吸附—氧化还原化学反应墙去除水源水中POPs-BHC的效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持久性污染物六六六(BHC)是一种广谱、长效、耐热、耐酸、脂溶性强、成本低的有机氯杀虫剂,在农业生产上曾起到过一定的积极作用。20世纪40~80年代世界各国曾普遍大量地使用BHC防治农业虫害,在20世纪50-80年代,BHC占我国农药生产总量的60%。由于其化学性质稳定,残留时间长,脂溶性强,给整个生态环境造成严重的污染,先后被世界各国禁止生产和使用。我国停止生产和使用BHC已二十多年了,但受各种环境条件的制约,其降解速度很慢,在各地区的环境监测报告中BHC依然普遍存在,有些地区甚至还有较高浓度BHC的检出。BHC已被确定为全球生态系统广泛存在的POPs。
    有机氯农药BHC的残留对农业环境、水环境、农产品和水产品的质量、以及人体健康都产生潜在的危害。BHC各异构体均是可疑致癌物,γ-BHC可刺激中枢神经系统,α-BHC、δ-BHC被认为是中枢神经系统的抑制剂,γ-BHC、β-BHC均被确认为内分泌干扰激素,对生殖系统有不良影响;受BHC影响的生理系统还包括肾脏、肝脏、血液及生化稳态。研究表明,水系中的BHC即使存在量极少,也会通过动、植物的富集、食物链的积累,危害人类健康。
    随着社会的发展和人类的进步,人们对食品安全和环境保护愈加重视。由于农产品和水产品中BHC超标而影响出口的事件时有发生,带来了一定的经济损失。为提高农产品和水产品的质量,改善环境,有效地去除BHC对环境和人类的危害仍是我们在一定时期内急待解决的重要问题。
    长期以来,对BHC的分布及浓度监测一直没有间断。但对BHC在环境中去除方法的研究却较少,而且主要集中在生物降解的研究上。生物降解和光降解一样,在BHC污染的环境修复中起着一定的积极作用。但是受环境因素的影响,降解能力受到限制,尤其是微生物作用在高污染富集区、低温等条件下,微生物生长受到抑制,降解速率不高,常常伴有副反应发生,降解产物不彻底,有时还会产生新的环境污染物。而非生物降解法则可以有效地克服生物降解的滞后性,不会因为营养盐的引入而带入新的污染。所以,寻找一种可行的非生物降解方法去除水体中的BHC是非常重要
    
    
    的。
    自从1997年加拿大学者Gillham与O’Hannesin提出金属铁屑可以用于地下水的原位修复以来,价廉、简单、高效的处理方法--零价铁金属促进含氯有机物还原性脱氯就成为国外的一个研究热点。目前Fe0-PRB技术处理水体中污染物日益受到人们的重视,在含氯直链烃的处理中有较好的效果,但该技术应用于处理水体中高氯高饱和结构的BHC污染还没有相关报道。
    本文以废物利用为宗旨,去除水中BHC为目的,在吸取了PRB技术成功经验(PRB技术能够有效的脱去直链卤代有机物中的卤素,使毒性大大降低)的基础上,针对这一技术也有很多缺陷,如反应中容易产生副反应及单质铁腐蚀生成的沉淀附着在Fe0的表面,降低了铁的反应活性,及铁屑在使用过程中,局部易结块使系统堵塞等现象,致使该系统有效使用周期短的缺点。分别以煤渣、铁屑、煤渣和铁屑为反应介质设计了不同的反应墙,用于去除污染水中的BHC。
    分别对煤渣和铁屑去除水体中BHC进行条件实验,结果表明,二者对水体中BHC去除的最佳条件类似,在弱酸性条件下去除效果较好;同时二者粒径的减小、用量的增加、接触时间的延长均对BHC去除有利。煤渣在最佳条件下对水体中的BHC吸容量能达到354.22μg/g ,相当于每吨煤渣能处理70.8~35.4kgBHC;铁屑对水中BHC的反应动力学符合准一级反应动力学方程,根据铁屑降解BHC时检测到的过渡产物,推断了BHC的可能脱氯过程。在应用煤渣处理被BHC污染的安图水库水样,效果较为理想。
    反应墙实验结果表明,三种反应墙对BHC的去除均有较好的效果。但煤渣吸附反应墙的吸附容量有限,铁屑反应墙则易局部结块,使系统发生堵塞现象,二者的使用寿命均不足40天。以煤渣为吸附材料、铁屑为降解材料,将铁屑和煤渣按一定配比制成高效低耗的吸附-氧化还原化学反应墙,集渗透、吸附、降解反应于一体,使水体在流过该反应墙时BHC能够在煤渣中充分富集。因为铁屑与煤渣的良好接触,铁屑能够与被煤渣吸附的BHC充分接触而发生氧化还原反应,从而被BHC占据的煤渣吸附点位及时空出,以便进行新的吸附,这样吸附介质总是处于动态吸附过程中。同时煤渣的多孔结构和一定比例砂子的存在,使铁腐蚀产生的沉淀物在水
    
    
    力的冲刷下,不会附着在Fe0的表面造成铁屑的反应活性降低,有效地克服铁屑局部产生板结,阻塞水体流动现象的发生。此反应墙解决了PRB存在的难以解决的系统容易产生堵塞、使用周期短的缺点。应用该反应墙在室温下运行到第94天,出水中BHC的去除率仍在92.5%以上。且在反应墙运行期间出水流量稳定,未发生堵塞现象。
    综上所述,利用吸附-氧化还原化学反应墙处理被BHC污染的水体具有较好的效果。该处理方法简单、材料易得、应用范围宽,既适应高氧化态脱毒,也适用于低氧化态去除,是一种以废治废、科学环保的新方法。该反应墙使用方便,既可以作为地表水处理反应装置,也可以作为地下水处理反应装置。吸附-氧化还原化学反应墙是对BHC污染的水源水净化较有前景的创新技术之一,也是一种经济效益和环境效益兼俱的解决水环境
BHC is an extensive, lasting, fatty soluble and low cost organic chlorine pesticide, it is resistant to high temperature and acid, which has once improved the agricultural production. In the 40~80years last century, almost every country in the world used BHC to protect the agriculture from pest hazard. And in the 50~80years last century, the production amount of BHC is 60% of that of total pesticides. BHC have seriously contaminated the ecological environment due to its long remnant and stability, and because of that our country has banned its production and use in early 80years last century. But restricted by kinds of environment conditions, the degradation speed is very slow. In the environment superintend reports of some area proved that the residue of BHC still can be detected even in high concentration, and it is confirmed one of those widely used POPs.
