高速机动目标雷达信号参数估计与成像处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内外导弹突防和反突防技术的发展,高速机动已成为目标突防的主要手段之一。高速机动目标具有大的雷达径向速度和加速度,目标高速机动将使防御雷达常规信号处理的分辨性能和信噪比下降,宽带一维距离像展宽,二维像模糊,因此将最终导致防御雷达无法对高速机动突防目标进行探测、跟踪与成像。如何提高防御雷达对高速机动目标的探测、跟踪和成像能力已成为雷达领域的前沿课题和紧迫任务。
     以弹道导弹防御为研究背景,论文围绕高速机动目标雷达信号参数估计与成像处理,深入系统地研究了高速机动目标的雷达信号模型、多分量LFM信号调频参数估计方法、基于二次匹配处理的多分量LFM信号分辨力、以及高速机动目标宽带一维像补偿和二维成像及定标。论文研究成果具体体现在以下几个方面:
     1.提取了高速机动目标在常规窄带雷达和宽带成像雷达下的回波特征。为了提高高速机动目标的雷达探测性能,需要研究高速机动目标的运动特征及回波模型,以便进一步研究雷达信号处理或补偿方法。为此首先分析了高速机动对雷达径向速度和加速度带来的影响。其次提取了高速机动目标在常规窄带雷达和宽带成像雷达下的回波特征,分析了常规窄带雷达信号处理方法的局限性。提出了用展宽系数来衡量频谱展宽的方法,并定量分析了目标运动各参数对宽带雷达测距和一维像的影响。最后分析了多分量LFM信号的时频分布和模糊图特征,以便选择合理的参数估计方法。
     2.研究了多分量LFM信号调频参数估计方法。高速机动目标的雷达回波信号处理均和LFM信号的检测和参数估计有关。为了研究LFM信号的二次匹配处理与参数估计,首次从理论上系统研究了LFM信号Radon-Wigner变换(RWT)、Wigner- Hough变换(WHT)、分数阶傅立叶变换(FrFT)、解线调方法(Dechirp)、Chirp-Fourier变换(CFT)和最大似然(ML)等线性调频参数估计方法的相互转换关系,给出了LFM信号调频参数估计的最佳表述。首次系统地给出了基于RWT的LFM信号快速调频参数估计,提出了利用频率偏差系数和剩余展宽系数分析LFM信号参数估计性能的方法。并提出了基于Radon-Ambiguity变换(RAT)的LFM信号快速调频参数估计。计算量比较分析表明RAT和RWT方法的运算量是相近的,估计性能均能达到了Cramer-Rao门限(CRB)。RWT法能同时估计LFM信号的频率和调频率,适合分析任意多分量LFM信号,由于能够充分利用各分量信号的能量,因此RAT适合估计同调频率多分量信号的调频率。
     3.基于RWT方法研究了多分量LFM信号分辨力和多目标分辨力。首次用二次项泰勒级数展开给出了RWT输出的近似解析表达式,从理论上给出了频率和调频率联合分辨数学表达式,以及延迟时间、频率和调频率的联合分辨力,并得到仿真验证。然后给出了脉冲多普勒雷达的速度和加速度联合分辨表达式,表明其联合分辨条件为运动参数不同引起的路径偏差大于半个波长,仿真比较了傅立叶变换和RWT的性能。最后给出了LFM雷达的距离、速度和加速度的联合分辨表达式,表明其分辨条件决定于两目标的径向位置偏差(分辨单元级)和相参时间内径向运动距离偏差(波长级),并仿真比较了匹配滤波和RWT的性能。本研究有助于机动目标的跟踪,以及群目标的分辨与识别。
     4.系统研究了高速机动目标的宽带雷达运动补偿、目标连续跟踪测量和ISAR成像与定标。根据速度和加速度的调频频谱展宽特点,提出了机动目标宽带一维距离像回波线性化模型,给出了RAT法线性参数估计与运动补偿方法,并进一步分析了测速和测距误差。仿真表明该方法很好地解决了未知运动参数情况下机动目标的一维距离像频谱展宽问题。其次为了有效利用雷达资源,一旦窄带跟踪到目标后,雷达可以转入宽带一维成像与单脉冲跟踪。给出了宽带一维像的测速、测距和测角模型,并得到仿真验证。目标一维像的连续定位跟踪可以增加目标跟踪数据率,提高雷达对机动目标跟踪能力。
     提出了匀加速目标的变尺度RWT成像与定标方法。该方法首先根据多个距离单元信号的调频参数估计,用加权最小二乘法解算出目标转动参数,并利用转动参数对横向信号实施纵向参数补偿;最后利用变尺度RWT实现成像与定标。算法速度较常规RWT成像有大幅度提高,成像性能更稳定,仿真实验和外场数据的ISAR成像处理验证了该方法的有效性。该方法在非合作机动目标ISAR成像与定标方面有很好的应用前景。另外纵向参数补偿法对于匀速运动目标仍然具有很好的应用价值。
     另外为了验证变尺度RWT成像,提出了基于外场测试数据的插值变采样机动目标数据产生方法,并进行了仿真验证。最后基于对称目标的对称轴与对称点直线垂直,给出了对称目标转角估计和横向定标新方法,并给出了定标参数估计误差表达式,定量分析了影响定标参数估计误差的各因素,并进行了仿真验证。该方法结构简单,运算量小。
     论文研究成果可以应用于脉冲多普勒雷达、LFM连续波雷达、步进频雷达、远程预警雷达和成像雷达等,对于雷达信息处理等诸多领域均提供借鉴和参考,同时对于弹道导弹生存和突防能力等应用领域研究具有十分重大的理论意义和军事价值。
Along with the unceasing development of domestic and foreign missile defense penetration and counter-defense penetration technology, the high-speed maneuver has become the main means of defense penetration. The high-speed maneuvering target is provided with a big radar radial velocity and acceleration, if the conventional signal processing method is used, the resolution performance and signal noise ratio of defense radar decrease, and the wideband range profile is broadening, and the two-dimension image is blurring, which induce that the defense radar fail in detection, tracking and image formation for the high-speed maneuvering target. How to enhance the radar in target detection, tracking and image formation for the high-speed maneuvering target already became the front topic and the pressing task for the current radar technology domain.
