聚丙烯超细纤维的电纺制备与功能化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来聚丙烯纤维产业发展迅猛,占全球30%以上的聚丙烯市场份额。但是目前聚丙烯纤维产业主要面临两大挑战:工业化大规模生产的聚丙烯纤维直径通常在10~20μm之间;聚丙烯本身非极性疏水且不含功能基团,这两点极大地限制了产业应用和发展前景。因此发展高效的聚丙烯纳米纤维批量制备方法和简便的功能化改性手段,具有重要的学术意义和产业价值。
     本论文旨在通过静电纺丝法制备聚丙烯纳米纤维膜,明确纺丝过程决定性因素,以期实现对纤维直径和形态、多孔结构和收集形貌的多层次精确调控,并建立多种纤维膜高性能应用的改性手段。具体研究工作从以下几个方面展开:
     考察离子液体物理共混和化学取代对氯化聚丙烯常温电纺行为的影响,发现两种方法均能制备纳米纤维膜。采用流变仪和电导率仪测试聚合物溶液黏度和导电率变化,结果表明可纺性的提高主要由溶液导电性提高所致;物理共混体系属于典型的中性聚合物纺丝行为,而化学取代体系接近聚电解质纺丝行为。
     探讨溶液性质、收集时间、纺丝电压、湿度、收集装置形状等对鸟巢结构形成过程的影响,初步实验结果发现表面残留电荷积聚起关键作用;鸟巢结构是一种普遍现象,其它聚合物体系如聚苯乙烯、聚丙烯腈、丙烯腈-丙烯酸共聚物、壳聚糖/聚乙二醇等可电纺制备。进一步采用有限元分析软件Ansoft Maxwell version12(3D, electrostatic solver)模拟电纺过程电场分布,计算结果验证了前期推测鸟巢结构形成机理。
     设计制造高温电纺装置,通过高温溶液电纺的方法制备了等规聚丙烯纳米纤维膜,发现高温电纺大大扩展了纺丝体系的可纺浓度范围。进而将热致相分离过程引入到高温电纺,制备了等规聚丙烯超细多孔纤维膜;通过偏光显微镜和差示扫描量热仪探讨纺丝溶液分相过程和结晶行为,并绘制相图;理论计算给出纺丝过程中射流温度变化曲线,发现纤维中孔形成过程可与相图相关联;此方法可推广到其它热致相分离膜材料如PVDF,与现有熔喷装置结合有一定的工业化前景。
     通过先紫外光接枝再化学反应的方法分别制备了葡萄糖糖基化聚丙烯熔喷无纺布和氨基葡萄糖糖基化氯化聚丙烯纳米纤维膜,采用扫描电镜、水接触角、红外光谱研究接枝过程膜表面物理和化学变化;利用荧光标记技术和考马斯亮蓝染色法研究糖基化膜对蛋白质特异性识别功能,发现对Con A具有强的特异性吸附能力和高的结合容量,形成了多层吸附,间隔臂的引入能增强特异性识别能力,但体系中残留羧基部分电离会导致非特异性静电吸附干扰。在聚丙烯超细多孔纤维膜无纺布均匀接枝聚丙烯酸的条件下,利用材料表面的羧酸基团诱导碳酸钙成核生长,通过交替浸溃法制备了碳酸钙矿物均匀覆盖的矿化膜,利用扫描电镜、红外光谱跟踪矿化过程膜表面形貌的化学组成变化;矿化膜具有超亲水和水下超疏油性能,在污水处理和油水分离领域有潜在的应用前景。
Nowadays, polypropylene fabric industry occupies more than30%of incessantly expanding global polypropylene market share. However, there are still two remaining challenges to overcome:the diameters of conventional textile fibers made by typical industrial manufacturing processes are usually about10to20um; polypropylene is well known as a hydrophobic polymer and without polar functional groups. These futures greatly limit the end-use performance of polypropylene fabrics, especially in non-woven mesh applications. It is of significant importance to develop efficient methods for mass-production of polypropylene nanofiber and modification of polypropylene fabric for both academic research and practical application.
     In this thesis, we explored the factors determining the electrospinning behavior of polypropylene to modulate the fiber diameter, morphology and hierarchically structure. Furthermore, we developed various facile methods to fabricate glycosylated affinity and CaCO3biomineralizd membranes. The main results of this work are summarized as below.
     The effects of ionic liquid doping and ionic liquid bound on electrospinning of chlorinated polypropylene (CPP) nanofibers were carefully studied. It was found both methods could greatly improve the electrospinnability and smooth nanofibers could be produced under optimized conditions, which was ascribed to the enhanced conductivity. Ionic liquid doping CPP was a neutral polymer system while ionic liquid bound CPP displayed typical polyelectrolyte behavior.
     We found that nanofibrous mats with bird's nest patterned structures can be directly electrospun from chlorinated polypropylene solutions doped with an ionic liquid. Various parameters including solution viscosity, ionic liquid content, collection time, humidity, voltage, the design of collector were systematically studied and Ansoft Maxwell version12software (3D, electrostatic solver) was further used to simulate the electrical field distribution of the electrospinning setup, both experimental and calculation results proved that the electrostatic repulsion interactions between the residual surface charges and the upcoming fibers play a key role. The proposed mechanism can be well extended to other polymer systems including polystyrene, poly(acrylonitrile-co-acrylic acid) and chitosan/poly(ethylene oxide).
     By using home-made high temperature electrospinning set-up, we successfully electrospun isotactic polypropylene nanofibers at120℃and isotactic polypropylene fibers with hierarchically porous structure could be produced by electrospinning at200℃combined with thermally induced phase separation (TIPS). Theoretical calculation demonstrates that the jet cools rapidly, and phase separation takes place in the jet during its travelling path, as the system traverses across the phase diagram from single phase region to metastable region. The pore formation process has a precise mechanism and the pore morphology is well correlated with the phase diagram. Furthermore, it is readily extended to other polymers with TIPS like PVDF.
     Glycosylated polypropylene non-woven meshes were achieved by a versatile UV grafting and chemical reaction process. SEM, WCA and FT-IR/ATR were used to characterize the physical and chemical changes of the mesh surfaces. The glycosylated meshes showed specific multilayer adsorption behavior of Con A with high binding capacity and increased chain length had positive effects due to improved chain mobility. However, some residual carboxylic groups would cause non-specific adsorption of proteins. CaCO3biomineralizd polypropylene non-woven mesh was fabricated on the basic principle of biomineralization by using a facile alternate soaking process (ASP) within20minutes. A uniform PAA layer was firstly tethered on the fiber surface, which can induce CaCO3nucleation. The biomineralizd meshes were endowed with superhydrophilicity and underwater superoleophobicity, and thus they showed prominent application prospects in oil/water separation and wastewater treatment.
引文
1. Pasquini, N.,聚丙烯手册.化学工业出版社,2008.
    2. Associates, P.T., Polypropylene Annual Report.2003.
    3. De Rovere, A., R.L. Shambaugh, and E.A. O'Rear, Investigation of gravity-spun, melt-spun, and melt-blown polypropylene fibers using atomic force microscopy. Journal of Applied Polymer Science,2000. 77(9):p.1921-1937.
    4. George, H.H., Modeling the melt spinning process. ACS. Symp. Ser.,1984.260:p.355-369.
    5. Suzuki, A. and S. Narusue, Iso tactic polypropylene micro fiber prepared by carbon dioxide laser-heating. Journal of Applied Polymer Science,2004.92(3):p.1534-1539.
    6. Ogata, N., et al., Poly(lacti.de) nanofibers produced by a melt-electrospinning system with a laser melting device. Journal of Applied Polymer Science,2007.104(3):p.1640-1645.
    7. Suzuki, A. and S. Narusue, Isotactic polypropylene microfiber prepared by continuous laser-thinning method. Journal of Applied Polymer Science,2006.99(1):p.27-31.
    8. Broda, J., Morphology of the noncoloured and coloured polypropylene fibres. Polymer,2003.44(5):p. 1619-1629.
    9. Smart, G., et al., Polypropylene fibers containing dispersed clays having improved fire performance. Part Ⅱ:characterization of fibers and fabrics from PP-nanoclay blends. Polymers for Advanced Technologies, 2008.19(6):p.658-670.
    10. Yoon, C.S. and D.S. Ji, Modification and properties of polypropylene fibers using aluminosiloxane. Fibers and Polymers,2003.4(4):p.210-214.
    11. Yeo, S.Y. and S.H. Jeong, Preparation and characterization of polypropylene/silver nanocomposite fibers. Polymer International,2003.52(7):p.1053-1057.
    12. Strecka, Z., et al., Polypropylene fibers modified by polyvinyl alcohol and montmorillonite. Journal of the Textile Institute,2010.101(4):p.315-323.
