radical polymerization:Structure dependence on photopolymerization activity. Eur Polym J, 1996, 32, 943.
    [79] Decker C, Moussa K. Kinetic study of the cationic photopolymerization of epoxy monomers. J Polym Sci Pol Chem Ed, 1990, 28, 3429.
    [80] Decker C, Moussa K. Real-time monotoring of ultrafast curing BY UV-radiation and laser beams. J Coat Tech, 1990, 62, 55.
    [81] DeckerC. Kinetic study of light-induced polymerization by real-time and IR spectroscopy. J Polym Sci Pol Chem Ed, 1992, 30, 913.
    [82] Muller U, Utterodt A. New insights about diazonium salts as cationic photoinitiators. J Photochem Potobiol A: Chem, 2001, 140, 53.
    [83] Selvaraju C, Sivakumar A, Ramamurthy P. Excited state reactions of acridinedione dyes with onium salts: mechanistic details. J Photochem Potobiol A: Chem, 200l, 138, 213.
    [84] Crivello JV, Jang M. Anthracene electron-transfer photosensitizer for onium salt induced cationic photopolymerizations. J Photochem Potobiol A: Chem, 2003, 159, 173.
    [85] Everett JP, Schmidt DL, Rose GD. Synthesis of some onimn salts and their comparison as cationic photoinitiators in all epoxy resist. Polymer, 1997, 38, 1719.
    [86] Meier K, Zweifel H. Curable composition and it use. J Image Sci, 1986, 30, 174.
    [87]杨建文,陈永烈。水溶性光聚合引发剂研究进展。高分子通报,1997, 9, 154.
    [88]杨建文,杨小毛。光引发剂多羟基胺连硫杂葸酮的甲基取代效应。高等化学学报,1999, 12, 1965.
    [89]钱蓁,王金娣。新型水溶性硫杂蒽酮类光引发剂的光引发性能研究。功能高分子学报,2000, 2, 154.
    [90] Trefonas P, West R, Miller RD. Polysilane high polymers: mochanism of photodegradation. J Am Chem Soc, 1985, 107, 2737.
    [91]杨长吉。水溶性紫外线吸收剂的研究。感光材料,1993, 3, 15.
    [92]钱蓁,赵长阔,王金娣,祁国珍,陈景荣。新型水溶性硫杂蒽酮类光引发剂的光化学性能研究。感光科学与光化学,1999, 17, 225.
    [93]钱蓁,壬金娣,林毅清。新型水溶性硫杂蒽酮类光引发剂的光化学行为研究。光谱学与光谱分析,2000, 20, 807.
    [94] Liska R. Photoinitiators with functional groups.Ⅴ. New water-soluble photoinifiators containing carbohydrate residues and copolymerizable derivatives thereof. J Polym Sci Pol Chem, 2002, 40, 1504.
    [95] Liska R, Gauster B, Salz U. Photoinitiators with functional groups.Ⅳ. Hydrophilic bisacylphosphine oxides for acidic aqueous formulations. J Polym Sci Pol Chem, 2006, 44, 1686.
    [96] Maria L, Rodrigo E. Tetraalkylammonium salt as photoinitiator of vinyl polymerization in organic and aqueous media: A mechanistic and laser flash photolysis study. J Polym Sci Pol Chem, 2002, 40, 901.
    [97] Rogrigues MR, Neumann MG. Mechanistic study of tetrahydrofuma polymerization photoinitiated by a sulfoninm salt/thioxanthone system. Macromol Chem Phys, 2001, 202, 2776.
    [98] He JH, Mendoza VS. Synthesis and study of a novel hybrid UV photoinitiator: p-benzoyldiphenyliodonium hexafluorophosphate (PhCOPhI+PhPF6-). J Polym Sci Pol Chem, 1996, 34, 2809.
    [99] Pzyjazna B, Kucybale Z, Paczkowski JP. Development of new dyeing photoinitiator based on 6H-indolo[2,3-b]quinoxaline skeleton. Polymer, 2004, 45, 2559.
    [100] Scgurols J, Allen NS, Edge M. Design of eutectic photoinitiator blends for UV/visible curable acrylated printing inks and coatings. Prog Org Coat, 1999, 37, 23.
    [101] Kawamura K, Kato K. Synthesis and evaluation as a visible-light polymerization photoinitiator of a new dye-linked bis(trichloromethyl)-1,3,5-triazine. Polym advan Techn, 2004, 15, 324.
    [102] Ghosh P, Pal G. Photopolymerization of methyl methacrylate with the use of morpholine-chlorine charge transfer complex as the photoinitiator. J Polym SciPoly Chem, 1997, 35, 1681.
    [103] Keating JT, Perausich SA. Cation exchange reinforced membrane and process for using. US4964960.
    [104] Kabatc J, Jedrzejewska B, Paczkowski J. Kinetic study of free-radical polymerization photoinitiated by cyanine-borate salts.Ⅱ. J Polym Sci Poly Chem, 2000, 38, 2365.
    [105] Chattejee S, Davis ED. Photochemistry of carbocyanine alkyltriphenylborate salts: intra-ion-pair electron transfer and the chemistry of boranyl radicals. J Am Chem Soc, 1990, 112, 6329.
