带约束的曲线曲面逼近算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bézier曲线和曲面是CAD/CAM系统中广泛使用的造型工具。参数曲线和曲面的降阶逼近已经成为CAGD领域的一个热点研究问题,它主要研究用低次的形式来近似逼近给定次数的曲线或曲面。降阶逼近在几何设计上有很多的应用,如数据交换、数据压缩和数据比较等。本文围绕着CAGD中Bézier曲线和三角Bézier曲面的降阶逼近问题进行了深入的研究,其主要成果及创新点如下。
     首先,传统的降阶方法都只考虑了曲线的参数连续,而我们利用曲线的几何信息来研究逼近问题,并首次引入了G~2连续的约束。因此,曲线在端点的位置、切向和曲率大小在降阶前后能够保持一致。然后,我们提出了一个全新的方法来解决Bézier曲线在L_2范数下的最佳逼近问题,它可以通过最小化曲线的L_2误差这一目标函数而得到。为了避免近似曲线在端点附近出现奇异性问题,我们在目标函数里加入了修正项。此外,对于G~1连续约束这一特殊情形,我们提出了另外一种基于二次规划方法的新算法,并用线性约束来满足切向在端点的一致性。此时的逼近问题就转变成一个带线性约束关于两个参数的二次规划问题。我们可以应用新算法使近似曲线的参数化更加接近于弧长参数化。
     其次,区间[0,1]上的多项式曲线可以表示成不同基的形式,如Bernstein和第二类Chebyshev多项式的形式。我们给出了Bernstein基和第二类Chebyshev基之间的变换矩阵,通过它们能实现Bernstein系数和Chebyshev系数的转换。接着,我们分析了基变换的稳定性,结论是:Chebyshev-Bernstein基变换矩阵的l_1和l_∞条件数随着次数n的增长速度远小于power-Bernstein基变换的情形,并且速度很接近(稍快于)Legendre-Bernstein基变换的情形,所以也是良态的。利用基变换矩阵,我们提出Bézier曲线在加权(t-t~2)~(1/2)平方范数下最佳的降多阶逼近方法。并将它推广到保端点r阶和s阶连续(r,s≥0)的情形,尽管不是最佳的,但是提供了一个很好的近似。该方法具有O(n~2)的计算复杂度。我们建议对次数过高的曲线不要使用基于基变换的降阶算法,因为此时这类方法很可能是不稳定的。另外,我们还估计了逼近的L_1误差的上界,它是后验的。
     最后,对于给定一张n次三角Bézier曲面,我们研究了带边界约束的用更低次数为m的三角Bézier曲面来近似逼近它。提出对曲面的三个角点进行约束,使得边界曲线在每个端点能保持C~α连续。利用约束最小二乘法最小化曲面的l_2和L_2距离,我们提出两种逼近算法来得到降阶后曲面控制网格的矩阵表示。这两种方法都能应用于连续拼接的三角曲面片以及与曲面细分结合使用时的情形,结果生成的近似曲面片是整体C~0连续的。我们还给出了逼近的误差估计,并举例说明方法的有效性。
Bézier curves and surfaces are widely used modelling tools in CAD/CAM systems.Degree reduction of parametric curves and surfaces,which tries to approximate a given curve or surface of certain degree by another one of lower degree,has become an important and hot problem in CAGD.It has many applications in geometric modelling,such as data exchange,data compression and data comparison.In this thesis,we have made a systemic theoretic research on the problem of degree reduction of Bézier curves and triangular Bézier surfaces in CAGD.The main creative results are as follows.
     Firstly,in contrast to traditional methods,which typically consider the components of the curve separately,we use geometric information on the curve to generate the degree reduction.And the constraint of G~2-continuity is introduced for the approximation problem,so positions,tangents and curvatures are preserved at the two endpoints.We then present a novel approach to consider the multi-degree reduction of Bézier curves in L_2-norm.The optimal approximation is obtained by minimizing the objective function based on the L_2-error between the two curves.In order to avoid the singularities at the endpoints,regularization terms are added to the objective function.Furthermore,for the special case of G~1-continuity,we presents another approach to solve the approximation problem in terms of the quadratic programming method,with linear constraints to satisfy the coincidence of tangents at the endpoints.Then,degree reduction is changed to solve a quadratic problem of two parameters with linear constraints.We apply the new approach to improve the parameterizations of approximating curves to be close to arc-length parameterizations.
