基于12S rRNA基因的鸻形目20种鸟类基因序列变异分析及其系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸻形目(Charadriiformes)鸟类是湿地的重要组成成分,具有十分重要的生态意义。关于该类群科及科以上阶元的分类地位,一直是鸟类学研究中争论的主要问题之一。长期以来,对鸻形目鸟类的研究大都是基于形态学和生态学方面。由于鸻形目鸟类很多种在形态和生活习性等方面都具有较大的相似性,依据形态学性状对其进行分类一直存在争议,这样就很有必要采用分子生物学的手段来研究这一类群之间的亲缘关系。
     本论文主要采用分子生物学技术和手段,通过扩增和测定鸻形目4科15种鸟类的线粒体12S rRNA基因的全序列,并结合从Genbank中下载的五种鸻形目鸟类的12S rRNA基因全序列,利用软件进行了序列变异分析,并构建了系统发生树,为阐明这一类群的系统发生关系提供了理论依据。主要研究结果如下:
     1. 12S rRNA基因全序列(1031bp)的特点:T、C、A、G的平均含量分别为21.4%、26.9%、31.4%和20.2%,嘌呤碱基含量51.6%略高于嘧啶碱基的含量48.3%。12S rRNA基因所有序列的平均R值为3.3,大于临界值,说明序列远未达到替换饱和。序列之间的平均遗传距离为0.115。
     2.整个系统树由三个大的进化枝构成:一枝为鹬类,一枝为鸥类和海雀类,另一枝为鸻类。而且鸻类位于树的基部,是最先分化出来的类群。
     3.在对鹬科单独进行分析时发现,阔嘴鹬(Limicola falcinellus)无论是在距离法还是简约法做的系统树中,始终位于滨鹬属内。
     4.由于12S rRNA基因序列的变异相当丰富,整个基因片段包含从种间到科间的进化遗传信息,构建的分子系统树所反映的鸻形目鸟类的系统发育关系与形态学上的分类有所不同,为这一类群的系统发育研究提供了分子证据,同时也说明12S rRNA基因在解决鸟类科间及种间系统关系方面具有积极的作用,可以认为12S rRNA基因是一个很好的分子标记。
     从中得出以下结论:
     1.在所研究的6个科中,鸻科是最原始的分支,是最先分歧出来的科;然后是鸥科、贼鸥科、燕鸥科和海雀科组成的鸥类一支;最后是鹬科。
     2.在鹬科中,滨鹬属是最晚分歧出来的一支。
     3.在鹬科中,阔嘴鹬与滨鹬属的几种滨鹬聚在一起,阔嘴鹬应该包含在滨鹬属之内;鹬属与滨鹬属聚成一支,说明鹬属和滨鹬属的亲缘关系比较近。
     4.在鸻科中,鸻属的环颈鸻和金眶鸻先聚为一支,然后再与斑鸻属的美洲金鸻聚类,说明本文所研究的鸻科的这几种鸟类的关系与形态学的分类有较高的一致性。
Charadriiformes is a most important component of the Wetland ecosystem, and it has very important ecological significance. One of the main problems to controvert in avain reseach is about the classification of the family and higher level in this group. The previous researches are almost based on morphology and ecology. There is disputation about the classification based on morphological traits, because of the great similarity (convergence) in morphology, habits and other aspects among many species of Chrardriiformes. Therefore, it is necessary to study the relationships among the group using molecular biology method.
     Using the well-known PCR techniques, the complete mitochondrial 12S rRNA gene sequences were amplified and sequnced from fifteen spices belonging to 4 families. Sequence analysis was made using these 15 sequences combining the corresponding sequences of five species downloaded from Genbank, and phylogenetic trees weae constructed. That provides a certain evidence to illustrate the phylogenetic relationships of this group. The results show that:
     1. The characteristics of complete 12S rRNA gene sequences (1031bp) are as follows: average base frequencies of T, C, A and G are 21.4%,26.9%,31.4% and 20.2% respectively; The content of purine bases is 51.6%, a little higher than that of pyrimidine bases. Transtions and trsversions are the major type of nucleotide substitutions and the number of transitions is larger than that of transversions, the average ratio of transitions to transversions is 3.3. The average genetic distance in all sequences is 0.115.
     2. The phylogenetic tree reconstructed is composed of three clades: one is Scolopacidae, one is Laridae and Alcidae, and another is Charadriidae. Charadriidae lies on the bottom of the tree, and it is the first clade diverging from the ancestor.