    13. Rristofic, M., et al., Functionalisation of polypropylene, part I. mechanical, electric and sorptive properties of PP fibres modified with concentrates consisting of copolyamides and nanoclay. Fibres& Textiles in Eastern Europe,2011.19(2):p.18-22.
    14. Gregor-Svetec, D., High modulus polypropylene fibers. Ⅱ. Influence of fiber preparation upon structure and morphology. Journal of Applied Polymer Science,2006.100(2):p.1067-1082.
    15. Li, C.S., et al., Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Composites Science and Technology,2004.64(13-14):p.2089-2096.
    16. Shi, D., et al., Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion: mechanism of melt grafting. Polymer,2001.42(13):p.5549-5557.
    17. Ellison, C.J., et al., Melt blown nanofibers:fiber diameter distributions and onset of fiber breakup. Polymer,2007.48(11):p.3306-3316.
    18. Zhao, R.G. and L.C. Wadsworth, Attenuating PP/PET bicomponent melt blown microfibers. Polymer Engineering and Science,2003.43(2):p.463-469.
    19. Dutton, K.C., Overview and analysis of the meltblown process and parameters. Scholarly JTATM,2008.6: p.1-24.
    20. Zhang, D., C. Sun, and L.C. Wadsworth, Modeling the mono-and bicomponent fiber meltblown process with surface response methodology. Textile Research Journal,2001.71(4):p.301-308.
    21. Jarecki, L. and A. Ziabicki, Mathematical modelling of the pneumatic melt spinning of isotactic polypropylene part II. dynamic model of melt blowing. Fibres & Textiles in Eastern Europe,2008.16(5):p.
    22. Jarecki, L., et al., Dynamics of air drawing in the melt blowing of nonwovens from isotactic polypropylene by computer modeling. Journal of Applied Polymer Science,2011.119(1):p.53-65.
    23. Bansal, V. and R.L. Shambaugh, On-line determination of diameter and temperature during melt blowing of polypropylene. Industrial & Engineering Chemistry Research,1998.37(5):p.1799-1806.
    24. Xue, C.H., et al., Morphology evolution of polypropylene in immiscible polymer blends for fabrication of nanofibers. Journal of Polymer Science Part B-Polymer Physics,2010.48(9):p.921-931.
    25. Wang, D., G. Sun, and B.S. Chiou, A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromolecular Materials and Engineering,2007.292(4): p.407-414.
    26. Lyoo, W.S., et al., Rheological and morphological properties of immiscible blends and microfiber preparation from the blends. International Polymer Processing,2000.15(4):p.369-379.
    27. Fallahi, E., M. Barmar, and M.H. Kish, Micro and na.no fibrils from polypropylene/nylon 6 blends. Journal of Applied Polymer Science,2008.108(3):p.1473-1481.
    28. Peng, L., O.Y. Yang, and X. Ru, Fabrication and morphology development of isotactic polypropylene nanofibers from isotactic polypropylene/polylactide blends. Journal of Applied Polymer Science,2012. 123(5):p.2859-2866.
    29. Lee, J.H., R.S. Fearing, and K. Komvopoulos, Directional adhesion of gecko-inspired angled microfiber arrays. Applied Physics Letters,2008.93(19):p.191910.
    30. Yang, Z.Y. and J.G.C. Veinot, Size-controlled template synthesis of metal-free germanium nanowires. Journal of Materials Chemistry,2011.21(41):p.16505-16509.
    31. Li, H.Y., Y.C. Ke, and Y.L. Hu, Polymer nanofibers prepared by template melt extrusion. Journal of Applied Polymer Science,2006.99(3):p.1018-1023.
    32. Lee, J., et al., Sliding-induced adhesion of stiff polymer microfibre arrays. I. macroscale behaviour. Journal of the Royal Society Interface,2008.5(25):p.835-844.
    33. Huang, Z.M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology,2003.63(15):p.2223-2253.
    34. Li, D. and Y.N. Xia, Electrospinning of nanofibers:Reinventing the wheel? Advanced Materials,2004. 16(14):p.1151-1170.
    35. Lee, K.H., et al., Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. Journal of Polymer Science Part B-Polymer Physics, 2002.40(19):p.2259-2268.
    36. Kim, K.W., et al., Morphology and crystal structure on electrospun fibrous poly (1-butene) (PB) membrane. Fibers and Polymers,2009.10(5):p.667-672.
    37. Hao, X.F., et al., Preparation of cis-1,4-polyisoprene electrospun microfibers. Macromolecular Materials and Engineering,2010.295(4):p.305-309.
    38. Lee, K.H., et al., The change of bead morphology formed on electrospun polystyrene fibers. Polymer,2003. 44(14):p.4029-4034.
    39. Choi, S.S., et al., Fabrication and characterization of electrospun polybutadiene fibers crosslinked by UV irradiation. Journal of Applied Polymer Science,2006.101(4):p.2333-2337.
    40. Lee, K.H., et al., Electrospinning of syndiotactic polypropylene from a polymer solution at Ambient temperatures. Macromolecules,2009.42(14):p.5215-5218.
    41. Lee, K.H., et al., Electrostatic polymer processing of isotactic poly(4-methyl-1-pentene) fibrous membrane. Polymer,2006.47(23):p.8013-8018.
    42. van Reenen, A.J. and L. Keulder, Solution electrospinning of polyolefins:the effect of comonomers in propylene/alpha-olefin copolymers. Macromolecular Materials and Engineering,2010.295(7):p.666-670.
    43. Giller, C., et al., Synthesis, characterization, and electrospinning of architecturally-discrete isotactic-atactic-isotactic triblock stereoblock polypropene elastomers. Macromolecules,2011.44(3):p. 471-482.
    44. Lim, G.T., et al., Highly hydrophobic electrospun fiber mats from polyisobutylene-based thermoplastic elastomers. Biomacromolecules,2011.12(5):p.1795-1799.
    45. Lee, K.H., et al., Crystallization behavior of electrospun PB/PMP blend fibrous membranes. Macromolecules,2008.41(9):p.3144-3148.
    46. Koombhongse, S., W.X. Liu, and D.H. Reneker, Flat polymer ribbons and other shapes by electrospinning. Journal of Polymer Science Part B-Polymer Physics,2001.39(21):p.2598-2606.
    47. Givens, S.R., et al., High-temperature electrospinning of polyethylene microfibers from solution. Macromolecules,2007.40(3):p.608-610.
    48. Yoshioka, T., et al.. Orientation analysis of individual electrospun PE nanofibers by transmission electron microscopy. Polymer,2010.51(11):p.2383-2389.
    49. Rein, D.M., et al., Electrospinning of ultrahigh-molecular-weight polyethylene nanofibers. Journal of Polymer Science Part B-Polymer Physics,2007.45(7):p.766-773.
    50. Rein, D.M., et al., Application of gentle annular gas veil for electrospinning of polymer solutions and melts. Polymer Engineering and Science,2009.49(4):p.774-782.
    51. Rein, D.M., et al., Elaboration of ultra-High molecular weight polyethylene/carbon nanotubes electrospun composite fibers. Macromolecular Materials and Engineering,2010.295(11):p.1003-1008.
    52. Cho, D., et al., Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt. Polymer,2010.51(25):p.6005-6012.
    53. Liu, S.Y., et al., Electrospun isotactic polypropylene fibers:Self-similar morphology and microstructure. Polymer,2013.54(12):p.3117-3123.
    54. Wang, C., T.C. Hsieh, and Y.W. Cheng, Solution-electrospun isotactic polypropylene fibers:processing and microstructure development during stepwise annealing. Macromolecules,2010.43(21):p.9022-9029.
    55. Reneker, D.H. and A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer,2008.49(10):p. 2387-2425.
    56. Norton, C.L., US. patent.20486511936.
    57. Larrondo, L. and R.S.J. Manley, Electrostatic fiber spinning from polymer melts.1. experimental-observations on fiber formation and properties. Journal of Polymer Science Part B-Polymer Physics,1981.19(6):p.909-920.
    58. Larrondo, L. and R.S.J. Manley, Electrostatic fiber spinning from polymer melts.2. examination of the flow field in an electrically driven jet. Journal of Polymer Science Part B-Polymer Physics,1981.19(6):p. 921-932.
    59. Larrondo, L. and R.S.J. Manley, Electrostatic fiber spinning from polymer melts.3. electrostatic deformation of a pendant drop of polymer melt. Journal of Polymer Science Part B-Polymer Physics,1981. 19(6):p.933-940.
    60. Lyons J, K.F., Melt electrospinning of polymers:a review. Polymer News,2005.30:p.1-9.
    61. Gora, A., et al., Melt-electrospun fibers for advances in biomedical engineering, clean energy, filtration, and separation. Polymer Reviews,2011.51(3):p.265-287.