    [106] Zdzislaw K, Marek P. Development of new dyeing photoinifiators based on azomethine dyes. Chem Mater, 1998, 10, 3555.
    [107]朱丹,张育川,曾宪玉。两种新型光敏剂吖啶酮类化合物的合成。北京化工大学学报,2000, 2, 15.
    [108]李立东。可见光敏引发聚合甲基丙烯酸甲酯的动力学研究。感光科学与光化学,1998, 16, 1.
    [109] Andrzejewska E, Linden LA, Rabek JF. The role of oxygen in camphorquinone-initiated photopolymerization. Macromol Chem Phys, 1998, 199, 441.
    [110] Corrales t, Catalina E, Allen NS. Free radical macrophotoinitiators: all overview on recent advances. J Photochem Potobiol A: Chem, 2003, 159, 103.
    [111] Ye GD, Zhou H, Yang JW, Zeng ZH, Chen YL. Synthesis and characterization of oligomers containing theα-Aminoalkylphenone chromophore as oligomeric Photoinitiator. J Appl Polym Sci, 2006, 99, 3417.
    [112] Du FS, Zhang P, Li FM. A polymerizable photoredox initiation system for vinyl Photopolymerization. J Appl Polym Sci, 1994, 51, 2139.
    [113] Carlini C, Angiolini L, Caretti D, Corelli E. Novel polymeric photoinitiators bearing side-chain-aminoacetophenone moieties for ultraviolet-curable pigmented coatings. J Appl Polym Sci, 1997, 64, 2237.
    [114] Gomurashvili Z, Hua YJ, Crivello JV. Monomeric and polymeric carbazole photosensitizers for photoinitiated cationic polymerization. Macromol Chem Phys, 2001, 202, 2133.
    [115] Deginnenci M, Hizal G, Yagci Y. Synthesis and characterization of macrophotoinitiators of poly(e-caprolactone) and their use in blockcopolymerization. Macromolecules, 2002, 35, 8265.
    [116] Kizilkan N. Ketonic resins as free radical photoinitiators. J Appl Polym Sci, 1999, 72, 927.
    [117] Sarker AM, Sawabe K, Neckers DC. Synthesis of polymeric photoinitiators containing pendent chromophore-borate ion pairs: photochemistry and photopolymerization activities. Macromolecules, 1999, 32, 5203.
    [118] Allen NS, Edge M. Novel oligomoric amines as co-synergists for the photeseansitised crosslinking of a triacrylate resin. Polym Degrad Stab, 2002, 75, 229.
    [119] Carlini C, Angiolini L, Caretti D. Recent advances on photosensitive polymers: polymeric photoinitiator. Polym Adv Technol, 1996, 7, 379.
    [120] Seok JW, Han YS, Kwon YH, Park LS. Structural effect of photoinitiators on electro-optical properties of polymer-dispersed liquid crystal composite films. J Appl Polym Sci, 2006, 99, 162.
    [121] Cakmak I, OzturK T. Synthesis of triblock copolymers via photopolymerization of styrene and methyl methacrylate using macrophotoinitiators possessing poly(ethylene glyco1) units. J Polym Res, 2005,12, 121.
    [122] Deginnenci M. Synthesis and characterization of novel well-defined end-functional macrophotoinitiator of poly(MMA) by ATRP. J Macromol Sci Pure Appl, 2005, A42, 2l.
    [123] Deginnenci M. Synthesis of novel well-defined end-functional macrophotoinitiator of poly(epsilon-caprolactone) by ring-opening polymeirization. Polym J, 2004, 36, 542.
    [124] Temel G, Arsu N, Yagci Y. Polymeric side chain thioxanthone phominitiator for free radical polymerization. Polym Bull, 2006, 57, 51.
    [125] Angiolini L, Caxetti D, Salatelli E. Synthesis and photoinitiation activity of radical polymeric photoinifiators bearing side-chain camphorquinone moieties. Macromol Chem Phys, 2000, 201, 2646.
    [126] Lozano AE, Alonso A, Catalina F, Peinado C. A theoretical study of the addition of silyl radicals to olefinic monomers. Macromo1 Theory Simul, 1999, 8, 93.
    [127] Alonso A, Peinado C, Lozano AE. Rate constants of the reaction of silyl macroradicals generated by chain cleavage of poly(dihexyl silylene) with olefinic monomers. J Macro1 Sci Pure Appl Chem, 1999, 36, 605.
    [128]肖浦,吴刚强,史素青,聂俊。基于α-2-羟烷基苯酮(HAPK)可聚合大分子光引发剂的合成及其引发三丙二醇双丙烯酸酯(TPGDA)光聚合动力学的研究。感光科学与光化学,2006, 24, 204.
    [129]梁驻军,杨洪梅,顾欣宇,闰庆金。大分子光引发剂研究进展(一)。精细与专用化学品,2003, 19, 15.
    [130] Visconti M, Cattaneo M. A highly efficient photoinitiator for water-borne UV-curable systems. Prog Org Coat, 2000, 40, 243.