     Secondly,a polynomial curve on[0,1]can be expressed in terms of Bernstein polynomials and Chebyshev polynomials of the second kind.We derive the transformation matrices that map the Bernstein and Chebyshev coefficients into each other,and examine the stability of this linear map.In the p=1 and∞norms, the condition number of the Chebyshev-Bernstein transformation matrix grows at a significantly slower rate with n than in the power-Bernstein case,and the rate is very close(somewhat faster) to the Legendre-Bernstein case.Using the transformation matrices,we present a method for the best multi-degree reduction with respect to the(t-t~2)~(1、2)-weighted square norm for the unconstrained case, which is further developed to provide a good approximation to the best multidegree reduction with constraints of endpoints continuity of orders r,s(r,s≥0). This method has a quadratic complexity,and may be ill-conditioned when it is applied to the curves of high degree.We estimate the posterior L_1-error bounds for degree reduction.
     Finally,for a given triangular Bézier surface of degree n,we investigate the problem of approximating it by a triangular Bézier surface of degree m with boundary constraints.We constrain continuity conditions at the three corners of triangular Bézier surfaces,so that the boundary curves preserve endpoints continuity of any orderα.The l_2 and L_2 distances combined with the constrained least-squares method are used to get the matrix representations for the control points of the degree reduced surfaces.Both methods can be applied to piecewise continuous triangular patches or to only a triangular patch with the combination of surface subdivision,the resulting piecewise approximating patches are globally C~0 continuous.Also,we estimate the error of approximation and provide some examples to demonstrate the effectiveness of the two methods.
引文
[1]Ahn Y.J.Using Jacobi polynomials for degree reduction of Bezier curves with C~k-constraints.Computer Aided Geometric Design,2003,20(7):423-434.
    [2]Ahn Y.J.,Lee B.G.,Park Y.,Yoo J.Constrained polynomial degree reduction in the L_2-norm equals best weighted Euclidean approximation of Bezier coefficients.Computer Aided Geometric Design,2004,21(2):181-191.
    [3]Alfeld P.A case study of multivariate piecewise polynomials.In:Farin G.(Ed.),Geometric Modeling:Algorithms and New Trends.SIAM,Philadelphia,1987,pp.149-160.
    [4]Bae S.H.,Shin H.,Jung W.H.,Choi B.K.Parametric-surface adaptive tessellation based on degree reduction.Computers & Graphics,2002,26(5):709-719.
    [5]Ball A.A.CONSURF.Part one:introduction of the conic lofting tile.Computer-Aided Design,1974,6(4):243-249.
    [6]Ball A.A.CONSURF.Part two:description of the algorithms.Computer-Aided Design,1975,7(4):237-242.
    [7]Ball A.A.CONSURF.Part 3:how the program is used.Computer-Aided Design,1977,9(1):9-12.
    [8]Barnhill R.E.,Birldaoff G.,Gordon W.J.Smooth interpolation in triangles.Journal of Approximation Theory,1973,8(2):114-128.
    [9]Barnhill R.E.,Riesenfeld R.F.Computer Aided Geometric Design.Academic Press,New York,1974.
    [10]Barton M.,J(u|¨)ttler B.Computing roots of polynomials by quadratic clipping.Computer Aided Geometric Design,2007,24(3):125-141.
    [11]Berger S.A.,Webster W.C.,Tapia R.A.,Atkins D.A.Mathematical ship lofting.Journal of Ship Research,1966,10(4):203-222.
    [12]Bezier P.Mathematical and practical possibilities of UNISURF.In:Barnhill R.E.,Riesenfeld R.F.(Eds.),Computer Aided Geometric Design.Academic Press,New York,1974,pp.127-152.
    [13]Bezier P.Essay de definition numerique des courbes et des surfaces experimentales.Ph.D.Thesis,University of Paris Ⅵ,Paris,1977.
    [14]Boehm W.Inserting new knots into B-spline curves.Computer-Aided Design,1980,12(4):199-201.
    [15]Boehm W.On the efficiency of knot insertion algorithms.Computer Aided Geometric Design,1985,2(1-3):141-143.
    [16]Bohem W.,Farin G.,Kahmann J.A survey of curve and surface methods in CAGD.Computer Aided Geometric Design,1984,1(1):1-60.
    [17]Boehm W.,Prautzsch H.The insertion algorithm.Computer-Aided Design,1985,17(2):58-59.