     This dissertation takes the ballistic missile defense as the research background, focuses on radar signal parameter estimation and image processing of the high-speed maneuvering target,and systematically studies the radar signal model, and the related processing method of the high-speed maneuvering target, including frequency modulation (FM) parameters estimation of multi-component LFM signals, the resolution of multi-component LFM signals based on quadratically matched processing, motion compensation of wideband range profile, two-dimension imaging and cross-range calibration. The research results mainly involve:
     1) The high-speed maneuvering target’s echo characteristics of both conventional narrow band radar and wide band imaging radar are extracted. In order to improve the radar exploration performance of the high-speed maneuvering target, the target’s motion characteristics and echo signal model, and the radar signal processing and compensating methods should be studied. Firstly, the radial velocity and acceleration influence brought by the high-speed maneuver are analyzed. Then the echo signal models of narrow-band radar and wideband imaging radar are extracted, and the limitations of conventional processing method are analyzed. Spectral expansion coefficient is proposed to measure spectral expansion, and range measuring and spectral expansion effects caused by movement parameter are analyzed quantificational. Finally, in order to select the optimal FM parameters estimation method, the time-frequency distribution and the ambiguity chart characteristic have been analyzed for the multi-component LFM signals.
     2) The FM parameters estimated methods of the multi-component LFM signals have been studied. The radar echo processing of the high-speed maneuvering target is related with detection and parameter estimation of the LFM signals. In order to study the quadratically matched processing and parameter estimation of the LFM signals, the reciprocal transforming relationship of FM parameters estimated methods for the continuous complex LFM signals, including Radon-Wigner transform (RWT), Wigner-Hough transform (WHT), Fractional Fourier transform (FrFT), Dechirp,Chirp-Fourier transform (CFT) and Maximum Likelihood (ML), are studied in theory for the first time, and the optimal expression of FM parameters estimation is proposed. Secondly, Multi-resolution fast parameters estimation arithmetic of LFM signals via RWT is offered. The parameters estimation performance is studied on frequency deviation coefficient and residual expansion coefficient, and the computational cost is analyzed. Finally, the fast algorithm of Radon-Ambiguity transform (RAT) method of the discrete signals is proposed. Simulation results have validated that both RWT and RAT can reach the Cramer-Rao bound (CRB) even on low SNR. The analysis indicates that RWT accesses RAT in computational cost. The RWT method can estimate the frequency and chirp rate of the LFM signals, and adapt to analyze arbitrary the multi-component LFM signals. The RAT method fits to estimate the chirp rate of the multi-component LFM signals in the same chirp rate, because the total energy of various component signals can be utilized.
     3) Based on RWT method, the resolutions of multi-component LFM signals and multi-target are studied respectively. The RWT output approximate expression is given based on quadratic Taylor's series expansion for the first time, and the joint resolution mathematical expression of the FM parameters, and the joint resolution of delay time, frequency and chirp rate are offered in theory, which are validated by simulation results. Then, the joint resolution expression of velocity and acceleration of the pulse Doppler radar is offered. It is indicated that the motion parameters can be distinguished if the radial distance deviation reaches half wave length. The simulation results have been given to compare the performance of the Fourier transform and the RWT method. Finally, the joint resolution of distance, velocity and acceleration for LFM radar is studied, which indicated that the joint resolution condition is decided by the radial position deviation (resolution cell level) and the radial distance moving deviation in coherent time (wave length level) of the two targets. The simulation results have been given to compare the performance of the matched filtering and the RWT method. This research is helpful to track maneuvering target, as well as group target resolution and recognition.
     4) The motion compensation, continuous tracking, ISAR imaging and cross-range calibration of the wideband radar for the high-speed maneuvering target are studied systemically. Based on the spectral expansion characteristics of the velocity and acceleration, a novel linear model of wideband range profile of maneuvering target is proposed. Linear parameter estimation and compensation of range profile via RAT are presented, and the measurement errors of range and velocity are analyzed. The simulation results show that this method can resolve the range profile spectral expansion of maneuvering target unknown motion parameters. In order to use radar resource effectively, once the target has been tracked by narrow band signal, the radar can switch to mono-pulse tracking and imaging of wideband signal. Angle, distance and velocity measurement models of wideband range profile are presented, which are validated by simulation results. Target orientation and tracking based on range profile can increase data rate of target tracking, which can enhance the tracking capability of maneuvering target.
     The scaled RWT imaging and cross-range scaling method is proposed for the rotating target with stable acceleration. Firstly, the rotating parameters are calculated via weighted least square method after obtaining the FM parameters of signals on multi-range. The slow time signals are compensated using rotating parameters. Then, the ISAR imaging of scaled RWT methods is implemented with cross-range calibration. The calculation speed of this algorithm is improved in great part compared to general RWT imaging, and imaging performance is steady-going. The simulation results and ISAR imaging processing of radar data in outfield validate the method. The method presents good application foreground to the ISAR imaging and calibration of uncooperative motive targets. When target uniform motion, the longitudinal parameter compensation method still have a very good application value.
     In order to validate scaled RWT imaging method, the ISAR data generating technology of maneuvering target is presented via interpolation sampling based on outfield experimental radar data, and the method is validated by simulation results. Finally, based on the orthogonal relation between the centerline and the line through axially symmetric points in the symmetrical target, a novel method of rotation angle estimation and cross-range calibration is definitely proposed for the symmetrical target. The estimation error expression of the scaling parameter is offered, which is validated by simulation results, and influencing factors of the parameter estimation error is analyzed quantitatively. This method is very simple in structure and have low computation cost.
     The research results can be applied to pulse Doppler radar, LFM continuous-wave radar, step frequency radar, long-rang early-warning radar and imaging radar, and offer references for many fields such as radar signal processing, and have a great theory significance and military value for the application domain study such as the ballistic missile survival and defense penetration ability.
引文
[1]胡劲松(译).了解国家导弹防御技术,863先进防御技术通讯(A类),2000.10.
    [2]薛雷达.美国国家导弹防御系统地基雷达测量与识别能力,863先进防御技术通讯(A类),2000.6.
    [3]马骏声. GBR-P雷达反导试验中的真假目标[J].航天电子对抗,2004,21(5):1-6.