    [131] Davidson RS, Hageman HJ, Lewis SP. The application of some polymeric type-I photoinitiators based onα-hydroxymethylbenzoin andα-hydroxymethylbenzoin methyl ether. J Photochem Potobiol A: Chem, 1998, 118, 183.
    [132] Kizilcan NJ. Oligomeric benzoin photoinitiators. J Appl Polym sci, 2002, 85, 500.
    [133] Angiolini L, Caretti D, Carlini C, Corelli E, Salatelli E. Polymeric photoinitiators having benzoin methylether moieties connected to the main chain through the benzyl aromatic ring and their activity for ultraviolet-curable coatings. Polymer, 1999, 40,7197.
    [134] Castelvetro V, Molesti M, Rolla P. UV-curing of acrylic formulations by means of polymeric photoinitiators with the active 2,6-dimethylbenzoylphosphine oxide moieties pendant from a tetramethylene side chain. Macromol Chem Phys, 2002, 203, 1486.
    [135] Temel G, Aydogan B, Arsu N, Yagci Y. Synthesis and characterization of one-component polymeric photoinitiator by simultaneous double click reactions and its use in photoinduced free radical polymerization. Macromolecules, 2009, 42, 6098.
    [136] Wei J, Wang HJ, Yin J. Novel polymeric, thio-containing photoinitiator comprising in-chain benzophenone and an amine coinitiator for photopolymerization. J Polym Sci Pol Chem, 2007, 45, 576.
    [137] Xiao P, Wang Y, Dai MZ, Shi SQ, Wu GQ, Nie J. Synthesis and photopolymerization kinetics of polymeric one-component type II photoinitiator containing benzophenone moiety and tertiary amine. Polym Eng Sci, 2008, 48, 884.
    [138] Xiao P, Shi SQ, Nie J. Synthesis and characterization of copolymerizableone-component type II photoinitiator. Polym Adv Technol, 2008, 19, 1305.
    [139] Davidson RS, Dias AA, Illsley D. A new series of type II (benzophenone) polymeric photoinitiators. J Photochem Photobiol A: Chem, 1995, 89, 75.
    [140] Davidson RS, Dias AA, Illsley DR. Type II polymeric photoinitiators (polyetherimides) with built-in amine synergist. J Photochem Potobiol A: Chem, 1995, 91, 153.
    [141] Wei J, Liu F, Lu ZM, Song L, Cai DD. Novel PU-type polymeric photoinitiator comprising side-chain benzophenone and coinitiator amine for photopolymerization of PU acrylate. Polym Adv Technol, 2008, 19, 1763.
    [142] Wen YN, Jiang XS, Yin J. Polymeric Michler’s ketone photoinitiator containing coinitiator amine. Polym Eng Sci, 2009, 49, 1608.
    [143] Jiang XS, Luo XW, Yin J. Polymeric photoinitiators containing in-chain benzophenone and coinitiators amine: Effect of the structure of coinitiator amine on photopolymerization. J Photochem Photobiolo A: Chem, 2005, 174, 165.
    [144] Corrales T, Catalina F, Peinado C. Photochemical study and photoinidation activity of macroinitiators based on thioxanthone. Polymer , 2002, 43, 4591.
    [145] Jiang XS, Xu HJ, Yin J. Polymeric amine bearing side-chain thioxanthone as a novel photoinifiator for photopolymerization. Polymer, 2004, 45, 133.
    [146] Jiang XS, Yin J. Polymeric photoinidator containing in-chain thioxanthone and coinitiator amine. Macromo1 Rapid Commun, 2004, 25, 748.
    [147] Jiang XS, Xu HJ, Yin J. Copolymeric photoinitiator containing in-chain thioxanthone and coinitiator amine for photopolymerization. J Appl Polym Sci, 2004, 94, 2395.
    [148] Jiang XS, Xu HJ, Yin J. Copolymeric dendritic macrophotoinitiators. Polymer, 2005, 46, l1079.
    [149] Jiang XS, Yin J. Study of macrophominifiator containing in-chain thioxanthone and coinifiator amines. Polymer, 2004, 45, 5057.
    [150] Roy R. Ceramics by the solution-sol-gel route. Science, 1987, 23, 1664.
    [151] Giannelis EP. Polymer Layered Silicate Nanocomposites. Adv Mater, 1996, 8, 29.
    [152] Vaccari A. Clays and catalysis: a promising future. Appl Clay Sci, 1999, 14, 161.
    [153]许国志,过灿雄,段雪。PF膜中层状双羟基复合氢氧化物的红外吸收性能。应用化学, 1999, 16, 45.
    [154] Carr S W, Franklin KR, Nunn CC,Pasternak JJ, Scott I. Sunscreen agents, US5474762, 1995.
    [155] Wong S, Vasudenvan S, Vaia RA. Dynamics in a confined polymer electrolyte: A 7Li and 2H NMR study. J Am Chem Soc, 1995, 117, 7568.
    [156] Musselman LL, Misra C, Grubbs DK. Bromide intercalated hydrotalcite for use as a flame retardant, smoke suppressant additive. US5225115, 1993.