    62. Wang, X.N., et al., Study on technological parameters effecting on fiber diameter of melt electrospinning. Advanced Textile Materials, Pts 1-3,2011.332-334:p.1550-1556.
    63. Deng, R.J., et al., Melt electrospinning of low-density polyethylene having a low-melt flow index. Journal of Applied Polymer Science,2009.114(1):p.166-175.
    64. Dasdemir, M., M. Topalbekiroglu, and A. Demir, Electrospinning of thermoplastic polyurethane microfibers and nanofibers from polymer solution and melt. Journal of Applied Polymer Science,2013. 127(3):p.1901-1908.
    65. Brown, T.D., P.D. Dalton, and D.W. Hutmacher, Direct writing by way of melt electrospinning. Advanced Materials,2011.23(47):p.5651-5657.
    66. Farrugia, B.L., et al., Dermal fibroblast infiltration of poly(epsilon-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication,2013.5(2):p.025001.
    67. Wang, X.F. and Z.M. Huang, Melt-electrospinning of PMMA. Chinese Journal of Polymer Science,2010. 28(1):p.45-53.
    68. Ogata, N., et al., Effects of ethylene content of poly(ethylene-co-vinyl alcohol) on diameter of fibers produced by melt-electrospinning. Journal of Applied Polymer Science,2007.104(2):p.1368-1375.
    69. Zhou, H.J., T.B. Green, and Y.L. Joo, The thermal effects on electrospinning of polylactic acid melts. Polymer,2006.47(21):p.7497-7505.
    70. Ratthapol Rangkupan, D.H.R., Electrospinning process of polymer melts. University of Akron,2002. PhD Dissertatif-i.
    71. Matthew T. Hunley, A.S.K., Matthew G. McKee,Brian D. Mather, John M. Layman, Ann R. Fornof, Timothy E. Long, Taking advantage of tailored electrostatics and complementary hydrogen bonding in the design of nanostructures for biomedical applications. Macromolecular Symposia,2008.270:p.1-7.
    72. Ogata, N., et al., Melt-electrospinning of poly (ethylene terephthalate) and polyalirate. Journal of Applied Polymer Science,2007.105(3):p.1127-1132.
    73. Paul D. Dalton, J.L.C., Ahmed Mourran, Doris Klee and martin Moller, Melt electrospinning of poly (ethylene glycol-block-s-caprolactone). Biotechnology Journal,2006.1:p.998-1006.
    74. Kim, S.J., et al., Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer,2010.51(6):p.1320-1327.
    75. Singer, J.C., R. Giesa, and H.W. Schmidt, Shaping self-assembling small molecules into fibres by melt electrospinning. Soft Matter,2012.8(39):p.9972-9976.
    76. Erisken, C, D.M. Kalyon, and H.J. Wang, A hybrid twin screw extrusion'electrospinning method to process nanoparticle-incorporated electrospun nanofibres. Nanotechnology,2008.19(16).
    77. Lyons, J., C. Li, and F. Ko, Melt-electrospinning part I:processing parameters and geometric properties. Polymer,2004.45(22):p.7597-7603.
    78. Zhmayev, E., D. Cho, and Y.L. Joo, Nanofibers from gas-assisted polymer melt electrospinning. Polymer, 2010.51(18):p.4140-4144.
    79. Kadomae, Y., et al., Relation between tacticity and fiber diameter in melt-electrospinning of polypropylene. Fibers and Polymers,2009.10(3):p.275-279.
    80. Reneker, R.R.a.D.H., Electrospinning process of molten polypropylene in vacuum. Journal of Metals, Materials and Minerals,2003.12(2):p.81-87.
    81. Kong, C.S., et al., Effects of the spin line temperature profile and melt index of polypropylene) on melt-electrospinning. Polymer Engineering and Science,2009.49(2):p.391-396.
    82. Dalton, P.D., et al., Electrospinning of polymer melts:Phenomenological observations. Polymer,2007. 48(23):p.6823-6833.
    83. Nayak, R., et al., Melt-electrospinning of polypropylene with conductive additives. Journal of Materials Science,2012.47(17):p.6387-6396.
    84. Fang, J., et al., Needleless melt-electrospinning of polypropylene nanofibres. Journal of Nanomaterials, 2012.2012:p.382639.
    85. Mathew, G., et al., Preparation and anisotropic mechanical behavior of highly-oriented electrospun poly(butylene terephthalate) fibers. Journal of Applied Polymer Science,2006.101(3):p.2017-2021.
    86. Watanabe, K., et al., Fabrication of uniaxially aligned polypropylene) nNanofibers via handspinning. Macromolecular Materials and Engineering,2011.296(6):p.568-573.
    87. Benavides, R.E., S.C. Jana, and D.H. Reneker, Nanofibers from scalable gas jet process. Acs Macro letters,2012.1(8):p.1032-1036.
    88. Weitz, R.T., et al., Polymer nanofibers via nozzle-free centrifugal spinning. Nano Letters,2008.8(4):p. 1187-1191.
    89. Sarkar, K., et al., Electrospinning to forcespinning (TM). Materials Today,2010.13(11):p.12-14.
    90. Badrossamay, M.R., et al., Nanofiber assembly by rotary jet-spinning. Nano Letters,2010.10(6):p. 2257-2261.
    91. Padron, S., et al., Experimental study of nanofiber production through forcespinning. Journal of Applied Physics,2013.113(2):p.024318.
    92. Shanmuganathan, K., et al., Solventless high throughput manufacturing of poly(butylene terephthalate) nanofibers. Acs Macro Jitters,2012.1(8):p.960-964.
    93. Edmondson, D., et al., Centrifugal electrospinning of highly aligned polymer nanofibers over a large area. Journal of Materials Chemistry,2012.22(35):p.18646-18652.
    94. Dabirian, F., et al., A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems. Journal of Electrostatics,2011.69(6):p.540-546.
    95. Liao, C.C., et al., Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: The effects of molecular motion and conformation in solutions. Polymer,2010.51(13):p.2887-2896.
    96. Luo, C.J., et al., Electrospinning versus fibre production methods:from specifics to technological convergence. Chemical Society Reviews,2012.41(13):p.4708-4735.
    97. Ramakrishna, S., et al., Electrospun nanofibers:solving global issues. Materials Today,2006.9(3):p. 40-50.
    98. Greiner, A. and J.H. Wendorff, Electrospinning:A fascinating method for the preparation of ultrathin fibres. Angewandte Chemie-International Edition,2007.46(30):p.5670-5703.
    99. Tucker, N., et al., The History of the science and technology of electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics,2012.7:p.63-73.
    100. Darrell H Reneker, I.C., Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology,1996.7(3):p.216-223.
    101. Frenot, A. and I.S. Chronakis, Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science,2003.8(1):p.64-75.
    102. Yang, Y., et al., Experimental investigation of the governing parameters in the electrospinning of polyethylene oxide solution. Ieee Transactions on Dielectrics and Electrical Insulation,2006.13(3):p. 580-585.
    103. Maheshwari, S. and H.C. Chang, Assembly of multi-stranded nanofiber threads through AC electrospinnig. Advanced Materials,2009.21(3):p.349-354.
    104. Teo, W.E., R. Inai, and S. Ramakrishna, Technological advances in electrospinning of nanofibers. Science and Technology of Advanced Materials,2011.12(1):p.013002.
    105. Sun, Z.C., et al., Compound core-shell polymer nanofibers by co-electrospinning. Advanced Materials, 2003.15(22):p.1929-1932.
    106. Lin, T., H.X. Wang, and X.G. Wang, Self-crimping bicomponent nanoribers efectrospun from polyacrylonitrile and elastomericpolyurethane. Advanced Materials,2005.17(22):p.2699-2703.
    107. Theron, S.A., et al., Multiple jets in electrospinning:experiment and modeling. Polymer,2005.46(9):p. 2889-2899.
    108. Dosunmu, O.O., et al., Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology,2006.17(4):p.1123-1127.
    109. Yarin, A.L. and E. Zussman, Upward needleless electrospinning of multiple nanofibers. Polymer,2004. 45(9):p.2977-2980.
    110. Brettmann, B.K., et al., Free Surface electrospinning of fibers containing microparticles. Langmuir,2012. 28(25):p.9714-9721.
    111. Wang, X. and W.L. Xu, Effect of experimental parameters on needleless electrospinning from a conical wire coil. Journal of Applied Polymer Science,2012.123(6):p.3703-3709.
    112. Jirsak, O., et al., Polyamic acid nanofibers produced by needleless electrospinning. Journal of Nanomaterials,2010.2010:p.842831.
    113. Niu, H.T., T. Lin, and X.G. Wang, Needleless electrospinning. I. a comparison of cylinder and disk nozzles. Journal of Applied Polymer Science,2009.114(6):p.3524-3530.