    [4]马骏声. NMD-GBR雷达的测量能力及其性能参数[J].航天电子对抗,2002, 19 (5):1-8.
    [5]史别译.识别真假目标是NMD的最大技术难题[J].863先进防御技术通讯(A类),2001.8.
    [6]马骏声.战术弹道导弹防御用地基雷达的现状与未来[J].航天电子对抗, 1995(3): 23-27.
    [7]文树梁,袁起,秦忠宇.宽带相控阵雷达的设计准则与发展方向[J].系统工程与电子技术,2005,27(6): 1007-1011.
    [8]美国战略弹道导弹弹头的预研—高级弹道式再入系统计划.国防科委情报研究所,1979.
    [9]唐伟,张勇,李为吉,桂业伟.可变弯尾飞行器空间螺旋机动的实现.空气动力学学报,2006,24(3):375-379.
    [10]郦苏丹,任萱,吴瑞林.再入弹头的螺旋机动研究[J].宇航学报,2000, 21(4) :41-48.
    [11]陈永军,张毅.打击复杂地形目标的导弹再入机动弹道设计[J].飞行力学,2004,22(3): 53-56.
    [12]王贵东.弯头机动弹头再入螺旋弹道分析:硕士学位论文[D].北京:北京空气动力研究所,2000.12.
    [13]雍恩米,唐国金,陈磊.助推-滑翔式导弹中段弹道方案的初步分析[J].国防科技大学学报,2006,28(6):6-10.
    [14]李裕山,姚郁.再入飞行器的大机动轨迹实现[J].哈尔滨工业大学学报[J]. 1997, 29(5):89-92.
    [15]刘建成.加速机动目标检测及跟踪技术研究:博士学位论文[D].长沙:国防科技大学研究生院,2007.
    [16]赵宏钟,付强.雷达信号的加速度分辨性能分析[J].中国科学,2003,33(7): 638-646.
    [17]赵宏钟,付强,周剑雄.雷达信号的加速度分辨力分析及应用[J].电子学报, 2003,31(6): 958-961.
    [18] Bello P. Joint estimation of delay, Doppler and Doppler rate [J]. IRE Trans. on information theory, 1960, 6(3): 330-341.
    [19] Kelly E J. The radar measurement of range, velocity and acceleration [J]. IRE Trans. on military electronics, 1961, 5(2): 51-57.
    [20] Kelly E J, Wishner R P. Matched-Filter theory for high-velocity, accelerating targets [J]. IRE Trans. on Military Electronics, 1965, 9(1):56-69.
    [21] Schweppe Fred C. Radar frequency modulations for accelerating targets under a bandwidth constraint [J]. IRE Trans. on Military Electronics, 1965, 9(1):25-32.
    [22]张容权,杨建宇,熊金涛.基于多项相位变换的线性FMCW雷达目标加速度和速度估计方法[J].电子学报,2005,33(3):452-455.
    [23]李文臣,王雪松,王国玉.机动目标一维距离像RAT法线性化补偿[J].国防科技大学学报,2008,30(5):38-42.
    [24]刘林.航天器轨道理论[M].北京:国防工业出版社,2000.6,33-45,61-65.
    [25] A. M.西纽科夫[苏],赵儒源译,固体弹道式导弹[M].北京:国防工业出版社,1984,482-488.
    [26] J.W.科尼利斯[苏]等,杨炳尉等译,火箭推进与航天动力学[M].北京:宇航出版社,1986.9,58-65,357-370.
    [27]尹怀勤.美国10倍音速飞机试飞成功[J].天津科技,2005,(1):49-50.
    [28]陈建军,王盛利.基于匹配傅立叶变换的超高速运动目标检测[J].兵工学报,2007,28(11):1315-1320.
    [29] Gray J E. The Doppler spectrum for accelerating objects[C]. IEEE International Radar Conference, IEEE 1990:385-390.
    [30] Thayaparan T, Yasotharan A. Limitations and strengths of the Fourier transform method to detect accelerating targets[C]. DREO TM 2000-078, 2000,11.
    [31] Yasotharan A, Thayaparan T. The performance of the Fourier method in detecting an accelerating target and estimating its median velocity[C]. IEEE International radar conference, 2000,59-64.
    [32] Yasotharan A, Thayaparan T. Strengths and limitations of the Fourier method for detecting accelerating targets by pulse Doppler radar[J]. IEE Proc.-Radar Sonar Navig., 2002,149(2): 83-88.
    [33]杜雨名,张容权,杨建宇.毫米波LFMCW雷达加速运动目标回波检测与加速度-速度估计[J].红外与毫米学报,2005,10(24): 348-351.
    [34]杜雨名,杨建宇.基于FrFT的LFMCW雷达加速动目标检测与参数估计[J].电波科学学报,2005,12: 815-818.
    [35]杜文超,王国宏,高学强.低信噪比条件下在短时信号中提取目标径向加速度方法研究[J].中国科学,2007,37(7): 923-943.
    [36] Krikorian K V, Rosen R A. Acceleration compensation by matched filtering[C]. Proc. IEEE 2002: 415-418.
    [37] Abatzoglou T J, Gheen G O. Range, radial velocity and acceleration MLE using radar LFM pulse train [J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(4): 1070-1084.
    [38] Fuyuki Fukushima, Takahiko Fujisaka. Accelerated target detection by scanning post-detection integration[C]. Proc. IEEE 1998: 1554-1559.
    [39] Crosson E L, Romine J B, Willner D. Boost-phase acceleration estimation[C]. IEEE international radar conference, New York: IEEE Aerospace and Electronic Systems Society, 2000, 210-214.
    [40] Frazer G J, Anderson S J. Wigner-Ville analysis of HF radar measurements of an accelerating target[C]. Fifth Int. Sym. Signal Processing and its Applications, ISSPA‘99, Brisbane, Australia 1999:317-320.
    [41] Son J S, Flores B C. Stepped-frequency ISAR motion compensation using maximum likelihood phase gradient[C]. Proceedings of SPIE vol.4727, 2002, 225-233.
    [42]赵宏钟.毫米波多普勒制导雷达信号处理方法研究:博士学位论文[D].长沙:国防科学技术大学,2003.