    [18]Bogacki P.,Weinstein S.E.,Xu Y.Degree reduction of Bezier curves by uniform approximation with endpoint interpolation.Computer-Aided Design,1995,27(9):651-661.
    [19]de Boor C.On calculating with B-splines.Journal of Approximation Theory,1972,6(1):50-62.
    [20]de Boor C.A Practical Guide to Splines.Springer,New York,1978.
    [21]de Boor C.,H(o|¨)llig K.,Sabin M.High accuracy geometric Hermite interpolation.Computer Aided Geometric Design,1987,4(4):269-278.
    [22]Brunnett G.,Schreiber T.,Braun J.The geometry of optimal degree reduction of Bezier curves.Computer Aided Geometric Design,1996,13(8):773-788.
    [23]Cai H.,Wang G.Constrained multi-degree reduction of rational Bezier curves using reparameterization.Journal of Zhejiang University SCIENCE A,2007,8(10):1650-1656.
    [24]de Casteljau P.Courbes et surfaces a poles.Technical Report,A.Citro(e|¨)n,Paris,1963.
    [25]Chang G.Bernstein polynomials via the shifting operator.American Mathematical Monthly,1984,91(10):634-638.
    [26]Charrot E.The Use of Triangular and Pentagonal Patches in the Numerical Representation of Surfaces.Ph.D.Thesis,Brunel University,London,1980.
    [27]Chen F.,Lou W.Degree reduction of interval Bezier curves.Computer-Aided Design,2000,32(10):571-582.
    [28]Chen F.,Yang W.Degree reduction of disk Bezier curves.Computer Aided Geometric Design,2004,21(3):263-280.
    [29]Chen F.,Yang X.,Yang W.Degree reduction of interval B-spline curves.Journal of Software,2002,13(4):490-500.
    [30]Chen G.,Wang G.Multi-degree reduction of tensor product Bezier surfaces with conditions of corners interpolations.Science in China(Series F),2002,45(1):51-58.
    [31]Chen G.,Wang G.Optimal multi-degree reduction of Bezier curves with constraints of endpoints continuity.Computer Aided Geometric Design,2002,19(6):365-377.
    [32]Cheng M.,Wang G.Multi-degree reduction of NURBS curves based on their explicit matrix representation and polynomial approximation theory.Science in China(Series F),2004,47(1):44-54.
    [33]Chiyokura H.Solid Modeling with Designbase:Theory and Implementation.Addison-Wesley,Boston,1988.
    [34]Choi B.K.,Yoo W.S.,Lee C.S.Matrix representation for NURB curves and surfaces.Computer-Aided Design,1990,22(4):235-240.
    [35]Cohen E.,Lyche T.,Riesenfeld R.F.Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics.Computer Graphics and Image Processing,1980,14(2):87-111.
    [36]Cohen E.,Riesenfeld R.F.General matrix representations for Bezier and B-spline curves.Computers in Industry,1982,3(1-2):9-15.
    [37]Coons S.A.Surfaces for computer aided design of space figures.Technical Report,MIT,1964,Project MAC-TR-255.
    [38]Coons S.A.Surfaces for computer aided design of space forms.Technical Report,MIT,1967,Project MAC-TR-41.
    [39]Costantini P.,Farouki R.T.,Manni C.,Sestini A.Computation of optimal composite re-parameterizations.Computer Aided Geometric Design,2001,18(9):875-897.
    [40]Cox M.G.The numerical evaluation of B-splines.Journal of Institute of Mathematics and Its Application,1972,10:134-149.
    [41]Curry H.B.Review.Math.Tables Aids Comput.,1947,2:167-169,211-213.
    [42]Dannenberg L.,Nowacki H.Approximate conversion of surface representations with polynomial bases.Computer Aided Geometric Design,1985,2(1-3):123-131.
    [43]Davis P.J.Interpolation and Approximation.Dover,New York,1975.
    [44]Degen W.L.F.Geometric Hermite interpolation - In memoriam Josef Hoschek.Computer Aided Geometric Design,2005,22(7):573-592.
    [45]Deng J.,Feng Y.,Chen F.Best one-sided approximation of polynomials under L_1 norm.Journal of Computational and Applied Mathematics,2002,144(1-2):161-174.
    [46]Duhamel du Monceau H.L.Elements de l'Architecture Navale ou Traite Pratique de la Construction des Vaissaux.Paris,1752.