     3. When Scolopacidae was analysed individually, Limicola falcinellus always lies in genes Calidris either in NJ trees or in MP trees, so it is doubted that Limicola falcinellus is a mumber of the genus Calidris.
     4. 12S rRNA gene sequence is abundant of variation; the complete sequence contains evolution information from interspecies to interfamily. Reconstructed phylogenetic tree applying this gene is different from those applying morphological traits. And it can provide molecular evidence to study the phylogeny of this group.
     From the result, we can conclude that:
     1. Among the six families researched, Charadriidae is the most primordial family, and it is the first fimily divergenced from ancestor. Laridae, Stercorariidae, Sternidae and Alcidae make up of Laridea. The last one divergenced is Scolopacidae.
     2. In Scolopacidae, the genus Calidris convergenced uppermost.
     3. In the family Scolopacidae, Limicola falcinellus always lies in genes Calidris, which implies that Limicola falcinellus shold be included in genes Calidris. Genus Tringa and Calidris gather a cluster, which implies that these two genus have close relativeness.
     4. In family Charadriidae, Charadrius alexandrinus and Charadrius dubius of genus Charadrius cluster first, then gather with Pluvialis fulva of genus Pluvialis. All of this shows that the molecular relationships between species of family Charadriidae in this study is in highly accord with that of morphology.
引文
[1][121]郑光美. 中国鸟类分类与分布名录[M]. 北京:科学出版社, 2005.
    [2][119]郑作新. 中国鸟类系统检索(第三版)[M]. 北京:科学出版社, 2002.
    [3][118][120]郑光美. 世界鸟类分类与分布名录[M]. 北京:科学出版社, 2002.
    [4][122]Sibley C. G. , Ahlguist J. E. , Monroe B. L. A classification of the living birds of the world based on DNA-DNA hybridization studies [J]. Auk, 1988, 105(3):409-423.
    [5][123][126]Sibley C.G and Ahlquist J.A. Phylogeny and Classification of birds: A study in Molecular Evolution [M]. Yale University Press, New Haven, Connecticut, 1990.
    [6]Emil Boros, et al. Anostracans and microcrustaceans as potential food sources of waterbirds on sodic pans of the Hungarian plain[J]. Hydrobiologia, 2006, 567:341-349.
    [7]Guy Beauchamp.Competition in foraging flocks of migrating semipalmated sandpipers [J]. Oecologia, 2007, 154:403-409.
    [8]JOSé A. MASERO. Assessing alternative anthropogenic habitats for conserving waterbirds: salinas as buffer areas against the impact of natural habitat loss for shorebirds[J]. Biodiversity and Conservation, 2003, 12: 1157-1173.
    [9] Oriane W. TAFT., et al. Use of Radar Remote Sensing (RADARSAT) to Map Winter Wetland Habitat for Shorebirds in an Agricultural Landscape[J]. Environmental Management, 2003,32(2): 268-281.
    [10] Oriane W. Taft and Susan M. Haig. Importance of wetland landscape structure to shorebirds wintering in an agricultural valley[J]. Landscape Ecology, 2006, 21:169-184.
    [11] Kai Jing, Zhijun Ma, et al. Foraging strategies involved in habitat use of shorebirds at the intertidal area of Chongming Dongtan, China [J]. Ecol Res, 2007, 22: 559-570.
    [12] Theunis Piersma. Using the power of comparison to explain habitat use and migration strategies of shorebirds worldwide[J]. J Ornithol, 2007, 148 (Suppl 1): 45-59.
    [13]Johnny Kahlert. Response of breeding waders to agri-environmental schemes may be obscured by effects of existing hydrology and farming history[J]. J Ornithol, 2007, 148 (Suppl 2): 287-293.
    [14] Silvia Bárcena, et.al. Latitudinal trends in breeding waterbird species richness in Europe and their environmental correlates [J]. Biodiversity and Conservation, 2004, 13: 1997-2014.
    [15][124]Gavin H. Thomas. Phylogeny of shorebirds, gulls, and alcids (Aves: Charadrii) from the cytochrome-b gene: parsimony, Bayesian inference, minimum evolution, and quartet puzzling [J]. Molecular Phylogenetics and Evolution, 2004, 30:516-526.
    [16] Sergio L. Pereira, Allan J. Baker. DNA evidence for a Paleocene origin of the Alcidae (Aves: Charadriiformes) in the Pacific and multiple dispersals across northern oceans [J]. Molecular Phylogenetics and Evolution, 2008, 46:430-445.