    [43]张军.弹载毫米波脉冲多普勒雷达制导信息处理研究:博士学位论文[D].长沙:国防科学技术大学,2001.
    [44]文树梁,秦忠宇.基于脉冲相关技术的反辐射导弹检测[J].现代雷达,1997, 19(4):1-8.
    [45]张宏宽,陈建春,杨万海.基于Radon-Ambiguity变换的反辐射导弹检测识别技术[J].西安电子科技大学学报,2004,31(3):447-449.
    [46]陈建春,耿富录,徐少莹.基于自适应线性预测滤波的反辐射导弹检测技术[J].电子学报,2001,29(6):755-757.
    [47] Bhattacharya T K, Jones G, DiFilippo D. Time frequency based detection scheme for missile approach warning system (MAWS) [C]. IEE Radar 97 Conference, Eidingburg: Oxford Press, 1997:539-543.
    [48]陈伯孝,吴铁平,张伟,等.高速反辐射导弹探测方法研究[J].西安电子科技大学学报(自然科学版),2003,30(6): 726-729.
    [49] Wang G Y, Xia XG, et al. Maneuvering target in over-the-horizon radar using adaptive clutter rejection and adaptive chirplet transform [J]. IEE Proc. Radar Sonar Navigation, 2003, 150(4):292-298.
    [50] Thayaparan T, Kennedy S. Detection of a maneuvering air target in sea-clutter using joint time-frequency analysis techniques [J]. IEE Proc. Radar Sonar Navigation, 2004, 151(1):19-30.
    [51] Yasotharan A, Thayaparan T. Time-frequency method for detecting an accelerating target in sea clutter[J]. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42(4):1289-1310.
    [52] Zhang Y, Amin M G, Frazer G J. High-resolution time-frequency distributions for maneuvering target detection in over-the-horizon radars [J]. IEE Proc.-Radar Sonar Navigation, 2003, 150(4):299-304.
    [53]张明友,汪学刚.雷达系统[M].北京:电子工业出版社,2006: 403-424.
    [54] Raney R K. Synthetic aperture imaging radar and moving targets [J]. IEEE Trans. on Aerospace and Electronic Systems, 1971, 27 (3):499-505.
    [55]董永强,陶然,等.基于分数阶Fourier变换的SAR运动目标检测与成像[J].兵工学报,1999,20(2):132-136.
    [56] Sun H B, Liu G S, et al. Application of the fractional Fourier transform to moving target detection in airborne SAR [J]. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38(4):1416-1424.
    [57] Zhang L P, Peng Y N, XU J, Xia X G. A chirp signal parameter estimation algorithm and its application to SAR[C]. IEEE Radar Conference, 2003: 228-231.
    [58] Thayaparan T, Lampropoulos G, Wong S K, et al. Adaptive joint time-frequency analysis for focusing ISAR images from simulated and experimental radar data[C]. SPIE Pro. on image and signal processing for remote sensing IX,Vol.5238, 2004,440-451.
    [59] Ling H, Wang Y, Chen V C. ISAR image formation and feature extraction using adaptive joint time-frequency processing [C]. SPIE Proc. on Wavelet Applications, 1997, Vol.3708, 424-432.
    [60] Chen V C and Qian S. Joint time-frequency analysis for radar range-Doppler imaging [J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(2): 486-499.
    [61]黄小红,邱兆坤,王伟.目标高速运动对宽带一维距离像的影响及补偿方法研究[J].信号处理,2002,18(6) :487-490.
    [62]黄小红,陈曾平,庄钊文,等.空间目标高分辨距离像运动参数估计[J].宇航学报,2004,25(3):269-272.
    [63]冯德军,王雪松,肖顺平,等.基于单个宽带脉冲的空间目标测距和测速方法[J].信号处理,2006,22(1): 73-77.
    [64]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,2001,153-180.
    [65] Xia X G. Discrete chirp-Fourier transform and its application to chirp rate estimation [J]. IEEE Trans. on Signal Processing, 2000, 48 (11): 3122-3133.
    [66]王盛利,李士国,倪晋麟,等.一种新的变换-匹配傅立叶变换[J].电子学报,2001,29(3):403-405.
    [67]王盛利.雷达信号处理的新方法-匹配傅立叶变换研究:博士学位论文[D].西安电子科技大学,2003.
    [68] Fan P. and Xia X.G., Two modified discrete chirp Fourier transform schemes [J]. Science in China series F, 2001, 44(5):329-341.
    [69] Friedlander B. Parametric signal analysis using the polynomial phase transform [J]. IEEE Signal Processing Workshop on Higher-Order Statistics, 1993, 151-159.
    [70] Peleg S and Porat B. Estimation and classification of polynomial-phase signals [J]. IEEE Trans. on Information Theory, 1991, 37(2): 423-430.
    [71] Wood J. C. and Barry D. T. Linear signal synthesis using the Radon-Wigner transform [J]. IEEE Trans. on Signal Processing, 1994, 42(8):2105-2111.
    [72]李艳,肖怀铁,付强. Radon-Wigner变换改进算法在多目标分辨及参数估计中的应用[J].光电与控制,2006,13(3): 11-14.
    [73]邹虹.多分量线性调频信号的时频分析:博士学位论文[D].西安:西安电子科技大学,2000.5.
    [74] Barbarossa S. Analysis of multi-component LFM signals by combined Wigner-Hough transform [J]. IEEE Trans. on Signal Processing, 1995, 43(6): 1511-1515.
    [75] Wood J. C. and Barry D. T. Radon transformation of time-frequency distributions for analysis of multi-component signals [J]. IEEE Trans. on Signal Processing, 1994, 42(11): 3166-3177.
    [76]刘建成,王雪松,肖顺平,等.基于Wigner-Hough变换的径向加速度估计[J].电子学报,2005,33(12): 2235-2238.
    [77] Li Y X,Xiao X C. Recursive filtering Radon-ambiguity transform algorithm for detecting multi-LFM signals [J]. Journal of Electronics in China, 2003, 20(3): 161-166.
    [78]袁伟明,王敏,吴顺君.对称三角线性调频连续波信号的检测与参数估计[J].电波科学学报,2005,20(5): 594-597.