    [47]Eck M.Degree reduction of Bezier curves.Computer Aided Geometric Design,1993,10(3-4):237-251.
    [48]Eck M.Degree reduction of Bezier surfaces.In:Fisher R.(Ed.),The Mathematics of Surfaces V.Oxford University Press,Oxford,1994,pp.135-154.
    [49]Eck M.Least squares degree reduction of Bezier curves.Computer-Aided Design,1995,27(11):845-851.
    [50]Farin G.Algorithms for rational Bezier curves.Computer-Aided Design,1983,15(2):73-77.
    [51]Farin G.Triangular Bernstein-Bezier patches.Computer Aided Geometric Design,1986,3(2):83-127.
    [52]Farin G.NURB Curves and Surfaces,2nd ed.AK Peters,Boston,1999.
    [53]Farin G.Curves and Surfaces for CAGD,5th ed.Morgan Kaufmann,San Francisco,2001.
    [54]Farin G.,Hoschek J.,Kim M.S.Handbook of Computer Aided Geometric Design.Elsevier,Amsterdam,2002.
    [55]Farouki R.T.On the stability of transformations between power and Bernstein polynomial forms.Computer Aided Geometric Design,1991,8(1):29-36.
    [56]Farouki R.T.Optimal parameterizations.Computer Aided Geometric Design,1997,14(2):153-168.
    [57]Farouki R.T.Legendre-Bernstein basis transformations.Journal of Computational and Applied Mathematics,2000,119(1-2):145-160.
    [58]Farouki R.T.,Goodman T.N.T.On the optimal stability of the Bernstein basis.Mathematics of Computation,1996,65(216):1553-1566.
    [59]Farouki R.T.,Goodman T.N.T.,Sauer T.Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains.Computer Aided Geometric Design,2003,20(4):209-230.
    [60]Farouki R.To,Rajan V.T.On the numerical condition of polynomials in Bernstein form.Computer Aided Geometric Design,1987,4(3):191-216.
    [61]Farouki R.T.,Rajah V.T.Algorithms for polynomials in Bernstein form.Computer Aided Geometric Design,1988,5(1):1-26.
    [62]Ferguson J.C.Multivariable curve interpolation.Journal of the ACM,1964,11(2):221-228.
    [63]Floater M.S.An O(h~(2n)) Hermite approximation for conic sections.Computer Aided Geometric Design,1997,14(2):135-151.
    [64]Floater M.S.High order approximation of rational curves by polynomial curves.Computer Aided Geometric Design,2006,23(8):621-628.
    [65]Forrest A.R.Interactive interpolation and approximation by Bezier polynomials.The Computer Journal,1972,15(1):71-79.
    [66]Gill P.,Murray W.,Wright M.Practical Optimization.Academic Press,New York,1981.
    [67]Goodman T.N.T.,Said H.B.Shape preserving properties of the generalised Ball basis.Computer Aided Geometric Design,1991,8(2):115-121.
    [68]Goodman T.N.T.,Said H.B.Properties of generalized Ball curves and surfaces.Computer-Aided Design,1991,23(8):554-560.
    [69]Gordon W.J.Spline-blended surface interpolation through curve networks.Journal of Mathematics and Mechanics,1969,18(10):931-952.
    [70]Gordon W.J.,Riesenfeld R.F.Bernstein-Bezier methods for the computeraided design of free-form curves and surfaces.Journal of the ACM,1974,21(2):293-310.
    [71]Gordon W.J.,Riesenfeld R.F.B-spline curves and surfaces.In:Barnhill R.E.,Riesenfeld R.F.(Eds.),Computer Aided Geometric Design.Academic Press,New York,1974,pp.95-126.
    [72]Grabowski H.,Li X.Coefficient formula and matrix of nonuniform B-spline functions.Computer-Aided Design,1992,24(12):637-642.
    [73]Gregory J.A.Smooth interpolation without twist constraints.In:Barnhill R.E.,Riesenfeld R.F.(Eds.),Computer Aided Geometric Design.Academic Press,New York,1974,pp.71-88.
    [74]Hahmann S.,Bonneau G.P.Triangular G~1 interpolation by 4-splitting domain triangles.Computer Aided Geometric Design,2000,17(8):731-757.
    [75]Hahmann S.,Bonneau G.P.Polynomial surfaces interpolating arbitrary triangulations.IEEE Transactions on Visualization and Computer Graphics,2003,9(1):99-109.