    114. Wang, X., st al., Needleless electrospinning of uniform nanofibers using cpiral coil spinnerets. Journal of Nanomaterials,2012.2012:p.785920
    115. Niu, H.T., X.G. Wang, and T. Lin, Needleless electrospinning:influences of fibre generator geometry. Journal of the Textile Institute,2012.103(7):p.787-794.
    116. Lu, B.A., et al., Superhigh-throughput needleless electrospinning using a rotary cone as spinneret. Small, 2010.6(15):p.1612-1616.
    117. Thoppey, N.M., et al., Edge electrospinning for high throughput production of quality nanofibers. Nanotechnology,2011.22(34):p.345301.
    118. Yang, R.R., et al., Bubble-electrospinning for fabricating nanofibers. Polymer,2009.50(24):p. 5846-5850.
    119. Thoppey, N.M., et al., Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer,2010.51(21):p.4928-4936.
    120. Teo, W.E. and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology,2006.17(14):p. R89-R106.
    121. McCann, J.T., M. Marquez, and Y.N. Xia, Highly porous fibers by electrospinning into a cryogenic liquid. Journal of the American Chemical Society,2006.128(5):p.1436-1437.
    122. Simonet, M., et al., Ultraporous 3D polymer meshes by low-temperature electrospinning:Use of ice crystals as a removable void template. Polymer Engineering and Science,2007.47(12):p.2020-2026.
    123. Liu, K.Y., C.D. Ertley, and D.H. Reneker, Interpretation and use of glints from an electrospinning jet of polymer solutions. Polymer,2012.53(19):p.4241-4253.
    124. Greenfeld, I., et al., Fast X-ray Phase-contrast imaging of electrospinning polymer jets:measurements of radius, velocity, and concentration. Macromolecules,2012.45(8):p.3616-3626.
    125. Carroll, C.P. and Y.L. Joo, Electrospinning of viscoelastic Boger fluids:Modeling and experiments. Physics of Euids,2006.18(5):p.053102.
    126. Theron, S.A., E. Zussman, and A.L. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer,2004.45(6):p.2017-2030.
    127. Fridrikh, S.V., et al., Controlling the fiber diameter during electrospinning. Physical Review Letters,2003. 90(14):p.144502.
    128. Feng, J.J., The stretching of an electrified non-Newtonian jet:A model for electrospinning. Physics of Fluids,2002.14(11):p.3912-3926.
    129. Shin, Y.M., et al., Experimental characterization of electrospinning:the electrically forced jet and instabilities. Polymer,2001.42(25):p.9955-9967.
    130. Shin, Y.M., et al., Electrospinning:A whipping fluid jet generates submicron polymer fibers. Applied Physics Letters,2001.78(8):p.1149-1151.
    131. Hohman, M.M., et al., Electrospinning and electrically forced jets. II. Applications. Physics of Fluids, 2001.13(8):p.2221-2236.
    132. Hohman, M.M., et al., Electrospinning and electrically forced jets. I. Stability theory. Physics of Fluids, 2001.13(8):p.2201-2220.
    133. Reneker, D.H., et al., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics,2000.87(9):p.4531-4547.
    134. Spivak, A.F. and Y.A. Dzenis, Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field. Applied Physics Letters,1998.73(21):p.3067-3069.
    135. Hayati, I., A.I. Bailey, and T.F. Tadros, Mechanism of stable jet formation in electrohydrodynamic atomization. Nature,1986.319(6048):p.41-43.
    136. Yarin, A.L., S. Koombhongse, and D.H. Reneker, Taylor cone and jetting from liquid droplets in 'electrospinning of nanofibers. Journal of Applied Physics,2001.90(9):p.4836-4846.
    137. Taylor, G., Electrically driven jets. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences,1969.313(1515):p.453-&.
    138. Yarin, A.L., S. Koombhongse, and D.H. Reneker, Bending instability in electrospinning of nanofibers. Journal of Applied Physics,2001.89(5):p.3018-3026.
    139. Luo, C.J., M. Nangrejo, and M. Edirisinghe, A novel method of selecting solvents for polymer electrospinning. Polymer,2010.51(7):p.1654-1662.
    140. Talwar, S., et al., Associative polymer facilitated electrospinning of nanofibers. Macromolecules,2008. 41(12):p.4275-4283.
    141. McKee, M.G., et al., Phospholipid nonwoven electrospun membranes. Science,2006.311(5759):p. 353-355.
    142. Celebioglu, A. and T. Uyar, Electrospinning of polymer-free nanofibers from cyclodextrin inclusion complexes. Langmuir,2011.27(10):p.6218-6226.
    143. Celebioglu, A. and T. Uyar, Electrospinning of nanofibers from non-polymeric systems:polymer-free nanofibers from cyclodextrin derivatives. Nanoscale,2012.4(2):p.621-631.
    144. McKee, M.G., et al., Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules,2004.37(5):p.1760-1767.
    145. Shenoy, S.L., et al., Role of chain entanglements on fiber formation during electrospinning of polymer solutions:good solvent, non-specific polymer-polymer interaction limit. Polymer,2005.46(10):p. 3372-3384.
    146. Woerdeman, D.L., S. Shenoy, and D. Breger, Role of chain entanglements in the electrospinning of wheat protein-poly(vinyl alcohol) blends. Journal of Adhesion,2007.83(8):p.785-798.
    147. Munir, M.M., et al., Scaling law on particle-to-fiber formation during electrospinning. Polymer,2009. 50(20):p.4935-4943.
    148. Yu, J.H., S.V. Fridrikh, and G.C. Rutledge, The role of elasticity in the formation of electrospun fibers. Polymer,2006.47(13):p.4789-4797.
    149. Wang, B.B., et al., Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization. Macromolecules,2008.41(24):p.9516-9521.
    150. Wang, X.F., et al., Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine. Journal of Materials Chemistry,2011.21(40):p. 16231-16238.
    151. Pant, H.R., et al., Bimodal fiber diameter distributed graphene oxide/nylon-6 composite nanofibrous mats via electrospinning. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2012.407:p. 121-125.
    152. Tian, X.L., et al., Bio-inspired heterostructured bead-on-string fibers that respond to environmental wetting. Advanced Functional Materials,2011.21(8):p.1398-1402.
    153. Yarin, A.L., W. Kataphinan, and D.H. Reneker, Branching in electrospinning of nanofibers. Journal of Applied Physics,2005.98(6):p.064501.
    154. Lin, J.Y., et al., Biomimicry via electrospinning. Critical Reviews in Solid State and Materials Sciences, 2012.37(2):p.94-114.
    155. Kalra, V., et al., Self-assembled structures in electrospun poly(styrene-block-isoprene) fibers. Macromolecules,2006.39(16):p.5453-5457.
    156. Kakade, M.V., et al., Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. Journal of the Americal Chemical Society,2007.129(10):p.2777-2782.
    157. Liu. Y., et al., Crystalline morphology and polymorphic, phase transitions in electrospun nylon-6 nanofibers. Macromolecules,2007.40(17):p.6283-6290.
    158. Li, D. and Y.N. Xia, Fabrication of titania nanofibers by electrospinning. Nano Letters,2003.3(4):p. 555-560.
    159. Wei, M., et al., Core-sheath structure in electrospun nanofibers from polymer blends. Macromolecular Materials and Engineering,2006.291(11):p.1307-1314.
    160. Xu, X.L., et al.. Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromolecular Rapid Communications,2006.27(19):p.1637-1642.
    161. Jo, E., et al., Core-sheath nanofibers containing colloidal arrays in the core for programmable multi-agent delivery. Advanced Materials,2009.21(9):p.968-972.
    162. Scalia, G., et al., Morphology and core continuity of liquid-crystal-functionalized, coaxially electrospun fiber mats tuned via the polymer sheath solution. Macromolecular Materials and Engineering,2013. 298(5):p.583-589.
    163. Li, L., et al., Producing polymer fFibers by electrospinning in supercritical fluids. Journal of Chemistry, 2013.2013:p.508905
    164. Chen, H.M. and D.G. Yu, An elevated temperature electrospinning process for preparing acyclovir-loaded PAN ultrafine fibers. Journal of Materials Processing Technology,2010.210(12):p.1551-1555.
    165. Zhmayev, E. and Y.L. Joo, Modeling of crystallizing polymer melts in electrospinning. Xvth International Congress on Rheology-the Society of Rheology 80th Annual Meeting, Pts 1 and 2,2008.1027:p.9-11
    166. Zhmayev, E., H. Zhou, and Y.L. Joo, Modeling of non-isothermal polymer jets in melt electrospinning. Journal of Non-Newtonian Fluid Mechanics,2008.153(2-3):p.95-108.
    167. Zhou, F.L., R.H. Gong, and I. Porat, Mass production ofnanofibre assemblies by electrostatic spinning. Polymer International,2009.58(4):p.331-342.