    [157]华幼卿,秦倩.层状双羟基氢氧化物的结构表征及对PVC的热稳定作用。高分子材料科学与工程,2003, 19, 172.
    [158] Leroux F, Adachi-Pagano M, Intissar M. Delamination and restacking of layered double hydroxides. J Mater Chem, 2001, 11, 105.
    [159] Kooli F, Rives V, Ulibarri MA. Preparation and study of decavanadate-pillared hydrotalcite-like anionic clays containing transition metal cations in the layers. 1. samples containing nickel-aluminum prepared by anionic exchange and reconstruction. Inorg Chem, 1995, 34, 5114.
    [160] López T, Bosch P, Asomoza M. DTA-TGA and FTIR spectroscopies of sol-gel hydrotalcites: aluminum source effect on physicochemical properties. Mater Lett, 1997, 31, 311.
    [161] Pausch I, Lohse HH, Schurmann K. Synthesis of disordered and Al-rich hydroxide-like compounds. Clays & Clay Minerals, 1986, 34, 507.
    [162] Khan AI, O’Hare D. Intercalation chemistry of layered double hydroxides:recent developments and applications J Mater Chem, 2002, 12, 3191.
    [163] Delmas C, Borthomieu Y. Chimie douce reactions: A new route to obtain well crystallized layer double hydroxides. J Solid State Chem, 1993, 104, 345.
    [164] Moujahid EM, Dubois M, Bess JP. Role of atmospheric oxygen for the polymerization of interleaved aniline sulfonic acid in LDH. Chem Mater, 2002, 14, 3799.
    [165] Chen W, Qu BJ. Structural characteristics and thermal properties of PE-g-MA/MgAl-LDH exfoliation nanocomposites synthesized by solution intercalation. Chem Mater, 2003, 15, 3208.
    [166] Chen W, Qu BJ. Synthesis and characterization of PE-g-MA/MgAl-LDH exfoliation nanocomposite via solution intercalation. Chinese J Chem, 2003, 21,998.
    [167] Chen W, Feng L, Qu BJ. Preparation of nanocomposites by exfoliation of ZnAl layered double hydroxides in nonpolar LLDPE solution. Chem Mater, 2004, 16, 368.
    [168] Hsueh HB, Chen CY. Preparation and properties of LDHs/polyimide nanocomposites. Polymer, 2003, 44,1151.
    [169] Hsueh HB, Chen CY. Preparation and properties of LDHs/epoxy nanocomposites. Polymer, 2003, 44, 5275.
    [170]陈伟,冯莉,瞿保钧.原位聚合法制备聚丙烯酸甲酯/ZnAl层状双氢氧化物插层纳米复合材料及其形貌特征。高等学校化学学报, 2003, 24, 1920.
    [171] O’Leary S, O’Hare D, Seeley G. Delamination of layered double hydroxides in polar monomers: new LDH-acrylate nanocomposites. Chem Commun, 2002, 16, 1506.
    [172] Chen W, Feng L, Qu BJ. In situ synthesis of poly(methyl methacrylate)/MgAl layered double hydroxide nanocomposite with high transparency and enhanced thermal properties. Solid State Commun, 2004, 130, 259.
    [173] Triantafillidis CS, LeBaron PC, Pinnavaia TJ. Homostructured mixed inorganic-organic ion clays:A new approach to epoxy polymer-exfoliated clay nanocomposites with a reduced organic mModifier content. Chem Mater, 2002, 14, 4088.
    [174] Schmidt H, Jonschker G, Goedicke S, Menning M. The sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites. J Sol-Gel Sci Technol, 2000, 19, 39.
    [175] Wang B, Wilkes GL. Novel hybrid inorganic-organic abrasion-resistant coatings prepared by a sol-gel process. J Macromol Sci Part A-Pure Appl Chem, 1994, A31, 249.
    [176] Zou JH, Shi WF, Hong XY. Characterization and properties of a novel organic- inorganic hybrid based on hyperbranched aliphatic polyester prepared via sol- gel process. Compos Pt A-Appl Sci Manuf, 2005, 36, 631.
    [177] Sangermano M, Malucelli G, Amerio E, Priola A, Billi E, Rizza G. Photopolymerization of epoxy coatings containing silica nanoparticles. ProgOrg Coat, 2005, 54, 134.
    [178] Simon PFW, Ulrich R, Spiess HW, Wiesner U. Block copolymer-ceramic hybrid materials from organically modified ceramic precursors. Chem Mater, 2001, 13, 3464.
    [179] Judenstein P, Sanchez C. Hybrid organic-inorganic materials: a land of multidisciplinarity. J Mater Chem, 1996, 6, 511.
    [180] Beari F, Brand M, Jenkner P, Lehnert R, Metternich HJ, Monkiewicz J. Organofunctional alkoxysilanes in dilute aqueous solution: new accounts on the dynamic structural mutability. J Organomet Chem, 2001, 625, 208.
    [181] Schubert U, Husing N, Lorenz A. Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides. Chem Mater, 1995, 7, 2010.
    [182]芦贻春,李再耕.pH值对硅溶胶凝胶化过程的影响。耐火材料,1995,29,326
    [183]张贻瑞,王建。基础材料与新材料。天津,天津大学出版社,1994.