    [79] Wang Minsheng, Chan A K, Chui C K. Linear frequency modulated signal detection using Radon-ambiguity transform [J]. IEEE Trans. on Signal Processing, 1998, 46(3): 571-586.
    [80] Jennison B K. Detection of polyphase pulse compression waveforms using the Radon-ambiguity transform [J]. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(1): 335-343.
    [81]齐林,陶然,周思永,等.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学(E),2003,33(8) : 749-759.
    [82] Almeida L B. The fractional Fourier transform and time frequency representation[J]. IEEE Trans. on Signal Processing, 1994, 42 (11) : 3084-3091.
    [83] Abatzoglou T J. Fast maximum likelihood joint estimation of frequency and frequency rate [J]. IEEE Trans. on Aerospace and Electronic Systems, 1986, 2(6): 708-715.
    [84] Peleg S and Porat B. Linear FM signal parameter estimation from discrete-time observations [J]. IEEE Trans. on Aerospace and Electronic Systems, 1991, 27(4):607-615.
    [85] Fulvio Gini, Monica Montanari, Lucio Verrazzani. Estimation of chirp radar signals in compound-gaussian clutter: a cyclostationary approach [J]. IEEE Trans. on Signal Processing, 2000, 48(4):1029-1039.
    [86] Yu X H, Shi Y W, Sun X D, et al. Chirp parameter estimation in colored noise using cross-spectral ESPRIT method [J]. Nature and Science, 2005, 3(1):75-80.
    [87] Bjorm Volcker, Bjorn Otterstern. Chirp parameter estimation from a sample covariance matrix [J]. IEEE Trans. on Signal Processing, 2001, 49(3):603-612.
    [88]刘爱芳,朱晓华,陆锦辉,等.基于离散匹配傅里叶变换的高速运动目标逆合成孔径雷达距离像补偿[J].兵工学报,2004,25(6): 782-785.
    [89]刘爱芳,朱晓华,陆锦辉,等.基于解线调处理的高速运动目标ISAR距离像补偿[J].宇航学报,2004,25(5):541-545.
    [90]邱晓辉,Alice H WC,Yam Y S. ISAR成像快速最小熵相位补偿方法[J].电子与信息学报,2004,26(10):1656-1660.
    [91] Li X, Liu G S, Ni H L. Autofocusing of ISAR images based on entropy minimization [J]. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35(4): 1240-1251.
    [92] Wigner E P. On the quantum correction for thermodynamic equilibrium [J]. Phys. Rev. 1932, 40 :749-759.
    [93] Abeysekera S S. Computation of Wigner-Ville distribution for complex data [J]. Electronics Letters, 1990, 26(16):1315-1317.
    [94] Pan W. Fast calculation method for multi component Wigner-Ville distribution [J]. Electronics Letters, 1992, 28(4): 398-398.
    [95] Xia X G, Chen V C. A quantitative SNR analysis for the Pseudo Wigner-Ville distribution [J]. IEEE Trans. on Signal Processing, 1999, 47(10): 2891-2894.
    [96] Barkat B, Boashash B. Design of higher order polynomial Wigner–Ville distributions [J]. IEEE Trans. on Signal Processing, 1999, 47(9):2608-2611.
    [97] Cohen L. Time-frequency distributions-a review [J]. Proceedings of IEEE, 1989, 77(7): 941-981.
    [98] Matz G, Hlawatsch F. Wigner distributions (nearly) everywhere: time-frequency analysis of signals, systems, random processes, signal spaces, and frames [J]. Signal Processing, 2003, 83: 1355-1378.
    [99] Gaunaurd G C, Strifors H C. Signal analysis by means of time-frequency (Wigner-type) distributions-applications to sonar and radar echoes [J]. Proceedings of IEEE, 1996, 84(9): 1231-1248.
    [100] Hough P V C. Method and means for recognizing complex patterns. U.S. Patent 3069654, 1962.
    [101] Deans Stanley R. Hough transform from the Radon transform [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1981, PAMI-3(2):185-188.
    [102] Yllingworth J, Kittler J. A survey of the Hough transform [J]. Computer Vision, Graphics and Image Processing, 1988, 40(10): 87-116.
    [103] Bennett N N, Saito N. Using edge information in time-frequency representations for chirp parameter estimation [J]. Appl. Comput. Harmon. Anal. 2005(18): 186-197.
    [104] Hunt D J. Performance of the Hough transform and signal detection theory for the detection and tracking of dim moving targets [D]. Ph. D. Thesis. Durham: Duke University, 1990.
    [105] Carlson B D, Evans E D, Wilson S L. Search radar detection and track with the Hough transform. I. system concept[J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30(1):102-108.
    [106] Carlson B D, Evans E D, Wilson S L. Search radar detection and track with the Hough transform. II. detection statistics [J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30(1): 109-115.
    [107] Carlson B D, Evans E D, Wilson S L. Search radar detection and track with the Hough transform. III. Detection performance with binary integration [J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30(1):116-125.
    [108]曲长文,黄勇,苏峰,何友.基于随机Hough变换的匀加速运动目标检测算法及性能分析[J].电子学报,2005,33(9): 1603-1606.
    [109]王国宏,孔敏,何友. Hough变换及其在信息处理中的应用[M].北京:兵器工业出版社,2005.
    [110] Li Y X, Yi M, Xiao X C. Recursive filter Radon-Ambiguity transform algorithm for multi-LFM signals detection[C]. IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, 2002: vol. 2, 1050-1053.
    [111]李英详,肖先赐.基于逐次滤波Radon-ambiguity变换的多线性调频信号时频检测[J].声学学报,2004,29(6):557-561.
    [112]刘爱芳,朱晓华,陆锦辉,等.基于Radon-ambiguity变换的多分量LFM信号检测与参数估计[J].南京理工大学学报,2004,28(4):409-413.
    [113]田孝华,廖桂生,吴云韬. LFM脉冲雷达回波Doppler与多径时延的联合估计[J].电子学报,2002,30(6):857-860.
    [114] Ozdemir A K, Arikan O. Fast computation of the ambiguity function and the Wigner distribution on arbitrary line segments [J]. IEEE Trans. on Signal Processing, 2001, 49(2):381-393.
    [115]贾舒宜,王国宏,杜文超.在单脉冲内基于Radon-ambiguity变换的加速度估计方法研究[J].宇航学报,2008,29(3): 989-994.