    168. Yoon, K., et al., High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer,2006.47(7):p.2434-2441.
    169. Gurdev, S., et al., Removal of disinfection byproducts from water by carbonized electrospun nanofibrous membranes. Separation and Purification Technology,2010.74(2):p.202-212.
    170. Ma, Z.W., M. Kotaki, and S. Ramarkrishna, Surface modified nonwoven polysulphone (PSU) fiber mesh by electro spinning:A novel affinity membrane. Journal of Membrane Science,2006.272(1-2):p.179-187.
    171. Wang, Z.G., et al., Enzyme immobilization on electrospun polymer nanofibers:An overview. Journal of Molecular Catalysis B-Enzymatic,2009.56(4):p.189-195.
    172. Bergshoef, M.M. and G.J. Vancso, Transparent nanocomposites with ultrathin, electrospun nylon-4,6fiber reinforcement. Advanced Materials,1999.11(16):p.1362-1365.
    173. Huang, Y, et al., Directed assembly of one-dimensional nanostructures into functional networks. Science, 2001.291(5504):p.630-633.
    174. Deitzel, J.M., et al., Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer,2001. 42(19):p.8163-8170.
    175. Pan, H., et al., Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer,2006.47(14):p.4901-4904.
    176. Li, D., et al., Collecting electrospun nanofibers with patterned electrodes. Nano Letters,2005.5(5):p. 913-916.
    177. Zhang, D.M. and J. Chang, Patterning of electrospun fibers using electroconductive templates. Advanced Materials,2007.19(21):p.3664-3667.
    178. Zhang, D.M. and J:Chang, Electrospinning of three-dimensional nanofibrous tubes with controllable architectures. Nano Letters,2008.8(10):p.3283-3287.
    179. Ding, Z.W., A. Salim, and B. Ziaie, Selective nanofiber deposition through field-enhanced electrospinning. Langmuir,2009.25(17):p.9648-9652.
    180. Zhao, S.F., et al., Nanofibrous patterns by direct electrospinning of nanofibers onto topographically structured non-conductive substrates. Nanoscale,2013.5(11):p.4993-5000.
    181. Wang, X.F., et al., Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer,2008.49(11):p.2755-2761.
    182. Yang, D.Y., et al., Fabrication of aligned fibirous arrays by magnetic electrospinning. Advanced Materials, 2007.19(21):p.3702-3706.
    183. Katta, P., et al., Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Letters,2004.4(11):p.2215-2218.
    184. Yan, H., L.Q. Liu, and Z. Zhang, Continually fabricating staple yarns with aligned electrospun polyacrylonitrile nanofibers. Materials Letters,2011.65(15-16):p.2419-2421.
    185. Smit, E., U. Buttner, and R.D. Sanderson, Continuous yarns from electrospun fibers. Polymer,2005.46(8): p.2419-2423.
    186. Yousefzadeh, M., et al., Producing continuous twisted yarn from well-aligned nanofibers by water vortex. Polymer Engineering and Science,2011.51(2):p.323-329.
    187. Yuan, H.H., et al., Stable jet electrospinning for easy fabrication of aligned ultrafine fibers. Journal of Materials Chemistry,2012.22(37):p.19634-19638.
    188. Dalton, P.D., et al., Patterned melt electrospun substrates for tissue engineering. Biomedical Materials, 2008.3(3):p.034109.
    189. Sun, D.H., et al., Near-field electrospinning. Nano Letters,2006.6(4):p.839-842.
    190. Lee, S., et al., Chip-to-chip fluidic connectors via near-field electrospinning. Proceedings of the Ieee Twentieth Annual International Conference on Micro Electro Mechanical Systems, Vols 1 and 2,2007:p. 252-255.
    191. Zheng, G.F., et al., Precision deposition of a nanofibre by near-field electrospinning. Journal of Physics D-Applied Physics,2010.43(41):p.415501.
    192. Bisht, G.S., et al., Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. Nano Letters,2011.11(4):p.1831-1837.
    193. Zheng, J., et al., Polymer nanofibers prepared by low-voltage near-field electrospinning. Chinese Physics B,2012.21(4):p.048102.
    194. Xin, Y. and D.H. Reneker, Hierarchical polystyrene patterns produced by electrospinning. Polymer,2012. 53(19):p.4254-4261.
    195. Shariatpanahi, S.P., et al., Micro helical polymeric structures produced by variable voltage direct electrospinning. Soft Matter,2011.7(22):p.10548-10551.
    196. Hellmann, C, et al., High Precision Deposition Electrospinning of nanofibers and nanofiber nonwovens. Polymer,2009.50(5):p.1197-1205.
    197. Kim, H.Y., et al., Nanopottery:coiling of eElectrospun polymer nanofibers. Nano Letters,2010.10(6):p. 2138-2140.
    198. Wu, J., et al., Electrospinning of multilevel structured functional micro-Manofibers and their applications. Journal of Materials Chemistry A,2013.1(25):p.7290-7305.
    199. Lin, J.Y., et al., Nanoporous polystyrene fibers for oil spill cleanup. Marine Pollution Bulletin,2012.64(2): p.347-352.
    200. Wu, J., et al., Electrospun Porous Structure Fibrous Film with High Oil Adsorption Capacity. Acs Applied Materials & Interfaces,2012.4(6):p.3207-3212.
    201. Hong, Y.L., H.S. Fan, and X.D. Zhang, Synthesis and protein adsorption of hierarchical nanoporous ultrathin fibers. Journal of Physical Chemistry B,2009.113(17):p.5837-5842.
    202. Ding, B., et al., Electrospun nanomaterials for ultrasensitive sensors. Materials Today,2010.13(11):p.
    203. Pant, H.R., et al., Fabrication of highly porous poly (epsilon-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids and Surfaces B-Biointerfaces,2011.88(2):p.587-592.
    204. Bognitzki, M., et al., Nanostructured fibers via electrospinning. Advanced Materials,2001.13(1):p. 70-72.
    205. Zhang, Q.C., et al., Porous ultrafine fibers via a salt-induced electrospinning method. Colloid and Polymer Science,2012.290(9):p.793-799.
    206. Wang, Z.G., J.Q. Wang, and Z.K. Xu, Immobilization of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption. Journal of Molecular Catalysis B-Enzymatic,2006. 42(1-2):p.45-51.
    207. Ji, L.W., et al., Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers. Nanotechnology,2008.19(8):p.085605.
    208. Chen, H.Y., et al., Fabrication of hierarchically porous inorganic nanofibers by a general microemulsion electrospinning approach. Small,2011.7(13):p.1779-1783.
    209. Medeiros, E.S., et al., Effect of relative humidity on the morphology of electrospun polymer fibers. Canadian Journal of Chemistry-Revue Canadienne De Chimie,2008.86(6):p.590-599.
    210. Qi, Z.H., et al., Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(L-lactic acid). Materials Letters,2009.63(3-4):p.415-418.
    211. Yu, X.L., et al., Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O. Materials Letters,2010.64(22):p.2407-2409.
    212. Gulfam, M., et al., Highly porous core-shell polymeric fiber network. Langmuir,2011.27(17):p. 10993-10999.
    213. Dayal, P. and T. Kyu, Dynamics and morphology development in electrospun fibers driven by concentration sweeps. Physics of Fluids,2007.19(10):p.107106.
    214. Dayal, P., et al., Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules,2007.40(21):p.7689-7694.
    215. Casper, C.L., et al., Controlling surface morphology of electrospun polystyrene fibers:Effect of humidity and molecular weight in the electrospinning process. Macromolecules,2004.37(2):p.573-578.
    216. Megelski, S., et al., Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules,2002.35(22):p.8456-8466.
    217. Lin, J.Y., et al., Direct Fabrication of highly nanoporous polystyrene fibers via electrospinning. Acs Applied Materials & Interfaces,2010.2(2):p.521-528.
    218. Zheng, J.F., et al., Construction of hierarchical structures by electrospinning or electrospraying. Polymer, 2012.53(2):p.546-554.
    219. Guenthner, A.J., et al., Dynamics of hollow nanofiber formation during solidification subjected to solvent evaporation. Macromolecular Theory and Simulations,2006.15(1):p.87-93.
    220. Greenfeld, I., et al., Polymer dynamics in semidilute solution during electrospinning:A simple model and experimental observations. Physical Review E,2011.84(4):p.041806.
    221. Tomaszewski, W. and M. Szadkowski, Investigation of electrospinning with the use of a multi-jet electrospinning head. Fibres & Textiles in Eastern Europe,2005.13(4):p.22-26.
    222. Kong, C.S., et al., Interference between the charged jets in electrospinning ofpolyvinyl alcohol. Journal of Macromolecular Science Part B-Physics,2009.48(1):p.77-91.