    [17]J.-M. pons, A.Hassanin, P.-A. Crochet. Phylogenetic relationships within the Laridae (Charadriiformes: Aves) inferred from mitochondrial markers [J]. Molecular Phylogenetics and Evolution, 2005, 37: 686-699.
    [18]Eli S. Bridge, et al. A phylogenetic framework for the terns (Sternini) inferred from mtDNA sequences: implications for taxonomy and plumage evolution [J]. Molecular Phylogenetics and Evolution, 2005, 35: 459-469.
    [19][125] Tara A.Paton, et al. RAG-1 sequences resolve phylogenetic relationships within Charadriiform birds [J]. Molecular Phylogenetics and Evolution, 2003, 29:268-278.
    [20] Tara A. Paton, Allan J. Baker. Sequences from 14 mitochondrial genes provide a well-supported phylogeny of the Charadriiform birds congruent with the nuclear RAG-1 tree [J]. Molecular Phylogenetics and Evolution, 2006.39:657-667.
    [21]钱国桢, 等. 长江口、杭州湾北部的鸻形目鸟类群落[J]. 动物学报, 1985,31(1):96-97.
    [22]崔志兴, 钱国桢, 等. 鸻形目鸟类的食性研究[J]. 动物学研究, 1985,6(4):43-52.
    [23]李湘涛. 常见鸻形目鸟类的野外识别[J]. 生物学通报, 1995, 30(9):18-20.
    [24] 吕卷章、朱玉书, 等.黄河三角洲国家级自然保护区鸻形目鸟类群落组成研究[J]. 山东林业科技, 2000, 5:1-5.
    [25] 赵延茂, 吕卷章等. 黄河三角洲自然保护区鸻形目鸟类研究[J]. 动物学报, 2001, 47:157-161.
    [26] 葛振鸣, 王天厚, 等. 长江口杭州湾鸻形目鸟类群落季节变化和生境选择[J]. 生态学报, 2006, 26:40-47.
    [27] 胡伟,陆健健, 等. 三甲港地区鸻形目鸟类春季群落结构研究[J]. 华东师范大学学报(自然科学版), 2000, 4(106-109).
    [28] 唐承佳, 陆健健, 等. 围垦堤内迁徙鸻鹬群落的生态学特性[J]. 动物学杂志, 2002, 37(2):27-33.
    [29] 刘伯锋. 福建沿海湿地鸻鹬类资源调查[J]. 动物学杂志, 2003, 38(2):72-75
    [30] 张淑萍, 张正旺, 等. 天津地区迁徙水鸟群落的季节动态及种间相关性分析[J]. 生态学报, 2004,24(4):666-673.
    [31] 仲阳康, 周慧, 等. 上海滩涂春季鸻形目鸟类群落及围垦后生境选择[J]. 长江流域资源与环境, 2006,15(3):378-383.
    [32]卞小庄, 李庆伟, 张恒庆. 鸟类核型研究Ⅳ.鸻形目(CHARADRIIFORMES,AVES)10 种[J]. 动物学研究, 1989, 10(1):9-14.
    [33]卞小庄, 等. 鸟类核型研究.鸻形目 14 种[J]. 动物学研究, 1993,14(1):86-90.
    [34]姜玉霞, 等. 鸻形目三种鸟核型的比较研究[J]. 牡丹江师范学院学报(自然科学版), 1997,1:(2-4).
    [35][68] 崔博. 鸻形目鸟类线粒体假基因遗传特征及其进化研究[D].辽宁:辽宁师范大学, 2006.
    [36] 陈晓芳, 等. 鸻形目12种鸟类线粒体细胞色素b基因序列差异及其系统发育关系[J]. 遗传学报, 2003, 30(5):419-424.
    [37] 陈晓芳, 等. 鸻形目 15 种鸟类线粒体 ND6 基因序列差异及其系统进化关系[J]. 动物学报, 2003, 49(1):61-67.
    [38] 向近敏, 林雨霖, 向连滨, 等,分子生态调节是免疫功能发生的必需机制[J].免疫学杂志, 1997,13(2): 131-135.
    [39][82] 黄勇平, 朱湘雄. 分子生态学——生命科学领域的新学科[J].中国科学院院刊, 2003,(2):84-88.
    [40] 周材权. 分子生态学研究途径及其应用[J]. 西华师范大学学报(自然科学版), 2005,26(2):136-139.
    [41] 张爱兵, 谭声江, 陈建, 等,空间分子生态学—分子生态学与空间生态学相结合的新领域[J]. 生态学报, 2002, 22(5):752-762.