    BHC residue has latent danger to the agricultural environment, agricultural and water products, and also the human health. The different framework of BHC is doubted to cancer inducement. γ-BHC can incentive central nerve system, α-BHC、δ-BHC is believed to depress on the central nerve system. γ-BHC、β-BHC are all proved to be endocrine-disrupting hermaphroditism , and can result in dysgenesis or effect on kidney, liver, blood etc. It has reported that BHC can endanger the human health even its concentration is low in water by accumulated through animals and plants or transported by food chains.
    With the development of society and human science, people pay more and more attention on food safety and environment protection. The BHC pollution case in agricultural and water products occasionally affect the export transaction, resulting in economic loss. In order to enhance the quality of agricultural and water products and ameliorate environment, effective removal of BHC is one of our urgent issue waiting for solve in a period.
    There is long superintend on the distribution and concentration of BHC. But the removal method study of BHC is comparatively scarce. The current study mostly focuses on biodegradation. Biodegradation, the same as photodegradation, has an active effect on environment remediation. But its degradation ability is limited by the environmental
    
    
    factors, especially in the area with heavy pollution and low temperature. That will result in the low degradation rate and degree, the new pollutants produced with side reaction accompanied by. According to that, it is obvious that we should find a non-biological degradation method.
    It was expounded by Gillham and O’Hannesin(Cannada) that the metal iron could be used in the in situ remediation of the groundwater. From then, study on the low cost, simple, high effect disposal method-zerovalent metal used to improve the dechlorination of organic chlorine became a research issue. The Fe0-PRB used to remove the water pollutants has gained more and more attention from researchers. Although it was improved a high effect on line chlorineaceous hydrocarbon, there is no report on using in BHC removal.
    In order to remove the BHC from water and using the discard, this paper refer to the success experience of the PRB technology (it can dechlorine and detoxity on the line hydrocarbon). Considering the defects of it, such as the side reaction and the erosion of the iron and the precipitation produced coated on the surface of the zero valent iron, which may reduce the activity of the iron or result blocking in the barrier, result in the short using period. Different barriers were set up using the cinder, iron, cinder and iron as the reaction material to remove the BHC in water.
    The conditional experiments were done on the adsorption by cinder and degradation by zerovalent iron on BHC. The results suggest that both the above two have the similar optimal condition in BHC removal. The removal effect is preferably on the asourish, When the diameter diminished or the using amount and reaction time increased, the removal rate enhanced with it. Under the optimal conditions, the cinder’s adsorption on BHC can rea
引文
[1]Smith A G.In: Handbook of Pesticide Toxicology[A].Hayes W J,Laws E R, Eds.Academic Press[C].San Diego,CA,1991:731-915.