    223. Varesano, A., R.A. Carletto, and G. Mazzuchetti, Experimental investigations on the multi-jet electrospinning process. Journal of Materials Processing Technology,2009.209(11):p.5178-5185.
    224. Nayak, R., et al.. Recent advances in nanofibre fabrication techniques. Textile Research Journal,2012. 82(2):p.129-147.
    225. Xie, S. and Y.C. Zeng, Effects of electric field on multineedle electrospinning:experiment and simulation study. Industrial & Engineering Chemistry Research,2012.51(14):p.5336-5345.
    226. Zhou, F.L., R.H. Gong, and I. Porat, Polymeric nanofibers via flat spinneret electrospinning. Polymer Engineering and Science,2009.49(12):p.2475-2481.
    227. Zhou, F.L., RH. Gong, and I. Porat, Three-jet electrospinning using a flat spinneret. Journal of Materials Science,2009.44(20):p.5501-5508.
    228. Niu, H.T. and T. Lin, Fiber generators in needleless electrospinning. Journal of Nanomaterials, 2012.2012:p.725950.
    229. Wang, X., X.G. Wang, and T. Lin, Electric field analysis of spinneret design for needleless electrospinning of nanofibers. Journal of Materials Research,2012.27(23):p.3013-3019.
    230. Pease, L.F. and W.B. Russel, Electrostatically induced submicron patterning of thin perfect and leaky dielectric films:A generalized linear stability analysis. Journal of Chemical Physics,2003.118(8):p. 3790-3803.
    231. Leach, K.A., Z.Q. Lin, and T.P. Russell, Early stages in the growth of electric field-induced surface fluctuations. Macromolecules,2005.38(11):p.4868-4873.
    232. Lukas, D., A. Sarkar, and P. Pokorny, Self-organization of jets in electrospinning from free liquid surface: A generalized approach. Journal of Applied Physics,2008.103(8):p.084309.
    233. Miloh, T., B. Spivak, and A.L. Yarin, Needleless electrospinning:electrically driven instability and multiple jetting from the free surface of a spherical liquid layer. Journal of Applied Physics,2009. 106(11):p.114910.
    234. Forward, K.M. and G.C. Rutledge, Free surface electrospinning from a wire electrode. Chemical Engineering Journal,2012.183:p.492-503.
    235. Barhate, R.S. and S. Ramakrishna, Nanofibrous filtering media:Filtration problems and solutions from tiny materials. Journal of Membrane Science,2007.296(1-2):p.1-8.
    236. Jaganathan, S., H.V. Tafreshi, and B. Pourdeyhimi, A realistic approach for modeling permeability of fibrous media:3-D imaging coupled with CFD simulation. Chemical Engineering Science,2008.63(1):p. 244-252.
    237. Sambaer, W., M. Zatloukal, and D. Kimmer,3D air filtration modeling for nanofiber based filters in the ultrafine particle size range. Chemical Engineering Science,2012.82:p.299-311.
    238. Shin, Y., D.I. Yoo, and K. Min, Antimicrobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer. Journal of Applied Polymer Science,1999.74(12):p.2911-2916.
    239. Zhang, C.H., et al., Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol). Separation and Purification Technology,2008. 61(3):p.276-286.
    240. Fang, J., et al., Superhydrophilic and solvent resistant coatings on polypropylene fabrics by a simple deposition process. Journal of Materials Chemistry,2010.20(9):p.1651-1653.
    241. Stefecka, M., et al., Electromagnetic shielding efficiency of plasma treated and electroless metal plated polypropylene nonwoven fabrics. Journal of Materials Science,2004.39(6):p.2215-2217.
    242. Wei, Q.F., et al., Characterization of nonwoven material functionalized by sputter coating of copper. Surface & Coatings Technology,2008.202(12):p.2535-2539.
    243. Wei, Q.F., et al., Surface characterization and properties of functionalized nonwoven. Journal of Applied Polymer Science,2008.107(1):p.132-137.
    244. Poulter, N., et al., An organo-silver compound that shows antimicrobial activity against Pseudomonas aeruginosa as a monomer and plasma deposited film. Chemical Communications,2009(47):p.7312-7314.
    245. Knez, M., K. Niesch, and L. Niinisto, Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials,2007.19(21):p.3425-3438.
    246. Hyde, G.K., et al., Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics. Langmuir,2010.26(4):p.2550-2558.
    247. Peng, Q., B. Gong, and G.N. Parsons, Making inert polypropylene fibers chemically responsive by combining atomic layer deposition and vapor phase chemical grafting. Nanotechnology,2011. 22(15):p.l55601.
    248. Stakne, K., et al., Characterisation of modified polypropylene fibres. Journal of Materials Science,2003. 38(10):p.2167-2169.
    249. Tada, H. and S. Ito, Conformational change restricted selectivity in the surface sulfonation of polypropylene with sulfuric acid. Langmuir,1997.13(15):p.3982-3989.
    250. Matos, J.P., M.T.C. Sansiviero, and R.M. Lago, Surface chemical modification of polypropylene fiber waste by H2SO4:mechanistic investigation and application as cation-exchange adsorbent. Journal of Applied Polymer Science,2010.115(6):p.3586-3591.
    251. Vahdat, A., et al., Radiation grafting of styrene onto polypropylene fibres by a 10 MeV electron beam. Radiation Physics and Chemistry,2007.76(5):p.787-793.
    252. Deng, J.P., et al., Developments and new applications of UV-induced surface graft polymerizations. Progress in Polymer Science,2009.34(2):p.156-193.
    253. He, D.M., H. Susanto, and M. Ulbricht, Photo-irradiation for preparation, modification and stimulation of polymeric membranes. Progress in Polymer Science,2009.34(1):p.62-98.
    254. Zheng, Y, P.V. Gurgel, and R.G. Carbonell, Effects of UV exposure and initiator concentration on the spatial variation of poly(glycidyl methacrylate) grafts on nonwoven fabrics. Industrial & Engineering Chemistry Research,2011.50(10):p.6115-6123.
    255. Zheng, Y., et al., Polypropylene nonwoven fabrics with conformal grafting of poly(glycidyl methacrylate) for bioseparations. Journal of Membrane Science,2010.364(1-2):p.362-371.
    256. Jang, J. and W.S. Go, Continuous photografting of HEMA onto polypropylene fabrics with benzophenone photoinitiator. Fibers and Polymers,2008.9(4):p.375-379.
    257. Denes, F.S. and S. Manolache, Macromolecular plasma-chemistry:an emerging field of polymer science. Progress in Polymer Science,2004.29(8):p.815-885.
    258. Kogelschatz, U., Dielectric-barrier discharges:Their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing,2003.23(1):p.1-46.
    259. Hwang, Y.J., et al., Effects of helium atmospheric pressure plasma treatment on low-stress mechanical properties of polypropylene nonwoven fabrics. Textile Research Journal,2005.75(11):p.771-778.
    260. Morent, R., et al., Surface modification of non-woven textiles using a dielectric barrier discharge operating in air, helium and argon at medium pressure. Textile Research Journal,2007.77(7):p.471-488.
    261. Chen, K.S., et al., Long term water adsorption ratio improvement of polypropylene fabric by plasma pre-treatment and graft polymerization. Polymer Journal,2006.38(9):p.905-911.
    262. Wang, C C. and C.C. Chen, Anti-bacterial and swelling properties of acrylic acid grafted and collagen/chitosan immobilized polypropylene non-woven fabrics. Journal of Applied Polymer Science, 2005.98(1):p.391-400.
    263. Huang, J.Y., et al., Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules,2007.8(5):p.1396-1399.
    264. Wang, C.C, R.R. Feng, and F.L. Yang, Enhancing the hydrophilic and antifouling properties of polypropylene nonwoven fabric membranes by the grafting of poly(N-vinyl-2-pyrrolidone) via the ATRP method. Journal of Colloid and Interface Science,2011.357(2):p.273-279.
    265. Kaluzka, J. and M. Lebiedowski, Application of polypropylene nonwoven beds in reducing oil concentration in emulsions. Fibres & Textiles in Eastern Europe,2003.11(1):p.64-67.
    266. Ma, N.F., et al., Preparation of amine group-containing chelating fiber for thorough removal of mercury ions. Journal of Hazardous Materials,2009.171(1-3):p.288-293.
    267. Li, T.Y., et al., Preparation of an ion-imprinted fiber for the selective removal of Cu2+. Langmuir,2011. 27(11):p.6753-6758.
    268. Menkhaus, T.J., et al., Electrospun nanofiber membranes surface functionalized with 3-dimensional nanolayers as an innovative adsorption medium with ultra-high capacity and throughput. Chemical Communications,2010.46(21):p.3720-3722.
    269. Kanani, D.M., et al., Separation of human plasma proteins HSA and HIgG using high-capacity macroporous gel-filled membranes. Biochemical Engineering Journal,2007.35(3):p.295-300.