    [116]赵兴浩,陶然,周思永,等.基于Radon-Ambiguity变换和分数阶傅里叶变换的chirp信号检测及多参数估计[J].北京理工大学学报,2003,23(3):371-374.
    [117]郭斌,张红雨.分级计算迭代在Radon-Ambiguity变换和分数阶Fourier变换对chirp信号检测及参数估计的应用[J].电子与信息学报,2007,29(12): 3024-3026.
    [118] Namias V. The fractional order Fourier transform and its applications to quantum mechanics [J]. Journal of Institute Applied Math, 1980, 25(3):241-265.
    [119] McBride A C,Kerr F H. On Namias’s fractional Fourier transform [J]. IMA Journal Applied Mathematics, 1987, 39:159-175.
    [120] Cariolario G. A unified framework for the fractional Fourier transform [J]. IEEE Trans. on Signal Processing, 1998, 46(12):3206-3219.
    [121] Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractional Fourier transform [J]. IEEE Trans. on Signal Processing, 1996, 44(9): 2141-2150.
    [122] Pei S C, Yeh M H, and Tseng C C. Discrete fractional Fourier transform based on orthogonal projections [J]. IEEE Trans. on Signal Processing, 1999, 47(5): 1335- 1348.
    [123] Candan C, Kutay M A, Ozaktas H M. The discrete fractional Fourier transform [J]. IEEE Trans. on Signal Processing, 2000, 48(5):1329-1337.
    [124] Soo-chang Pei, Jian-jiun Ding, Relations between fractional operations and time-frequency distributions, and their applications [J]. IEEE Trans. on Signal Processing, 2001, Vol. 48, 8:1638-1654.
    [125] Almeida L B. The fractional Fourier transform and time-frequency representations [J]. IEEE Trans. on Signal Processing, 1994, 42(11):3084-3091.
    [126] Akay O, Boudreaux-Bartels G F. Fractional autocorrelation and its application to detection and estimation of linear FM signals [C]. Proc. IEEE 1998, 213-216.
    [127] Akay O, Boudreaux-Bartels G F. Fractional Convolution and Correlation via Operator Methods and an Application to Detection of Linear FM Signals [J]. IEEE Trans. on Signal Processing, 2001, 49(1):979-993.
    [128] Wang P, Yang J Y, Du Y M. A fast algorithm for parameter estimation of multi-component LFM signal at low SNR [C]. Proc. IEEE 2005, 765-768.
    [129]董永强,陶然,等.基于分数阶Fourier变换的SAR运动目标检测与成像[J].兵工学报,1999,20(2):132-136.
    [130]孙泓波,顾红,苏卫民,等.利用分数阶Fourier域滤波的机载SAR多运动目标检测[J].航空学报,2002,23(1): 33-37.
    [131] Hong-Bo Sun, Guo-Sui Liu, et al. Application of the fractional Fourier transform to moving target detection in airborne SAR [J]. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38(4): 1416-1424.
    [132] Li B Z, Tao R, and Wang Yue. Interpolation of Discrete Chirp-periodic Signals Based on Fractional Fourier Transform [C]. Proceedings of the First International Conference on Innovative Computing, Information and Control, 2006.
    [133] Li W. Wigner distribution method equivalent to dechirp method for detecting a chirp signal [J]. IEEE Trans. Acoust., Speech, Signal Processing, 1987, Vol. ASSP-35: 1210-1211.
    [134] Lohmann A W, Soffer B H. Relationships between the Radon-Wigner and fractional Fourier transforms [J]. J. Opt. Soc. Amer. A, 1994, vol.11:1798-1801.
    [135] Camp W W,Mayhan J T, O’Donnell R M. Wideband radar for ballistic missile defense and range-Doppler imaging of satellities [J]. Lincoln Laboratory Journal, 2000, 12(2): 267-280
    [136]许小剑,黄培康.利用RCS幅度信息进行雷达目标识别[J].系统工程与电子技术,1992(6):1-9.
    [137] Thomas Foster. Application of pattern recognition techniques for early warning radar (EWR) discrimination. ADA298895, 27 Jan, 1995.
    [138] Lambour R, Morgan T, etc. Assessment orbital debris size estimation from radar cross section measurement [C]. 2001 Core technologies for space systems Conf., 2001.
    [139]李文臣,王雪松,刘佳琪,等.线性调频参数估计方法的数学统一[J].信号处理,录用,2009年第8-9期刊出.
    [140] Owirka G J, Halversen S D, Hiett M, et al. An algorithm for detecting groups of targets [C]. IEEE International Radar Conference, 1995, 641-643.
    [141] Zhang S Z, Zhang W, Wang Y. Multiple targets’detection in terms of Keystone transform at the Low SNR level [C]. IEEE International Conference on Information and Automation, China, 2008, 1-4.
    [142] Zhang C F, Yang H W, Hu W D, et al. Group target data association with partially overlapping observation areas[C]. IEEE International Conference on Information and Automation, China, 2008, 419-423.
    [143]刘卫红,杨晨阳,张伯彦,等.相控阵雷达中的多目标跟踪角度相关区算法[J].统工程与电子技术,2003,25(4): 401-404.
    [144] Jin H B, Xie W X. Fractional Fourier transform based target number detection[C].Proceeding of ICSP, 2000, 1895-1898.
    [145]姬红兵,谢维信.基于时间-距离-多普勒像的编队目标架次检测(Target number detection based on time-range-Doppler image),Proceedings of the third world congress on intelligent control and automation, 2000, 2560-2563.
    [146]胡娟,张军.时频分布与雷达信号的多目标分辨[J].雷达与对抗,2003(3): 26- 29.
    [147]刘贵喜,凌文杰,杨万海.线性调频连续波雷达多目标分辨的新方法[J].电波科学学报,2006,21(1):79-83.
    [148]张直中.雷达信号选择与处理[M].北京:国防工业出版社,1979.
    [149]林茂庸,柯有安.雷达信号理论[M].北京:国防工业出版社,1984.
    [150] MerrillI. Skolnik. Radar Handbook [M]. Second Editor, New York: McGraw-Hill Publishing Company, 1990, 6.10-6.30.