    [76]Hermann T.On the stability of polynomial transformations between Taylor,Bernstein and Hermite forms.Numerical Algorithms,1996,13(2):307-320.
    [77]H(o|¨)llig K.,Koch J.Geometric Hermite interpolation.Computer Aided Geometric Design,1995,12(6):567-580.
    [78]Hoschek J.Approximate conversion of spline curves.Computer Aided Geometric Design,1987,4(1-2):59-66.
    [79]Hoschek J.,Schneider F.J.Approximate spline conversion for integral and rational Bezier and B-spline surfaces.In:Barnhill R.E.(Ed.),Geometry Processing for Design and Manufacturing.SIAM,Philadelphia,1992,pp.45-86.
    [80]Hu Q.,Wang G.Optimal multi-degree reduction of triangular Bezier surfaces with corners continuity in the norm L_2.Journal of Computational and Applied Mathematics,2008,215(1):114-126.
    [81]Hu S.,Sun J.,Jin T.,Wang G.Approximate degree reduction of Bezier curves.Tsinghua Science and Technology,1998,3(2):997-1000.
    [82]Hu S.,Wang G.,Jin T.Properties of two types of generalized Ball curves.Computer-Aided Design,1996,28(2):125-133.
    [83]Hu S.,Zuo Z.,Sun J.Approximate degree reduction of triangular Bezier surfaces.Tsinghua Science and Technology,1998,3(2):1001-1004.
    [84]J(u|¨)ttler B.The dual basis functions for the Bernstein polynomials.Advances in Computational Mathematics,1998,8(4):345-352.
    [85]Kim H.J.,Ahn Y.J.Good degree reduction of Bezier curves using Jacobi polynomials.Computers & Mathematics with Applications,2000,40(10-11):1205-1215.
    [86]Kim H.O.,Moon S.Y.Degree reduction of Bezier curves by L~1-approximation with endpoint interpolation.Computers & Mathematics with Applications,1997,33(5):67-77.
    [87]Krautter J.,Parizot S.Systeme d'aide h la definition et a l'usinage des surfaces de carosserie.Journal de la SIA,1971,44:581-586.
    [88]Lachance M.A.Chebyshev economization for parametric surfaces.Computer Aided Geometric Design,1988,5(3):195.208.
    [89]Lachance M.A.Approximation by constrained parametric polynomials.Rocky Mountain Journal of Mathematics,1991,21(1):473-488.
    [90]Lai Y.,Wu J.,Hung J.,Chen J.Degree reduction of NURBS curves.The International Journal of Advanced Manufacturing Technology,2006,27(11-12):1124-1131.
    [91]Lee B.G.,Park Y.,Yoo J.Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction.Computer Aided Geometric Design,2002,19(9):709-718.
    [92]Li Y.,Zhang X.Basis conversion among Bezier,Tchebyshev and Legendre.Computer Aided Geometric Design,1998,15(6):637-642.
    [93]Liming R.A.Practical Analytical Geometry with Applications to Aircraft.Macmillan,New York,1944.
    [94]Liu L.,Wang G.Exphcit matrix representation for NURBS curves and surfaces.Computer Aided Geometric Design,2002,19(6):409-419.
    [95]Lodha S.,Warren J.Degree reduction of Bezier simplexes.Computer-Aided Design,1994,26(10):735-746.
    [96]Loop C.A G~1 triangular spline surface of arbitrary topological type.Computer Aided Geometric Design,1994,11(3):303-330.
    [97]Lou W.,Chen F.,Chen X.,Dend J.Optimal degree reduction of interval polynomials and interval Bezier curves under L_1 norm.In:The 6th International Conference on CAD/CG,Vol.3,Dec.1-3,1999,Shanghai,China,pp.1010-1015.
    [98]Lutterkort D.,Peters J.,Reif U.Polynomial degree reduction in the L_2-norm equals best Euclidean approximation of Bezier coefficients.Computer Aided Geometric Design,1999,16(7):607-612.
    [99]Mehlum E.,Sorensen P.F.Example of an existing system in the shipbuilding industry:the AUTOKON system.Proceedings of the Royal Society of London,1971,A.321:219-233.
    [100]Moore D.,Warren J.Least-square approximation to Bezier curves and surfaces.In:James A.(Ed.),Computer Gemes(Ⅱ).Academic Press,New York,1991.