    [2]大沽化工厂编.六六六提纯及无效体综合利用[M].石油化学工业出版社.1975,5:1-25
    [3]Kristine L Willett.Elin M Ulrich and Ronald A Hies.Environ Sci Technol[J].1998,32:2197-220
    [4] 华小梅,单正军.我国农药的生产使用状况及其污染环境因子分析.环境科学进展,1996,4(2):33-45.
    [5] 王萍 译.农药污染已渗透到地球的每个角落[J].国外科技动态,1997,4:37
    [6] Muller M D , Schlabach M ,Oehme M .Fast and precise drterminaton of α-Hexachlorocyclohexane enantiomers in environmental samples using chiral high-resolution gas chromatography. Enriron Sci Technol., 1992 ,26(3):566-569
    [7] 储少岗,方精云,贺奕等.北极动物样品中有机氯污染物的测定[J].环境科学学报.1997,4.17(2):244-247
    [8] Bidleman T F . Falcoper R L , Walla M D .Toxaphene and other organochlorine compounds in air and water at Resolute Bay , N. W. T. , Canada . Sci Total Environ , 1995,160/161 :55-63
    [9] 赵玲,马永军.有机氯农药在农业环境中残留现状分析[J].农业环境与发展,2001,1:37-39.
    [10] 刘广民,姜桂兰等.有机氯类农药在包气带及地下水中长期残留研究[J].农业环境保护,2001,20(6):408-410
    [11] 吴水平,曹军,李本纲等.城区大气颗粒物中有机氯农药的含量与分布[J].环境科学研究,2003,4.16(4):36-39
    [12] 张祖麟,陈伟琪,哈里德等.九龙江口水体中有机氯农药的分布特征及归宿[J].环境科学,2001,22(3):88-92.
    [13]蔡福龙等.热带海洋环境中BHC和DDT的行为特征研究-1.中国珠江口区旱季BHC和DDT的含量与分布[J].海洋环境科学,1997,16(2):9-14.
    [14]窦薇.白洋淀水生食物链BHC、DDT生物浓缩分析[J].环境科学,1997,9(5):41-43.
    [15]骆世昌,余汉生.珠江口水质中BHC和DDT含量及分布的研究[J].海洋通报,1998,17(3):32-34
    [16]张智超,戴树桂,朱昌寿等.海河河口水和新港港湾水中α-六六六对映体选择降解及时性为α、β、γ、δ-六六六浓度[J].中国环境科学,1998,18(3):197-201
    
    [17]张祖麟等.厦门港表层水体中有机氯农药和多氯联苯的研究[J].海洋环境科学,2000,19(3):48-51
    [18]刘现明,徐学仁等.大连湾沉积物中的有机氯农药和多氯联苯[J].海洋环境科学,2001,20(4):40-44
    [19]张秀芳,董晓丽.辽河中下游水体中有机氯农药的残留调查[J].大连轻工业学院学报,2002, 21(2):102-104
    [20]张伟玲,张干,祁士华等.西藏错鄂湖和羊卓雍湖水体及沉积物中有机氯农药的初步研究[J].地球化学,2003, 32(4):363-367
    [21]仲维科,郝戬,孙梅心等.我国食品的农药污染问题[J].农药, 2000,39(7):1-4
    [22]余刚,黄俊,张彭义.持久性有机污染物:倍受关注的全球性环境问题[J].环境保护,2001,4:16-19
    [23]刘明和.有机氯在我国的污染现状及监控对策[J].内蒙古环境保护,2003, 15(1):35-38
    [24]王茂起,王竹天,包大跃等.中国2000年食品污染状监测与分析[J].中国食品卫生杂志,2002,14(2):661-664
    [25]赵云峰,吴永宁,王绪卿等.中国居民膳食中农药残留的研究 [J].中华流行病学杂志,2003,24(8):661-664
    [26]李海波,孙武等.食品中有机氯农药污染分析[J].中国卫生工程学,2002,1(4):220
    [27]惠秀娟编著.环境毒理学[M].北京:化学工业出版社,2003,4:154-157
    [28]国际简讯.塞纳河遭农药污染[J].农药科学与管理,2002,23(1):47
    [29] 李政禹.国际法上持久有机污染物的控制动向及其对策[J].现代化工,1999,19(7):5-9
    [30]逄焕成,严慧峻,刘继芳等.土壤有机氯污染的生物修复和土壤酶活性的关系[J].土壤肥料,2002(1):30-33
    [31]杨超,刘伟,佟延功等.农药污染生活饮用水水源分析[J].中国卫生工程学2002,1(2):128
    [32]冯建国,陶训,张安盛等.苹果园农药和重金属污染及其治理对策[J].中国农学通报,1998,14(3):29-31.