    [42] 钟鸣, 周启星. 微生物分子生态学技术及其在环境污染研究中的应用[J]. 应用生态学报, 2002, 13(2):247-251.
    [43] 杨华南, 彭光旭, 晏毓晨, 付秀芹, 颜亨梅. DNA 分子标记技术在生态学研究中的应用[J]. 生命科学研究, 2004,6:96-101.
    [44] 张亚平. 从 DNA 序列到物种树[J].动物学研究, 1996,17(3):247-252.
    [45] Jan I. Ohlson, Richard O. Prum, Per G.P. Ericson. A molecular phylogeny of the cotingas (Aves: Cotingidae) [J]. Molecular Phylogenetics and Evolution, 2007,42:25-37.
    [46]Irby J. Lovette and Eldredge Bermingham. c-mos Variation in Songbirds: Molecular Evolution, Phylogenetic Implications, and Comparisons with Mitochondrial Differentiation [J]. Molecular Biology and Evolution, 2000, 17(10) :1569-1577.
    [47] Truls Moum, Ulfur Arnason, and Einar Arnason. Mitochondrial DNA Sequence Evolution and Phylogeny of the Atlantic Alcidae, Including the Extinct Great Auk (Pinguinus impennis)[J]. Molecular Biology and Evolution, 2002,19(9):1434-1439.
    [48] Frederick H. Sheldon, Clare E. Jones, and Kevin G. McCracken. Relative Patterns and Rates of Evolution in Heron Nuclear andMitochondrial DNA[J]. Molecular Biology and Evolution, 2000, 17(3):437-450.
    [49] Robert G. Moyle, Ben D. Marks. Phylogenetic relationships of the bulbuls (Aves: Pycnonotidae) based on mitochondrial and nuclear DNA sequence data[J]. Molecular Phylogenetics and Evolution, 2006, 40:687-695.
    [50] Mansour Aliabadian, Mohammad Kaboli, Roger Prodon, Vincent Nijman, Miguel Vences. Phylogeny of Palaearctic wheatears (genus Oenanthe)—Congruence between morphometric and molecular data [J]. Molecular Phylogenetics and Evolution, 2007,42:665-675.
    [51] J.-M. Pons, A. Hassanin, P.-A. Crochet. Phylogenetic relationships within the Laridae (Charadriiformes: Aves) inferred from mitochondrial markers [J]. Molecular Phylogenetics and Evolution, 2005, 37: 686-699.
    [52] Per G.P. Ericson, et al. Higher-level phylogeny and morphological evolution of tyrant Xycatchers, cotingas, manakins, and their allies (Aves: Tyrannida)[J] Molecular Phylogenetics and Evolution, 2006, 40:471-483.
    [53] Per Alstr?m, Per G.P. Ericson, Urban Olsson, Per Sundberg. Phylogeny and classification of the avian superfamily Sylvioidea [J]. Molecular Phylogenetics and Evolution, 2006,38: 381-397.
    [54] Gary Voelker, Sievert Rohwer, Rauri C.K. Bowie, Diana C. Outlaw, Molecular systematics of a speciose, cosmopolitan songbird genus:DeWning the limits of, and relationships among, the Turdus thrushes[J]. Molecular Phylogenetics and Evolution, 2007,42 :422-434.
    [55] Brett W. Benz, Mark B. Robbins, A. Townsend Peterson, Evolutionary history of woodpeckers and allies (Aves: Picidae): Placing key taxa on the phylogenetic tree [J]. Molecular Phylogenetics and Evolution, 2006,40 : 389-399.
    [56] 文陇英, 张立勋, 刘迺发. 以mtDNA细胞色素b基因探讨斑翅山鹑的分类地位[J].动物学研究, 2005,26(1):69-75.
    [57] 陈晓芳, 王翔, 袁晓东, 汤敏谦, 李玉祥, 郭玉梅, 李庆伟. 鸻形目 12 种鸟类线粒体细胞色素 b 基因序列差异及其系统发育关系[J].遗传学报, 2003,30(5):419-424.
    [58] 陈晓芳, 王翔, 袁晓东, 汤敏谦, 李玉祥, 郭玉梅, 李庆伟. 鸻形目 15 种鸟类线粒体ND6 基因序列差异及其系统进化[J].动物学报, 2003,49(1):61-67.
    [59] 常青, 张保卫, 金宏, 朱立峰, 周开亚. 从 12SrRNA 基因序列推测鹭科 13 种鸟类的系统发生[J]. 动物学报, 2003,49(2):205-210.