    [184] Chaumel F, Jiang HW, Kakkar A. Sol-gel materials for second-order nonlinear optics. Chem Mater, 2001, 13, 3389.
    [185] Franville AC, Zambon D, Mahiou R, Troin Y. Luminescence behavior of sol-gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes. Chem Mater, 2000, 12, 428.
    [186] Vallet-Regi M, Salinas AJ, Ramirez-Castellanos J, Gonzalez-Calbet JM. Nanostructure of bioactive sol-gel glasses and organic-inorganic hybrids. Chem Mater, 2005, 17, 1874.
    [187] Kataoka K, Nagao Y, Nukui T, Akiyama I, Tsuru K, Hayakawa S, Osaka A, Huh N. An organic-inorganic hybrid scaffold for the culture of HepG2 cells in a bioreactor. Biomaterials, 2005, 26, 2509.
    [188] Rhee SH, Hwang MH, Si HJ, Choi JY. Biological activities of osteoblasts on poly(methyl methacrylate)/silica hybrid containing calcium salt. Biomaterials, 2003, 24, 901.
    [189] Hajji P, David L, Gerard JF, Pascault JP, Vigier G. Synthesis, structure, and morphology of polymer–silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym Sci Pt B-Polym Phys, 1999, 37, 3172.
    [190] Jang J, Park H. In situ sol-gel process of polystyrene/silica hybrid materials: Effect of silane-coupling agents. J Appl Poly. Sci, 2002, 85, 2074.
    [191] Tamaki R, Samura K, Chujo Y. Synthesis of polystyrene and silica gel polymer hybrids viaπ–πinteractions. Chem Commun, 1998, 1131.
    [192] Tamaki R, Chujo Y. Synthesis of IPN polymer hybrids of polystyrene gel and silica gel by an in-situ radical polymerization method. J Mater Chem, 1998, 8, 1113.
    [193] Wang SH, Ahmad A, Mark JE. Polyimide-silica hybrid materials modified by incorporation of an organically substituted alkoxysilane. Chem Mater, 1994, 6, 943.
    [194] Novak BM, Ellsworth MW, Verrier C. Nanostructured organic-inorganic hybrid materials synthesized through simultaneous processes. Hybrid Organic-Inorganic Composites, 1995, 585, 86.
    [195] Rahimian K, Loy DA, Chen PP. Nonshrinking, photopolymerizable polycarbosiloxanes through ring-opening polymerization of disilaoxacyclopentane monomers. Chem Mater, 2005, 17, 1529.
    [196] Loy DA, Rahimian K, Samara M. Phenylene-bridged cyclic siloxanes as precursors to nonshrinking sol-gel systems and their use as encapsulants. Angew Ch -In Edit, 1999, 38, 555.
    [197] Ellsworth MW, Novak BM. "Inverse" organic-inorganic composite materials. 3. High glass content "nonshrinking" sol-gel composites via poly(silicic acid esters). Chem Mater, 1993, 5, 839.
    [198] Ellsworth MW, Novak BM. Mutually interpenetrating inorganic-organic networks. New routes into nonshrinking sol-gel composite materials. J Am Chem Soc, 1991, 113, 2756.
    [1] Fieberg A, Reis O. UV curable electrodeposition systems. Prog Org Coat, 2002, 45, 239.
    [2] Decker C. Kinetic study and new applications of UV radiation curing. Macromol Rapid Commun, 2002, 23, 1067.
    [3] Davidson RS, Dias AA, Illsley DR. A new series of type II (benzophenone) polymeric photoinitiators. J Photochem Photobiol A: Chem, 1995, 89, 75.
    [4] Corrales T, Catalina F, Peinado F, Allen NS. Free radical macrophotoinitiators: an overview on recent advances. J Photochem Photobiol A: Chem, 2003, 159, 103.
    [5] Jiang XS, Yin J. Polymeric photoinitiators containing in-chain benzophenone and coinitiators amine: Effect of the structure of coinitiator amine on photopolymerization. J Photochem Photobiol A: Chem, 2005, 174, 165.
    [6] CastelvtroV, Molesti M, Rolla P. UV-curing of acrylic formulations by means of polymeric photoinitiators with the active 2,6-dimethylbenzoylphosphine oxide moieties pendant from a tetramethylene side chain. Macromol Chem Phys, 2002, 203, 1486.
    [7] Degirmenci M, Hizal M, Yagci Y. Synthesis and Characterization of Macrophotoinitiators of Poly(ε-caprolactone) and Their Use in Block Copolymerization. Macromolecules, 2002, 35, 8265.
    [8] Sarker AM, Sawabe K, Strehmel B, Kaneko Y, Neckers DC. Synthesis of Polymeric Photoinitiators Containing Pendent Chromophore-BorateIon Pairs: Photochemistry and Photopolymerization Activities. Macromolecules, 1999, 32, 5203–5209.
    [9] Angiolini L, Caretti D, Salatelli E. Synthesis and photoinitiation activity of radical polymeric photoinitiators bearing side-chain camphorquinone moieties. Macromol Chem Phys, 2000, 201, 2646.