    [151] Rihaczek A W. Principles of high-resolution radar [M]. New York: McGraw-Hill Publishing Company, 1969.
    [152] Hudson S, Psaltis D. Correlation filters for aircraft identification from range profiles[J].IEEE Trans. on Aerospace and Electronic Systems, 1993, 29(3): 741-748.
    [153] Mitchell R A, Westerkamp J J. Statistical feature based HRR radar classification [C]. Presented at the RTO SCI Symposium on“Non-Cooperative Air Target Identification Using Radar”, 1998, Mannheim, Germany.
    [154] Li H, Yang S H. Using range profiles as feature vectors to identify aerospace objects [J]. IEEE Trans. on Antennas and Propagation. 1993 41(3): 261-268.
    [155] Rothwell E J, Nyquist D P, Chen K M. A radar target discrimination scheme using the discrete wavelet transform for reduced data storage [J]. IEEE Trans. on Antennas and Propagation, 1994, 42(7):1033-1037.
    [156] Bao Z, Wang G Y, Luo L. Inverse synthetic aperture radar imaging of maneuvering targets [J]. Optical Engineering, 1998, 37(5):1582-1588.
    [157]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.4.
    [158]王国林.逆合成孔径雷达运动补偿和系统补偿的研究[D].哈尔滨工业大学,1996.
    [159] Tsao J, Steinberg B D. Reduction of side lobe and speckle artifacts in microwave imaging: the CLEAN technique [J]. IEEE Trans. on Antennas and Propagation, 1988, 36(4):543-556.
    [160]朱永锋,李为民,陈远征,等. Chirp雷达对高速运动目标有效相参积累的算法研究[J].系统工程与电子技术,2004,26(10):1396-1399.
    [161]陈远征,朱永锋,赵宏钟,等.基于包络插值移位补偿的高速运动目标的积累检测算法研究[J].信号处理,2004,20(4): 387-390.
    [162]刘雅娟.自旋目标一维距离像运动补偿研究[J].现代雷达,2003,25(7): 17-20.
    [163] Clark M E. High resolution technique for ballistic missile target [C]. British Aerospace PIC,1991.
    [164] Jacobs S P, O’Sullivan J A. Automatic target recognition using sequences of high resolution radar range-profiles [J]. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36(2):364-381.
    [165] Kim K T, Choi I S, Kim H T. Efficient radar target classification using adaptive joint time-frequency processing [J]. IEEE Trans. on Antennas and Propagation, 2000, 48(12):1789-1801.
    [166]冯德军,陈志杰,王雪松,等.基于一维距离像的导弹目标运动特征提取方法[J].国防科技大学学报,2005,27(6):43-47.
    [167] Su May Hsu. Extracting target features from angle-angle and range-Doppler image [J]. The Lincoln Laboratory Journal, 1993.6.
    [168] Chen C C, Andrews H C. Target-motion-induced radar imaging [J]. IEEE Trans. on Aerospace and Electronic Systems, 1980, 16(1):2-14.
    [169] Musman S, Kerr D, Bachmnn C. Automatic recognition of ISAR ship images [J]. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32(4): 1392- 1403.
    [170]逆合成孔径雷达论文集,国家863-308专家组,1997.
    [171] Bao Z, Wang G Y. Inverse synthetic aperture radar imaging of maneuvering targets based on chirplet decomposition [J]. Optical Engineering, 1999, 38(9): 1534-1541.
    [172] Lu G Y, Bao Z. Range-instantaneous-Doppler algorithm in ISAR based on instant frequency estimation[C]. Pro. of International Symposium on Multi-spectral Image Processing(ISMIP’98), China, 1998, 198-201.
    [173] Sun Changyin, Bao Z. SAR motion through resolution cell compensation and feature extraction by a RELAX-based algorithm[C]. SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery VI, SPIE 1999, Vol. 3721:58-67.
    [174] Bao Z, Sun C Y, Xing M D. Time-frequency approaches to ISAR imaging of maneuvering targets and their limitations [J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(3): 1091-1099.
    [175] Steeghs P, Kester L, Gelsema S. Radon transforms and time-frequency representations for ISAR motion compensation and imaging[C]. SPIE Proc. on Wavelet and Independent Component Analysis IX, 2002,Vol. 4738, 252-263.
    [176] Chen V C and Miceli W J. Simulation of ISAR imaging of moving targets[C]. IEE Proc. Radar, Sonar and Navigation, 2001, 148(3):160-166.
    [177] Yamamoto K, Iwamoto M, Kirimoto T. A new algorithm to calculate the reference image of ship targets for ATR using ISAR [C]. MTS/IEEE Conferenceand Exhibition, 2001, Vol. 4, 2601-2607.
    [178] Gao X and Liu X. Feature extraction and feature selection of microwave scattering images[C]. Proceedings of the IEEE National Aerospace and Electronics Conference, 1994, 57-61.
    [179] Rosenbach K H, Shiller J. Identification of aircraft on the basis of 2-D radar images [C]. IEEE International Radar Conference, 1995, 405-409.
    [180]李玺,顾红,刘国岁. ISAR成像中转角估计的新方法[J].电子学报,2000, 28(6):44-47.
    [181]王勇,姜义成.一种估计ISAR成像转角的新方法[J] .电子与信息学报,2007, 29(3): 521-523.
    [182] Wang L, Zhu D Y, Zhu Z D. Image-based scaling for ship top view ISAR images [J]. Journal of Electronics (China), 2008, 25(1):76-83.
    [183] Wu H Q, Delisle G Y. Precision tracking algorithms for ISAR imaging [J]. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32(1): 243-254.
    [184] Jiang Z L, Bao Z. A new method of cross-range scaling of low resolution radar[C]. Proceedings of ICSP, 2000, 1822-1825.
    [185]姜正林,保铮.低分辨雷达目标成像的横向距离定标[J].电子与信息学报, 2001, 23(4):365-372.
    [186] Zhang Q, Yeo T S, Du G, Zhang S H. Estimation of three-dimensional motion parameters in interferometric ISAR imaging [J]. IEEE Trans. on Geoscience and Remote Sensing, 2004, 42(2):292-300.
    [187] She Z S, Zhu Z D. An improved approach of cross-range scaling in ISAR[C]. Proceedings of the IEEE National Aerospace and Electronics Conference, NAECON 1995, Vol. 2, 988-991.