    [101]Mφrken K.,Scherer K.A general framework for high accuracy parametric interpolation.Mathematics of Computation,1997,66(217):237-260.
    [102]Nagata T.Simple local interpolation of surfaces using normal vectors.Computer Aided Geometric Design,2005,22(4):327-347.
    [103]Nocedal J.,Wright S.J.Numerical Optimization,2nd ed.Springer,New York,2006.
    [104]Park Y.,Choi U.J.The error analysis for degree reduction of Bezier curves.Computers & Mathematics with Applications,1994,27(12):1-6.
    [105]Peters J,Reif U.Least squares approximation of Bezier coefficients provides best degree reduction in the L_2-norm.Journal of Approximation Theory,2000,104(1):90-97.
    [106]Petersen C.S.Adaptive contouring of three-dimensional surfaces.Computer Aided Geometric Design,1984,1(1):61-74.
    [107]Piegl L.On NURBS:a survey.IEEE Computer Graphics and Applications,1991,11(1):55-71
    [108]Piegl L.,Tiller W.Curve and surface constructions using rational B-splines.Computer-Aided Design,1987,19(9):485-498.
    [109]Piegl L.,Tiller W.Algorithm for degree reduction of B-spline curves.Computer-Aided Design,1995,27(2):101-110.
    [110]Piegl L.,Tiller W.The NURBS Book,2nd ed.Springer,New York,1997.
    [111]Piper B.R.Visually smooth interpolation with triangular Bezier patches.In:Farin G.(Ed.),Geometric Modeling:Algorithms and New Trends.SIAM,Philadelphia,1987,pp.221-233.
    [112]Pottmann H.,Leopoldseder S.,Hofer M.Approximation with active Bspline curves and surfaces.In:Proceedings of Pacific Graphics 2002.IEEE Press,Los Alamitos,2002,pp.8-25.
    [113]Prautzsch H.,Piper B.A fast algorithm to raise the degree of spline curves.Computer Aided Geometric Design,1991,8(4):253-265.
    [114]Press W.H.,Flannery B.P.,Teukolsky S.A.,Vetterling W.T.Numerical Recipes in C++:The Art of Scientific Computing,2nd ed.Cambridge University Press,Cambridge,2002.
    [115]Rababah A.Distance for degree raising and reduction of triangular Bezier surfaces.Journal of Computational and Applied Mathematics,2003,158(2):233-241.
    [116]Rababah A.Transformation of Chebyshev-Bernstein polynomial basis.Computational Methods in Applied Mathematics,2003,3(4):608-622.
    [117]Rababah A.L_2 degree reduction of triangular Bezier surfaces with common tangent planes at vertices.International Journal of Computational Geometry & Applications,2005,15(5):477-490.
    [118]Rababah A.,Lee B.G.,Yoo J.A simple matrix form for degree reduction of Bezier curves using Chebyshev-Bernstein basis transformations.Applied Mathematics and Computation,2006,181(1):310-318.
    [119]Rice J.R.The Approximation of Functions,Vol.1:Linear Theory.Addison-Wesley,Massachusetts,1964.
    [120]Rivlin T.J.An Introduction to the Approximation of Functions.Dover,New York,1981.
    [121]Rogers D.F.,Satterfield S.G.B-spline surfaces for ship hull design.ACM SIGGRAPH Computer Graphics,1980,14(3):211-217.
    [122]Said H.B.A generalized Ball curve and its recursive algorithm.ACM Transaction on Graphics,1989,8(4):360-371.
    [123]Schoenberg I.J.Contributions to the problem of approximation of equidistant data by analytic functions.Quarterly of Applied Mathematics,1946,4(1):45-99.
    [124]Schumaker,L.L.Spline Functions:Basic Theory.Wiley,New York,1981.
    [125]Sederberg T.W.,Chang G.Best linear common divisors for approximate degree reduction.Computer-Aided Design,1993,25(3):163-168.
    [126]Stewart G.W.Introduction to Matrix Computations.Academic Press,New York,1973.
    [127]Sunwoo H.Matrix representation for multi-degree reduction of Bezier curves.Computer Aided Geometric Design,2005,22(3):261-273.
    [128]Sunwoo H.,Lee N.A unified matrix representation for degree reduction of Bezier curves.Computer Aided Geometric Design,2004,21(2):151-164.
    [129]Szafnicki B.A unified approach for degree reduction of polynomials in the Bernstein basis Part Ⅰ:Real polynomials.Journal of Computational and Applied Mathematics,2002,142(2):287-312.