    [10] Jiang GJ, Shirota Y, Mikawa H. Photopolymerization of the N,N-dialkylaminoethyl methacrylate-benzophenone system. Polym Photochem, 1986, 7, 311.
    [11] Newkome GR, Moorefield NC, Vogtle F. Dendritic Molecules: Concepts, Synthesis, Perspectives, WileyVCH, Weinheim, 2001.
    [12] Fréchet JMJ. Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology. J Polym Sci Pol Chem, 2003, 41, 3713.
    [13] Voit B. Hyperbranched polymers-All problems solved after 15 years of research. J Polym Sci Pol Chem, 2005, 43, 2679.
    [14] Yates CR, Hayes W. Synthesis and applications of hyperbranched polymers. Eur Polym J, 2004, 40, 1257.
    [15] Gao C, Yan DY. Hyperbranched polymers: from synthesis to applications. Prog Polym Sci, 2004, 29, 183.
    [16] Sunder A, Heinemann J, Frey H. Controlling the Growth of Polymer Trees: Concepts and Perspectives For Hyperbranched Polymers. Chem Eur J, 2000, 6, 2499.
    [17] Voit B. New developments in hyperbranched polymers. J Polym Sci PolChem, 2000, 38, 2505.
    [18] Pettersson B. Radiation curiable dendritic oligomer of polymer. WO0222700, 2002.
    [19] Davidson RS. Exploring the science technology and applications of UV and EB curing. London, SITA Technology Ltd., 1999.
    [20] Chen Y, Loccufier J, Vanmaele L, Barriau E, Frey H. Novel multifunctionalpolymeric photoinitiators and photo-coinitiators derived from hyperbranched polyglycerol. Macromol Chem Phys, 2007, 208, 1694.
    [21] Jiang xs, Xu hj, Yin j. Copolymeric dendritic macrophotoinitiators. Polymer, 2005, 46, 11079.
    [1] Qiu LZ, Chen W, Qu BJ. Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocomposites. Polymer, 2006, 47, 922.
    [2] Triantafillidis CS, Lebaron PC, Pinnavaia TJ. Homostructured mixed inorganic-organic ion clays: A new approach to epoxy polymer-exfoliated clay nanocomposites with a reduced Organic modifier content. Chem Mater, 2002, 14,4088.
    [3] Yu YH, Lin CY, Yeh JM, Lin WH. Preparation and properties of poly(vinyl alcohol)-clay nanocomposite materials. Polymer, 2003, 44, 3553.
    [4] Leroux F, Basse JP. Polymer interleaved layered double hydroxide: A new emerging class of nanocomposites. Chem Mater, 2001, 13, 3507.
    [5] Vaia RA, Vasudevan1 S, Krawiec W, Scanlon LG, Giannelis EP. New polymer electrolyte nanocomposites: Melt intercalation of poly(ethylene oxide) in mica-type silicates. Adv Mater, 1995, 7, 154.
    [6] Wang MS. Clay-polymer nanocomposites formed from acidicderivatives of montmorillonite and an epoxy resin. Chem Mater, 1994, 6, 468.
    [7] Messersmith PB, Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem Mater, 1994, 6, 1719.
    [8] Hibino T, Jones W, New approach to the delamination of layered double hydroxides. J Mater Chem, 2001, 11, 1321.
    [9] Adachi-Pagano M, Forano C, Besse JP, Delamination of layered double hydroxides by use of surfactants. Chem Commun, 2000, 1, 91.
    [10] Leroux F, Adachi-Pagano M, Zatissar M, Chauviere C, Forano C, Besse JP. Delamination and restacking of layered double hydroxides. J Mater Chem, 2001, 11, 105.
    [11] Costa FR, Leuteritz A, Wagenknecht U, Landwenhr MA, Jehnichen D, Haeccssler L, Heinrich G. Alkyl sulfonate modified LDH: Effect of alkyl chain length on intercalation behavior, particle morphology and thermal stability. Appl Clay Sci, 2009, 44, 7.
    [12] Vaysse C, Guerlou-Demourgues L, Duguet E, Delmas C. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides. Inorg Chem, 2003, 42, 4559.
    [13] Moujahid EM, Besse JP, Leroux F. Poly(styrene sulfonate) layered double hydroxide nanocomposites. Stability and subsequent structural transformation with changes in temperature. J Mater Chem, 2008, 13, 258.
    [14] Du LC, Qu BJ, Meng YZ, Zhu Q. Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation. Compos Sci Technol, 2006, 66, 913.
    [15] Zhu JX, Yuan P, He HP, Frost R, Tao Q, Shen W, Bostrom T. Infrared investigation of organo-montmorillonites prepared from different surfactants. J Colloid Interface Sci, 2008, 319, 498.
    [16] Tao Q, He HP, Frost RL, Yuan P, Zhu JX. Nanomaterials based upon silylated layered double hydroxides. Appl Surf Sci, 2009, 255, 4334.
    [17] Park AY, Kwon HJ, Woo AJ, Kim SJ. Layered double hydroxide surface modified with (3-aminopropyl)triethoxysilane by covalent bonding. Adv Mater, 2005, 17, 106.