    270. Kaur, S., et al., Next-generation fibrous media for water treatment. Mrs Bulletin,2008.33(1):p.21-26.
    271. Chang, I.S., et al., Low-cost membranes for use in a submerged MBR. Process Safety and Environmental Protection,2001.79(B3):p.183-188.
    272. Zhao, J., et al., Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer. Journal of Membrane Science,2011.369(1-2):p.
    273. Han, H. and R.B. Bai, Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV-Vis and Vis lights. Separation and Purification Technology,2010.73(2):p.142-150.
    274. Lee, S. and S.K. Obendorf, Developing protective textile materials as barriers to liquid penetration using melt-electrospinning. Journal of Applied Polymer Science,2006.102(4):p.3430-3437.
    275. Uppal, R., et al., Meltblown nanofiber media for enhanced quality factor. Fibers and Polymers,2013.14(4): p.660-668.
    276. Wang, Z.G., B.B. Ke, and Z.K. Xu, Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes:A comprehensive study. Biotechnology and Bioengineering,2007.97(4):p.708-720.
    277.宋斌,氯化聚丙烯的合成发展.广东化工,2010.37(10):p.58-59.
    278.傅和青,黄洪,张心亚,氯化聚丙烯熔点与氯化度的关系研究.塑料科技,2007.35(6):p.46-48.
    279.刘大壮,刘立考,范忠雷,含氯量为30%的氯化聚丙烯的溶解剂溶液性质.化工时刊,2009.23(1):p.18-21.
    280. Ueki, T. and M. Watanabe, Macromolecules in ionic liquids:progress, challenges, and opportunities. Macromolecules,2008.41(11):p.3739-3749.
    281.张星辰,离子液体-从理论基础到研究进展.化学工业出版社,2009.
    282. Torimoto, T., et al., New frontiers in materials science opened by ionic liquids. Advanced Materials,2010. 22(11):p.1196-1221.
    283. Zhu, J.H., et al., Ionic liquid assisted electrospinning of quantum dots/elastomer composite nanofibers. Polymer,2011.52(9):p.1954-1962.
    284. Lu, X.B., et al., Room temperature ionic liquid based polystyrene nanofibers with superhydrophobicity and conductivity produced by electrospinning. Chemistry of Materials,2008.20(10):p.3420-3424.
    285. Aydogdu, S., et al., Optical CO2 sensing with ionic liquid doped electrospun nanofibers. Journal of Fluorescence,2011.21(2):p.607-613.
    286. Yang, T., et al., Electrospinning of polyacrylonitrile fibers from ionic liquid solution. Applied Physics a-Materials Science & Processing,2010.98(3):p.517-523.
    287. Barber, P.S., et al., Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chemistry,2013.15(3):p.601-607.
    288. Meli, L., et al., Electrospinning from room temperature ionic liquids for biopolymer fiber formation. Green Chemistry,2010.12(11):p.1883-1892.
    289. Chen, H. and Y.A. Eiabd, Polymerized ionic liquids:solution properties and electrospinning. Macromolecules,2009.42(9):p.3368-3373.
    290. Arumugam, G.K., S. Khan, and P.A. Heiden, Comparison of the effects of an ionic liquid and other salts on the properties of electrospun fibers,2-poly (vinyl alcohol). Macromolecular Materials and Engineering, 2009.294(1):p.45-53.
    291. Lin, T., et al., The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology,2004.15(9):p.1375-1381.
    292. Umebayashi, Y, et al., Evidence of conformational equilibrium of 1-ethyl-3-methylimidazolium in its ionic liquid salts:Raman spectroscopic study and quantum chemical calculations. Journal of Physical Chemistry A,2005.109(40):p.8976-8982.
    293. McKee, M.G., et al., Solution rheological behavior and electrospinning of cationic poly electrolytes. Macromolecules,2006.39(2):p.575-583.
    294. Okuzaki, H., et al., Spontaneous formation of poly(p-phenylenevinylene) nanofiber yarns through electrospinning of a precursor. Macromolecules,2006.39(13):p.4276-4278.
    295. Frenot, A., M.W. Henriksson, and P. Walkenstrom, Electrospinning of cellulose-based nanofibers. Journal of Applied Polymer Science,2007.103(3):p.1473-1482.
    296. Kim, T.G., H.J. Chung, and T.G. Park, Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomaterialia,2008.4(6):p.1611-1619.
    297. Li, N., et al., The effects of spinning conditions on the morphology of electrospun jet and nonwoven membrane. Polymer Engineering and Science,2008.48(12):p.2362-2366.
    298. Xin, Y., et al., Controlling the deposition of light-emitting nanofibers/microfibers by the electrospinning of a poly(p-phenylene vinylene) polyelectrolyte precursor. Journal of Applied Polymer Science,2009.114(3): p.1864-1869.
    299. Subramanian, C., R.A. Weiss, and M.T. Shaw, Electrospinning and characterization of highly sulfonated polystyrene fibers. Polymer,2010.51(9):p.1983-1989.
    300. Sun, B., et al., Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning. Nanoscale, 2012.4(6):p.2134-2137.
    301. Deitzel, J.M., et al., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer,2001.42(1):p.261-272.
    302. Kalayci, V.E., et al., Charge consequences in electrospun polyacrylonitrile (PAN) nanofibers. Polymer, 2005.46(18):p.7191-7200.
    303. Uecker, J.C., G.C. Tpper, and J. Rosell-Llompart, Ion-assisted collection of Nylon-4,6 electrospun nanofibers. Polymer,2010.51(22):p.5221-5228.
    304. Ahirwal, D., et al., From self-assembly of electrospun nanofibers to 3D cm thick hierarchical foams. Soft Matter,2013.9(11):p.3164-3172.
    305. Thandavamoorthy, S., N. Gopinath, and S.S. Ramkumar, Self-assembled honeycomb polyurethane nanofibers. Journal of Applied Polymer Science,2006.101(5):p.3121-3124.
    306. Yan, G.D., et al., Self-assembly of electrospun polymer nanofibers:A general phenomenon generating honeycomb-patterned nanofibrous structures. Langmuir,2011.27(8):p.4285-4289.
    307. Li, D., Y.L. Wang, and Y.N. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters,2003.3(8):p.1167-1171.
    308. Chaurey, V., et al., Interplay of electrical forces for alignment of sub-100 nm electrospun nanofibers on insulator gap collectors. Langmuir,2010.26(24):p.19022-19026.
    309. Wang, Y.Z., et al., Electrospinning of polymer nanofibers with ordered patterns and architectures. Journal ofNanoscience and Nanotechnology,2010.10(3):p.1699-1706.
    310. Sanders, J.E., et al., Fibro-porous meshes made from polyurethane micro-fibers:effects of surface charge on tissue response. Biomaterials,2005.26(7):p.813-818.
    311. S. Warner, A.F., S. Ugbolue, Cost-effective nanofiber formation-melt electrospinning. NTC Project: F05-MD01,2007.
    312. McCann, J.T., M. Marquez, and Y.N. Xia, Melt coaxial electrospinning:A versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Letters,2006.6(12):p. 2868-2872.
    313. Marsh, K.N., J.A. Boxall, and R. Lichtenthaler, Room temperature ionic liquids and their mixtures-a review. Fluid Phase Equilibria,2004.219(1):p.93-98.
    314. Wang, C., et al., How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?-a brief discussion of solution electrospinning process. Journal of Polymer Research,2011.18(1):p.111-123.
    315. Wang, C., et al., Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules, 2007.40(22):p.7973-7983.
    316. Cheng, Y.W., et al., Syndiotactic polystyrene nanofibers obtained from high-temperature solution electrospinning process. Macromolecules,2010.43(5):p.2371-2376.
    317. Yu, D.G., et al., Electrospinning of concentrated polymer solutions. Macromolecules,2010.43(24):p. 10743-10746.
    318. Tan, Y.Q., Y.H. Song, and Q. Zheng, Hydrogen bonding-driven rheological modulation of chemically reduced graphene oxide/poly (vinyl alcohol) suspensions and its application in electrospinning. Nanoscale, 2012.4(22):p.6997-7005.
    319. Nangrejo, M., et al., Hot electrospinning ofpolyurethane fibres. Materials Letters,2012.68:p.482-485.
    320. Crne, M., J.O. Park, and M. Srinivasarao, Electrospinning physical gels:the case of stereocomplex PMMA. Macromolecules,2009.42(13):p.4353-4355.
    321. Matsuyama, H., et al., Preparation of polyethylene hollow fiber membrane via thermally induced phase separation. Journal of Membrane Science,2003.223(1-2):p.119-126.
    322. Lloyd, D.R., K.E. Kinzer, and H.S. Tseng, Microporous membrane formation via thermally induced phase-separation.1. solid liquid-phase separation. Journal of Membrane Science,1990.52(3):p. 239-261.