    [60] Sibley C. G. , B. L. Monroe Jr. Distribution and taxonomy of birds of the world [M]. New Haven, CT: Yale Univ. Press, 1990.
    [61] 潘巧娃, 雷富民, 等. 基于核基因 c-mos 的鸫亚科部分鸟类系统发生关系[J]. 动物分类学报, 2006, 31 (4) : 686-691.
    [62] 潘巧娃,雷富民, 等. 基于细胞色素 b 的鸫亚科部分鸟类的系统进化[J]. 动物学报, 2006, 52(1):87-98.
    [63] 张保卫, 常青, 等. 基于线粒体 Cytb 基因鳱亚科部分鸟类的系统进化与黑鳱的分类[J]. 动物学杂志, 2004,39(5):105-108.
    [64] 张国萍, 王蔚, 朱世杰, 等, 鹳形目 12 种鸟类核 c-mos 基因和线粒体 12SrRNA 基因序列分析及其系统发生研究[J]. 四川动物, 2005,24(4):500-506.
    [65] 王翔, 孙毅, 等. 猛禽类 15 种鸟类线粒体 tRNA 基因序列及二级结构的比较研究[J]. 遗传学报, 2004,31(4):411-419.
    [66] 雷霆, 陈小麟. 猛禽和夜鹰类的线粒体 DNA 序列比较和分子进化关系的研究[J]. 厦门大学学报(自然科学版), 2006, 45(sup.):156-162.
    [67] 雷忻, 廉振民, 等. 基于线粒体基因 cytb 的亚科部分鸟类系统发育[J]. 动物学报, 2007,53(1):95-105.
    [69][112] Masatoshi Nei, Sudhir Kumar. Molecular Evolution and phylogenetics[M]. Oxford University Press, Inc, 2000.
    [70] 向劲余攻, 杨岚, 张亚平. 白腹锦鸡和红腹锦鸡的遗传分化[J]. 遗传, 2000, 22(4):225-228.
    [71] Lowell C. Overton, Douglas D. R,. Molecular phylogenetic relationships of Xiphidiopicus percussus, Melanerpes, and Sphyrapicus (Aves: Picidae) based on cytochrome b sequence [J]. Molecular Phylogenetics and Evolution, 2006,41:288-294.
    [72] Eric Pasquet., et al. Evolutionary history and biogeography of the drongos (Dicruridae), a tropical Old World clade of corvoid passerines [J]. Molecular Phylogenetics and Evolution, 2007, 45(1):158-167.
    [73] Elisabeth Haring., et al. The Complete Sequence of the Mitochondrial Genome of Buteo buteo (Aves, Accipitridae) Indicates an Early Split in the Phylogeny of Raptors [J]. Molecular Biology and Evolution, 2001, 18(10):1892-1904.
    [74] 国会艳, 李玲, 等. 基于线粒体细胞色素b基因序列的雀形目18种鸟系统发育关系[J]. 动物学杂志, 2007,42(2):32-38.
    [75] 刘强, 吴敏, 等. 暗腹雪鸡细胞色素b基因的克隆及其在雉科中亲缘关系的分析[J].浙江大学学报(理学版), 2006, 33(1): 89-94.
    [76] 朱立峰, 常青, 等. 从c-mos和12SrRNA基因序列探讨现生鸟类早期历史和三趾鹑类的系统地位[J]. 动物分类学报, 2004, 29 (2):181-187.
    [77] Avise J. C. Toward a regional conservation genetic perspective: phylogeography of faunas in the southeastern United States [M]. New York: Champman & Hall, 1996.
    [78] Avise J. C. The history and preview of phylogeograhy: a personal reflection [J]. Molecular Ecology, 1998, 7 :371-379.
    [79] Bernatchez L, Wilson C.C. Comparative phylogeography of Nearctic and Palearctic fishes[J]. Molecular Ecology, 1998,7:431-452.
    [80] Jorge L. Pérez-Emán. Molecular phylogenetics and biogeography of the Neotropical redstarts (Myioborus; Aves, Parulinae)[J]. Molecular Phylogenetics and Evolution, 2005,37 :511-528.
    [81] Jér?me Fuchs, Corinne Cruaud, Arnaud Couloux, Eric Pasquet. Complex biogeographic history of the cuckoo-shrikes and allies (Passeriformes: Campephagidae) revealed by mitochondrial and nuclear sequence data[J]. Molecular Phylogenetics and Evolution, 2007, 44(1):138-153.