    [18] Qiu LZ, Chen W, Qu BJ. Exfoliation of layered double hydroxide in polystyrene by in-situ atom transfer radical polymerization using initiator-modified precursor. Colloid Polym Sci, 2005, 283, 1241.
    [19] Lv SC, Zhou W, Li S, Shi WF. A novel method for preparation of exfoliated UV-curable polymer/clay nanocomposites. Eur Polym J, 2008, 44, 1613.
    [20] Uhl FM, Webster DC, Davuluri SP, Wong SC. UV curable epoxy acrylate-clay nanocomposites. Eur Polym J, 2006, 42, 2596.
    [21] Sangermano M, Lak N, Malucelli G, Samakande A, Sanderson RD. UV-curing and characterization of polymer-clay nanocoatings by dispersion of acrylate-funtionalized organoclays. Prog Org Coat, 2008, 61, 89.
    [22] Lv SC, Yuan Y, Shi WF. Strengthening and toughening effects of layered double hydroxide and hyperbranched polymer on epoxy resin. Prog Org Coat, 2009, 65, 425.
    [23] Wang YY, Hsieh TE. Preparation of UV-curable intercalated/exfoliated epoxide/acrylateclays nanocomposite resins. J Mater Sci, 2007, 42, 4451.
    [24] Lv SC, Zhou W, Miao H, Shi WF. Preparation and properties of polymer/LDH nanocomposite used for UV curing coatings. Prog Org Coat, 2009, 65, 450.
    [25] Moore JS, Stupp SI. Room temperature polyesterification. Macromolecules, 1990, 23, 65.
    [1] Wang ZD, Lu JJ, Li Y, Fu SY, Jiang SQ, Zhao XX. Studies on thermal and mechanical properties of PI/SiO_2 nanocomposite films at low temperature. Compos Pt A-Appl Sci Manuf, 2006, 37, 74.
    [2] Amerio E, Sangermano M, Malucelli G, Priola A, Voit B. Preparation and characterization of hybrid nanocomposite coatings by photopolymerization and sol-gel process. Polymer, 2005, 46, 11241.
    [3] Mager M, Schmalstieg L, Mechtel M, Kraus H. Organic-inorganic hybrid coatings based on polyfunctional silanols as new monomers in sol-gel processing. Macromol Mater Eng, 2001, 286, 682.
    [4] Zhao L, Li L, Tian JX, Zhuang JH, Li SJ. Synthesis and characterization of Bismaleimide-polyetherimide-titania hybrid. Compos Pt A-Appl Sci Manuf, 2004, 35, 1217.
    [5] Cho JD, Ju HT, Hong JW. Photocuring kinetics of UV-initiated free-radical photopolymerizations with and without silica nanoparticles. J Polym Sci Pol Chem ,2005, 43, 658.
    [6] Ochi M, Takahashi R, Tenanchi A. Phase structure and mechanical and adhesion properties of epoxy/silica hybrids. Polymer, 2001, 42, 5151.
    [7] Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci, 2003, 28, 83.
    [8] Zou JH, Shi WF, Hong XY. Characterization and properties of a novel organic- inorganic hybrid based on hyperbranched aliphatic polyester prepared via sol- gel process. Compos Pt A-Appl Sci Manuf, 2005, 36, 631.
    [9] Sangermano M, Malucelli G, Amerio E, Priola A, Billi E, Rizza G. Photopolymerization of epoxy coatings containing silica nanoparticles. Prog Org Coat, 2005, 54, 134.
    [10] Schmidt H, Jonschker G, Goedicke S, Menning M. The sol–gel process as a basic technology for nanoparticle-dispersed inorganic–organic composites. J Sol-Gel Sci Technol, 2000, 19, 39.
    [11] Simon PFW, Ulrich R, Spiess HW, Wiesner U. Block copolymer–ceramic hybrid materials from organically modified ceramic precursors. Chem Mater, 2001, 13, 3464.
    [12] Judenstein P, Sanchez C. Hybrid organic-inorganic materials: a land of multidisciplinarity. J Mater Chem, 1996, 6, 511.
    [13] Beari F, Brand M, Jenkner P, Lehnert R, Metternich HJ, Monkiewicz J, et al. Organofunctional alkoxysilanes in dilute aqueous solution: new accounts on the dynamic structural mutability. J Organomet Chem, 2001, 625, 208.
    [14] Fieberg A, Reis O. UV curable electrodeposition systems. Prog Org Coat, 2002,45, 239.
    [15] Decker C. Kinetic study and new applications of UV radiation curing. Macromol Rapid Commun, 2002, 23, 1067.
    [16] Nakayama N, Hayashi T. Preparation and characterization of TiO_2–ZrO_2 and thiol-acrylate resin nanocomposites with high refractive index via UV-induced crosslinking polymerization. Compos Pt A-Appl Sci Manuf, 2007, 38, 1996.
    [17] Davidson RS, Dias AA, Illsley DR. A new series of type II (benzophenone) polymeric photoinitiators. J Photochem Photobiol A-Chem, 1995, 89, 75.