    323. Su, Y, et al., PVDF membrane formation via thermally induced phase separation. Journal of Macromolecular Science Part a-Pure and Applied Chemistry,2007.44(1):p.99-104.
    324. Wu, Q. Y., L.S. Wan, and Z.K. Xu, Structure and performance ofpolyacrylonitrile membranes prepared via thermally induced phase separation. Journal of Membrane Science,2012.409:p.355-364.
    325. Luo, B.Z., et al., Formation of anisotropic microporous isotactic polypropylene (iPP) membrane via thermally induced phase separation. Desalination,2008.233(1-3):p.19-31.
    326. Lin, Y.K., et al., Formation of isotactic polypropylene membranes with bicontinuous structure and good strength via thermally induced phase separation method. Desalination,2009.236(1-3):p.8-15.
    327. Yave, W., et al., Effect of the polypropylene type on polymer-diluent phase diagrams and membrane structure in membranes formed via the TIPS process-Part I. Metallocene and Ziegler-Natta polypropylenes. Journal of Membrane Science,2005.263(1-2):p.146-153.
    328. Matsuyama, H., et al., Effect of diluents on membrane formation via thermally induced phase separation. Journal of Applied Polymer Science,2001.82(1):p.169-177.
    329. Yang, Z.S., et al., Preparation of iPP hollow-fiber microporous membranes via thermally induced phase separation with co-solvents ofDBP and DOP. Desalination,2006.192(1-3):p.168-181.
    330. Lin, K.Y., M. Xanthos, and K.K. Sirkar, Novel polypropylene microporous membranes via spherulitic deformation-Processing perspectives. Polymer,2009.50(19):p.4671-4682.
    331. Lin, K.Y., M. Xanthos, and K.K. Sirkar, Novel polypropylene-based microporous membranes via spherulitic deformation. Journal of Membrane Science,2009.330(1-2):p.267-278.
    332. Bellan, L.M. and H.G. Craighead, Molecular orientation in individual electrospun nanofibers measured via polarized Raman spectroscopy. Polymer,2008.49(13-14):p.3125-3129.
    333. Pai, C.L., M.C. Boyce, and G.C. Rutledge, Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Macromolecules,2009.42(6):p.2102-2114.
    334. Wang, L.F., et al., Wrinkled surface topographies of electrospun polymer fibers. Applied Physics Letters, 2009.94(15):p.151916.
    335. Matsuyama, H., et al., Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation. Journal of Membrane Science,2000.179(1-2):p.91-100.
    336. Liu, Y, et al., Diameter-dependent modulus and melting behavior in electrospun semicrystalline polymer fibers. Macromolecules,2011.44(11):p.4439-4444.
    337. vandeWitte, P., et al., Phase separation processes in polymer solutions in relation to membrane formation. Journal of Membrane Science,1996.117(1-2):p.1-31.
    338. Pekny, M.R., et al., Flow-visualization during macrovoid pore formation in dry-cast cellulose acetate membranes. Journal of Membrane Science,2003.211(1):p.71-90.
    339. Sing, K.S.W., et al., Reporting physisorption data for gas solid systems with special rReference to the determination of surface-area and porosity (Recommendations 1984). Pure and Applied Chemistry,1985. 57(4):p.603-619.
    340. Ji, G.L., et al., PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery. Polymer,2007.48(21):p.6415-6425.
    341. Li, X.F., et al., Morphology changes of polyvinylidene fluoride membrane under different phase separation mechanisms. Journal of Membrane Science,2008.320(1-2):p.477-482.
    342. Hellman, D.J., et al., A novel process for membrane fabrication:thermally assisted evaporative phase separation (TAEPS). Journal of Membrane Science,2004.230(1-2):p.99-109.
    343. Wu, X.F., Y. Salkovskiy, and Y.A. Dzenis, Modeling of solvent evaporation from polymer jets in electrospinning. Applied Physics letters,2011.98(22):p.223108.
    344. Rademacher, T.W., R.B. Parekh, and R.A. Dwek, Glycobiology. Annual Review of Biochemistry,1988.57: p.785-838.
    345. Lee, YC. and R.T. Lee, Carbohydrate-protein interactions-basis of glycobiology. Accounts of Chemical Research,1995.28(8):p.321-327.
    346. Lundquist, J.J. and E.J. Toone, The cluster glycoside effect. Chemical Reviews,2002.102(2):p.555-578.
    347. Noble, G.T., et al., Assessing the cluster glycoside effect during the binding of concanavalin A to mannosylated artificial lipid rafts. Organic & Biomolecular Chemistry,2009.7(24):p.5245-5254.
    348. Hu, M.X., Q. Yang, and Z.K. Xu, Enhancing the hydrophilidty of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators. Journal of Membrane Science,2006.285(1-2):p.196-205.
    349. Chen, P.C., L.S. Wan, and Z.K. Xu, Bio-inspired CaCO3 coating for superhydrophilic hybrid membranes with high water permeability. Journal of Materials Chemistry,2012.22(42):p.22727-22733.
    350.欧阳健民,生化矿化的基质调控及其仿生应用.化学工业出版社,2006.
    351. Chang, Y, et al., Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization. Journal of Membrane Science,2009.345(1-2):p. 160-169.
    352.孔繁祚,糖化学.科学出版社,2006.
    353. Dam, T.K. and C.F. Brewer, Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chemical Reviews,2002.102(2):p.387-429.
    354. Goldstei.Ij, Hollerma.Ce, and J.M. Merrick, Protein-carbohydrate interaction.1. interaction of polysaccharides with concanavalin A. Biochimica Et Biophysica Acta,1965.97(1):p.68-76.
    355. Goldstei.Ij, Hollerma.Ce, and E.E. Smith, Protein-carbohydrate interaction.2. inhibition studies on interaction of concanavalin A with polysaccharides. Biochemistry,1965.4(5):p.876-883.
    356. Goldstei.Ij and L.L. So, Protein-carbohydrate interaction.3. agar gel-diffusion studies on interaction of concanavalin A a lectin isolated from Jack Bean with polysaccharides. Archives of Biochemistry and Biophysics,1965.111(2):p.407-414.
    357. Mammen, M., S.K. Choi, and G.M. Whitesides, Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angewandte Chemie-International Edition,1998.37(20):p.2755-2794.
    358. Kumar, J., et al., Synthesis of thermo-responsive glycopolymers via copper catalysed azide-alkyne'click' chemistry for inhibition of ricin:the effect of spacer between polymer backbone and galactose. Polymer Chemistry,2011.2(8):p.1879-1886.
    359. Meng, X.L., et al., Glycopolymer brushes for the affinity adsorption of RCA(120):effects of thickness, grafting density, and epitope density. Langmuir,2012.28(38):p.13616-13623.
    360. Bouckaert, J., et al., Sequential structural changes upon zinc and calcium binding to metal-free concanavalin A. Journal of Biological Chemistry,1996.271(27):p.16144-16150.
    361. Wang, C., et al., Surface glycosylation of polymer membrane by thiol-yne click chemistry for affinity adsorption of lectin. Chemical Communications,2011.47(13):p.3930-3932.
    362. Che, A.F., X.J. Huang, and Z.K. Xu, Polyacrylonitrile-based nanofibrous membrane with glycosylated surface for lectin affinity adsorption. Journal of Membrane Science,2011.366(1-2):p.272-277.
    363. Che, A.F., Xu Z.K., Glycosylated nanofibers for protein adsorption and recognition. Nova Publisher.
    364. Wang, C, et al., Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir,2011.27(19):p.12058-12068.
    365. Ying, L., et al., Immobilization of galactose ligands on acrylic acid graft-copolymerized poly(ethylene terephthalate) film and its application to hepatocyte culture. Biomacromolecules,2003.4(1):p.157-165.
    366. Yang, D.Z., et al., The mineralization of electrospun chitosan/poly(vinyl alcohol) nanofibrous membranes. Carbohydrate Polymers,2011.84(3):p.990-996.
    367. Liu, L., et al., Bioinspired crystallization of CaCO3 coatings on electrospun cellulose acetate fiber scaffolds and corresponding CaCO3 micrvtube networks. Langmuir,2011.27(11):p.7199-7206.
    368. Lakshminarayanan, R., S. Valiyaveettil, and G.L. Loy, Selective nucleation of calcium carbonate polymorphs:Role of surface functionalization and poly (vinyl alcohol) additive. Crystal Growth & Design, 2003.3(6):p.953-958.
    369. Gower, L.B., Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chemical Reviews,2008.108(11):p.4551-4627.
    370. Kurihara, K., et al., Surface forces between monolayers of anchored poly(Methacrylic Acid). Langmuir, 1992.8(9):p.2087-2089.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.