    [130]Szafnicki B.On the degree elevation of Bernstein polynomial representation.Journal of Computational and Applied Mathematics,2005,180(2):443-459.
    [131]Szeg(o|¨) G.Orthogonal Polynomials,4th ed.American Mathematical Society,Providence,RI,1975.
    [132]Thomas A.G.,Thomas A.H.A parametric quartic spline interpolant to position,tangent and curvature.Computing,2004,72(1-2):65-78.
    [133]Tiller W.Rational B-splines for curve and surface representation.IEEE Computer Graphics and Applications,1983,3(6):61-69.
    [134]Vergeest J.S.M.CAD surface data exchange using STEP.Computer-Aided Design,1991,23(4):269-281.
    [135]Versprille K.J.Computer Aided Design Applications of the Rational B-Spline Approximation Form.Ph.D.Thesis,Syracuse University,Syracuse,New York,1975.
    [136]Vlachos A.,Peters J.,Boyd C.,Mitchell J.L.Curved PN triangles.In:Proceedings of the 2001 Symposium on Interactive 3D Graphics.ACM Press,New York,2001,pp.159-166.
    [137]Watkins M.A.,Worsey A.J.Degree reduction of Bezier curves.Computer-Aided Design,1988,20(7):398-405.
    [138]Watson G.A.Approximation Theory and Numerical Methods.Wiley,Chichester,1980.
    [139]Wolters H.J.,Wu G.,Farin G.Degree reduction of B-spline curves.Computing Supplement,1998,13:235-241.
    [140]Wu D.Dual bases of a Bernstein polynomial basis on simplices.Computer Aided Geometric Design,1993,10(6):483-489.
    [141]Yong J.,Hu S.,Sun J.,Tan X.Degree reduction of B-spline curves.Computer Aided Geometric Design,2001,18(2):117-127.
    [142]Yvart A.,Hahmann S.,Bonneau G.P.Hierarchical triangular splines.ACM Transactions on Graphics,2005,24(4):1374-1391.
    [143]Zhang R.,Wang G.A note on the paper in CAGD(2004,21(2),181-191).Computer Aided Geometric Design,2005,22(9):815-817.
    [144]Zhang R.,Wang G.Constrained Bezier curves' best multi-degree reduction in the L_2-norm.Progress in Natural Science,2005,15(9):843-850.
    [145]Zhao K.,Sun J.Dual bases of multivariate Bernstein-Bezier polynomials.Computer Aided Geometric Design,1988,5(2):119-125.
    [146]Zheng J.,Wang G.Perturbing Bezier coefficients for best constrained degree reduction in the L_2-norm.Graphical Models,2003,65(6):351-368.
    [147]陈国栋.CAGD中的降阶变换和等距变换.浙江大学博士学位论文,杭州,2001.
    [148]郭清伟,朱功勤.张量积Bezier曲而降多阶逼近的方法.计算机辅助设计与图形学学报,2004,16(6):777-782.
    [149]胡事民.CAD系统数据通讯中若干问题的研究.浙江大学博士学位论文,杭州,1996.
    [150]江平,植结庆.Wang-Said型广义Ball曲线的降阶.软件学报,2006,17(增刊):93-102.
    [151]康宝生,石茂,张景峤.有理Bezier曲线的降阶.软件学报,2004,15(10):1522-1527.
    [152]潘日晶,姚志强,潘日红.B样条曲线的降阶公式及近似降阶方法.计算机学报,2003,26(10):1254-1259.
    [153]施法中.计算机辅助几何设计与非均匀有理B样条.科学出版社,北京,1994.
    [154]王国瑾.高次Ball曲线及其几何性质.高校应用数学学报,1987,2(1):126-140.
    [155]王国瑾,汪国昭,郑建民.计算机辅助几何设计.高等教育出版社,北京,2001.
    [156]章仁江.CAGD中曲线曲面的降阶与离散技术的理论研究.浙江大学博士学位论文,杭州,2004.
    [157]张锐,张彩明,杨兴强,梁秀霞.基于最佳平方逼近的B样条曲线降阶.软件学报,2006,17(增刊):78-84.
    [158]周登文,刘芳,居涛,孙家广.张量积Bezier曲面降阶逼近的新方法.计算机辅助设计与图形学学报,2002,14(6):553-556.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.