    [82] Yanhua Qu., et al. Molecular phylogenetic relationship of snow Wnch complex (genera Montifringilla, Pyrgilauda, and Onychostruthus) from the Tibetan plateau[J]. Molecular Phylogenetics and Evolution, 2006, 40 :218-226.
    [83][97] Brown,W.M. Evolution of animal mitochondrial DNA In:Nei,Kocher R K. Evolution of genes and proteins[M]. Sunderland:Sinauer Associates Ins, 1983.
    [84] Anderson S., Barrell B G., et al. Sequence and organization of the human mitochondrial genome[J]. Nature, 1981, 290:457-465.
    [85] Avise J.C., et al. The use of restriction endonuclearse to measure mtDNA sequence relatedness in nature population[J]. Genetics, 1979, 92:279-295.
    [86][99] 黄原. 分子系统学——原理、方法及应用. 北京:中国农业出版社, 1998.
    [87] Pesole, Graziano, et al. Nueleotide substitution rate of Mammalian Mitoehondrial Genomes[J]. Mol. Evol, 1999,48:427-434.
    [88] 李加林,朱建军. 非损伤性取样在珍稀濒危鸟类——朱种群遗传学中的应用[J]. 榆林高等专科学校学报, 2001, 11(2):37-39.
    [89] 约翰·马敬能, 卡伦·菲利普斯, 何芬奇, 等.中国鸟类野外手册[M]. 长沙:湖南教育出版社, 2000.
    [90]郑作新. 中国鸟类系统检索[M]. 北京:科学出版社, 1992
    [91]田秀华, 等. 珍稀濒危鸟类微量取样及DNA提取的研究[J]. 经济动物学报, 2005, 9(4):215-218.
    [92] 张保卫,常青, 等. 基于12S rRNA基因的鹳形目系统发生关系[J]. 动物分类学报, 2004, 29(3):389-395.
    [93] 常青,张保卫, 等. 从12S rRNA基因序列推测鹭科13种鸟类的系统发生关系[J]. 动物学报, 2003, 49(2):205-210.
    [94] Desjardins P. and R. Morais. Sequence and gene organization of the chickenmitochondrial genome.A novel gene order in higher vertebrates[J]. Mol. Biol, 1990, 212(4):599-634.
    [95] De-Xing Zhang and Godfrey M. Hewitt. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies[J]. Biochemical Systematics and Ecology, 1997, 25(2):99-120.
    [96] Felsentein J. Confidence limits on phylogenies:an approach using bootstrap[J]. Evolution, 1985,39(4):783-791.
    [98] Moritz C., et al. Evolution of mitochondrial DNA: relevance for population biology and systematics[J]. Ann. Rev. Ecol. Syst, 1987, 18:269-292.
    [100][101] 李 涛 , 赖 旭 龙 , 钟 扬 . 利 用 DNA 序 列 构 建 系 统 树 的 方 法 [J]. 遗 传 , 2004,26(2)205-210.
    [102] Nei M. Molecular Evolutionary Genetics[M]. Columbia University Press, 1987.
    [103][105][106][108] Nei M. &Kumar S. 分子进化与系统发育[M]. 吕宝昌,钟扬,高莉萍, 等译. 北京:高等教育出版社, 2002.
    [104][107]David W.Mount. 生物信息学[M]. 钟扬, 王莉, 张亮主译. 北京:高等教育出版社, 2003.
    [109][110][111]钟扬. 生物信息学概论[M]. 北京:高等教育出版社, 2001.
    [113]Nei M. and S.Kumar. Molecular Evolution and Phylogenetics[M]. Oxford University Press,New York, 2000.
    [114]Peter J.L. Check-list of birds of the world[M]. Vol.1-15. Museum of Comparative Zoology,Cambridge,Massachusetts, 1934-1987.
    [115]Sibley C.G. and Ahlquist J.E. Phylogen and classification of birds[M]. Yale University Press,New Heaven and London, 1990.
    [116] Monroe and Sibley. A World Checklist of Birds[M].Yale University Press, 1993.
    [117]郑作新. 中国鸟类区系纲要[M]. 北京:科技出版社, 1987.
    [127] Shields G. F, Wilson A.C. Calibration of mitochondrial DNA evolution in geese[J]. Journal of Molecular Evolution, 1987,24(2):212-217.
    [128] Zhang Y-P, Ryder O A. Different rates of mitochondrial DNA sequence evolution in Kirk’s Dik-dik (Madoqus kirkii) populations[J]. Mol.Phyl.Evol, 1995, 4:291-297.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.