    [188] She Z S, Zhu Z D. Cross-range scaling of Inverse synthetic aperture radar[C]. Proceedings of the IEEE National Aerospace and Electronics Conference,IEEE NAECON,1994, 175-180.
    [189]佘志瞬,朱兆达.逆合成孔径雷达横向定标[J].电子学报,1997,25(3):45-48.
    [190] Qiu X H, Zhao Y. An Non-Parametric Rotating Angle Acquisition Method for Optimal ISAR Imaging[C]. IEEE International Symposium on Antennas and Propagation Society, 2006, 2697-2700.
    [191] Benjamin C, Ugarte A. Refinement of range-Doppler imagery by feedback control[C]. SPIE Automatic Object Recognition III (1993), 1960, 36-46.
    [192]张剑云,张庆文.轨道飞行目标的雷达回波模拟及成像[J].电子学报,1995, 23(9): 28-31.
    [193]张兴敢.逆合成孔径雷达及目标识别:博士学位论文[D].南京:南京航空航天大学,2001.
    [194]王洋,陈建文,刘中.导弹目标ISAR成像仿真分析[J].现代雷达,2003,25(10),18-21.
    [195]刘烽,许家栋.基于ISAR图像序列的目标识别方法研究[C].第九届全国雷达会议论文集,2004.8.
    [196]魏建功.弹道中段目标ISAR成像与特征提取研究:硕士学位论文[D].长沙:国防科技大学研究生院, 2006.
    [197] Chen V C, Li F Y, Ho S S, et al. Micro-Doppler effect in radar: phenomenon, model, and simulation Study [J]. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42(1):2-21.
    [198] Chen V C. Micro-Doppler effect of micro-motion dynamics:A review [C]. Proceedings of SPIE on Independent Component Analyses, Wavelets, and Neural Networks. Orlando, USA: SPIE, 2003, 240 249.
    [199] Chen V C, Li F. Analysis of micro-Doppler signatures [J]. IEE Proceedings on Radar, Sonar and Navigation, 2003, 150 (4): 271-276.
    [200] Chen V C, Ling H. Time Frequency Transforms for Radar Imaging and Signal Analysis [M]. Boston: Artech House, 2002, 93-104.
    [201]陈行勇,黎湘,郭桂蓉,等.基于旋翼微动雷达特征的空中目标识别[J].系统工程与电子技术,2006,28(3): 372-375.
    [202]陈行勇,刘永祥,姜卫东,等.雷达目标微动分辨[J].系统工程与电子技术, 2007,29(3):361-364.
    [203]陈行勇,刘永祥,姜卫东,等.微动目标合成距离像数学分析[J].电子学报, 2007,35(3):585-589.
    [204]陈行勇,刘永祥,黎湘,等.微多普勒分析和参数估计[J].红外与毫米波学报, 2006, 25(5):360-363.
    [205] Yang Yinan, Lei Jiajin, Zhang Wenxue, et al. Target Classification and Pattern Recognition Using Micro-Doppler Radar Signatures[C]. Proceedings of the Seventh ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06), 2006.
    [206] Sparr T. ISAR-radar imaging of targets with complicated motion [C]. International Conference on Image Processing, 2004, 5-8.
    [207]张群,罗斌凤,管桦.基于微Doppler提取的具有旋转部件雷达目标成像[J].自然科学进展,2007,17(10):1410-1417.
    [208] Stankovic L, Djurovic I, Thayaparan T. Separation of Target Rigid Body and Micro-Doppler Effects in ISAR Imaging [J]. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42(4): 1496-1506.
    [209] Thayaparan T. Separation of Target Rigid Body and Micro-Doppler Effects in ISAR/SAR Imaging, Defense R&D Canada-Ottawa, 2006.
    [210] Sun H X, Zheng Liu. Micro-Doppler Feature Extraction for Ballistic Missile Warhead [C]. IEEE International Conference on Information and Automation, China, 2008, 1333-1336.
    [211]王涛,周颖,王雪松,等.雷达目标的章动特性与章动频率估计[J].自然科学进展,2006,16(3):344-350.
    [212]李文臣,李盾,王雪松,等.一种新的外弹道战情数据产生方法[J].弹道学报,2007,19(3):53-61.
    [213] Colegrove S B, Davey S J, Cheung B. Separation of target rigid body and micro-Doppler effects in ISAR imaging [J]. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42(4): 1496-1506.
    [214] Mayhan J T, Burrows M L ,Cuomo K M, et al. High resolution 3D“snapshot”ISAR imaging and feature extraction [J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(2): 630-641.
    [215] Chen V C and Miceli W J. Effect of roll, pitch and yaw motions on ISAR imaging [C]. SPIE Conference on Radar Processing Technology and Applications IV, Denver, Colorado, 1999, Vol. 3810, 149-158.
    [216]李文臣.空间监视相控阵雷达建模与仿真研究:硕士学位论文[D].长沙:国防科技大学研究生院,2003.
    [217]《数学手册》编写组.数学手册[M].北京:高等教育出版社. 2006,301-305.
    [218] Caputi W J. Stretch: A time transformation technique [J]. IEEE Trans. on Aerospace and Electronic Systems, 1971, 7 (2) : 269-278.
    [219] Peleg S and Porat B. The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase [J]. IEEE Trans. on Signal Processing, 1991, 39(3): 749-752.
    [220] Ristic B and Boashash B. Comments on "the Cramer-Rao lower bounds for signals with constant amplitude and polynomial phase" [J]. IEEE Trans. on Signal Processing, 1998, 46(6):1708-1709.
    [221] Oppenheim A V, Schafer R W, Buck J R.离散时间信号处理[M].西安:西安交通大学出版社, 2001.
    [222] Tsao J and Steinberg B D. Reduction of side lobe and speckle artifacts in microwave imaging: the CLEAN technique [J]. IEEE Trans. on Antennas and Propagation, 1988, 36(4):543-556.
    [223]牛宝君,李延波.二维相控阵单脉冲跟踪测角方法的研究与应用[J].现代雷达,2003,25(5):16-18.
    [224]张贤达.现代信号处理[M].北京:清华大学出版社,2005.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.