    [18] Carlini C, Angiolini L, Caretti D, Corell E, Rolla PA. Recent advances on photosensitive polymers: polymeric photoinitiators. Polym Adv Technol, 1996, 7, 379.
    [19] Corrales T, Catalina F, Peinado C, Allen NS. Free radical macrophotoinitiators: an overview on recent advances. J Photochem Photobiol A-Chem , 2003, 159, 103.
    [20] Mustafa D, Gurkan H, Yusuf Y. Synthesis and characterization of macrophotoinitiators of poly(e-caprolactone) and their use in block copolymerization. Macromolecules, 2002, 35, 8265.
    [21] Bauer F, Mehnert R. UV curable acrylate nanocomposites: properties and applications. J Polym Res, 2005, 12, 483.
    [22] Wouters MEL, Wolfs DP, Linde MC, Hovens JHP, Tinnemans AHA. Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method. Prog Org Coat, 2004, 51, 312.
    [23] Xu JW, Pang WM, Shi WF. Synthesis of UV-curable organic-inorganic hybrid urethane acrylates and properties of cured films. Thin Solid Films, 2006, 514, 69.
    [24] Ji Q, Wang XL, Zhang YH, Kong QS, Xia YZ. Characterization of poly (ethylene terephthalate)/SiO2 nanocomposites prepared by sol-gel method. Compos Pt A-Appl Sci Manuf, 2009, 40, 878.
    [25] Zong ZG, He JY, Soucek MD. UV-curable organic-inorganic hybrid films based on epoxynorbornene linseed oils. Prog Org Coat, 2005, 53, 83.
    [26] Malucell G, Priola A, Sangermano M, Amerio E, Zini E, Fabbri E. Hybrid nanocomposites containing silica and PEO segments: preparation throughdual-curing process and characterization. Polymer, 2005, 46, 2872.
    [27] Moore JS, Stupp SI. Room temperature polyesterification. Macromolecules, 1990, 23, 65.
    [28] Hu LH, Yuan Y, Shi WF. Preparation of polymer/LDH nanocomposite by UV initiated photopolymerization of acrylate through photoinitiator-modified LDH precursor. Mater Res Bull, 2011, 46, 244.
    [29] Camino G, Costa L. Intumescent fire-retardant systems. Polym Degrad Stab, 1989, 23, 359.
    [30] De S, De G. Coarsening of Ag nanoparticles in SiO2-PEO hybrid film matrix by UV light. J Mater Chem, 2006, 16, 3193.
    [1] Fieberg A, Reis O. UV curable electrodeposition systems. Prog Org Coat, 2002, 45, 239.
    [2]梁驻军,杨洪梅,顾欣宇,闫庆金。大分子光引发剂研究进展(一)。精细与专用化学品,2003, 19, P15.
    [3] Mustafa D, Gurkan H, Yusuf Y. Synthesis and characterization of macrophotoinitiators of poly(ε-caprolactone) and their use in block copolymerization. Macromolecules 2002, 35, 8265.
    [4]王德海,江棂。紫外光固化材料-理论与应用。北京,科学出版社,2001. 81.
    [5] Corrales T, Catalina F, Peinado C, Allen NS. Free radical macrophotoinitiators: an overview on recent advances. J Photochem Photobiol A-Chem 2003, 159, 103.
    [6]陈用烈,曾兆华,杨建文.辐射固化材料及其应用。北京,化学工业出版社,2003.
    [7] Schubert U, Husing N, Lorenz A. Chem Mat, 1995, 7, 2010.
    [8] Judenstein P, Sanchez C. Hybrid organic-inorganic materials: a land of multidisciplinarity. J Mater Chem 1996, 6, 511.
    [9] Rhee SH, Hwang MH, Si HJ, Choi JY. Biological activities of osteoblasts on poly(methyl methacrylate)/silica hybrid containing calcium salt. Biomaterials, 2003, 24, 901.
    [10] Innocenzi P, Brusatin G, Guglielmi M, Signorini R, Bozio R, Maggini R. 3-(glycidoxypropyl)-trimethoxysilane-TiO_2 hybrid organic-inorganic materials for optical limiting. J Non-Cryst Solids, 2000, 265, 68.
    [11] Yuwono AH, Xue JM, Wang J, Elim HI, Ji W, Li Y, White TJ. Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior. J Mater Chem, 2003, 13, 1475.
    [12] Calvo-Munoz ML, Roux C, Brunet F, Bourgoin JP, Ayral A, El-Mansouri A, Tran-Thi TH. Chemical sensors of monocyclic aromatic hydrocarbons based on sol-gel materials: synthesis, structural characterization and molecular interactions. J Mater Chem, 2002, 12, 461.
    [13] Lu ZH, Liu GJ, Duncan s. Poly(2-hydroxyethyl acrylate-co-methyl acrylate)/SiO2/TiO2 hybrid membranes. J Membr Sci, 2003, 221, 113.
    [14] Moore JS, Stupp SI. Room temperature polyesterification. Macromolecules, 1990, 23, 65.
    [15] De S ,De G. Coarsening of Ag nanoparticles in SiO2-PEO hybrid film matrix by UV light. J Mater Chem, 2006, 16, 3193.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.