    [33]毛文永编著.环境污染与致癌[M].北京:科学出版社,1981:163
    [34]Prasad AK, Pant N, Srivastava SC, et al. Effect of dermal application of hexachlorocyclohexane(HCH) on male reproductive system of rat[J].Hum Exp Toxicol,1995,14(6):484-488.
    [35]Samanta L,Roy A, Chainy GB, et al.Changes in rat testicular antioxidant defence profile as a function of age and its impairment by hexachlonocyclohexane during critical stages of maturation[J].Androl
    -ogia,1999,31(2):83-90
    
    [36]张莹,赵丹宇.林丹的安全性毒理学评价[J].农药科学与管理,1996年4月总字第60期:11-13
    [37]华小梅,江希流.我国农药环境污染与危害的特点及控制对策[J].环境科学研究,2000,13(13):40-43
    [38]Kristine L Willett, Elin M Ulrich and Ronald A Hies[J].Environ Sci Technol, 1998,32:2197-2207
    [39]沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002,3:146
    [40]刘相梅,彭平安,黄伟林.六六六在自然界的环境形为及研究动向[J].农业环境与发展,2001,68(2):38-40
    [41]李国学,孙英.高温堆肥对六六六(HCH)和滴滴涕(DDT)的降解作用研究[J].农业环境保护,2000,19(3):141-144
    [42]李田,仇雁翎.水中六六六与五氯苯酚的光催化氧化[J].环境科学,1996, 17(1):24-26,96
    [43]Gillham,R,W.and O’Hannesin,S.F.1992.Metal-catalysed abiotic degradation of halogenated organic compounds. In Proc. 1992. IAH comference “Modern Trends in Hydrogeogy”, Hamilton, Ont.,May: 10-13.
    [44] O’Hannesin, S.F.1993. A field demonstration of a permeable reactive wall for the in situ abiotic degradation of halogenated apliphatic organic compounds .M.Sc.Thesis, University of Waterloo, Waterloo, Ontario, Canada.
    [45] Oliver Schlicker, Markus Ebert, Margit Fruth,Marcus Weidner,Wolfgang Wust, and Anddress Dahmke Degradating of TCE with Iron: The Role of Competing Chromate and Nitrate Reduction.Ground Water, vol.38.NO.3,May-June 2000:403-409
    [46] Puls,R.W.,Paul C. J.and Powell R.M..In situ remediation of groundwater contaminated with chromate and chlorinated solvents using zero-valent iron:A field study.In Proc.213th Am.Chem.Soc.Natl Mtg, Environ. Chen, Div., Anaheim, CA, April2-7,Vol.35,1995:788-791
    [47]Blowes,D.W., Ptacek, C.J., Jambor ,J.L.In-situ remediation of chromate contaminated groundwater using permeable reactive walls: Laboratory studies[J]. Environ.Sci.Tchnol., 1997, 31(12):3348-3357
    [48]Bianchi-Mosquera,G.C.,Allen-King,R.M.and Mackay, D.M. Enhanced deg-
    radation of dissolved benzene and toluene using a solid oxygen-releasing compound[J].Ground Water Monit ,Remedia.,1994:120-128
    [49]Waybrant,K.R.,Blowes, D.W.and Ptacek,C.J.Selection of reactive mix-
    tures for use in permeable reactive walls for treatment of mine drainage[J].Environ.Sci.Technol,32(13),1998:1972-1979
    [50]Blowes,D.W., Ptacek, C.J.,Bain,F,G.at,el, W.D. Treatment of mine raina-
    
    geaterusing in situ permeable reactive walls .In Proc.Sudbury ’95-Mining and the Environment May 28-June 1,1995,Sudbury, Ontario, Canada.Hynes,
    T.P.and Blanchette,M.C.Eds. Vol.3.1995:979-987
    [51]Benner,S.G.,Blowes,D.W.and Ptacek,C.J,.Sulfate reduction in a ermeable
    reactive wallfor prevention of acid mine drainage ,In Proc.213th Am.Chem.
    Soc.Natl Mtg, Envion.Chem.Div.,San Fran-cisco,CA,April 13-17,Vol.37,
    No.1,1997:140-141
    [52]Gillham R.W.et.al.Enhanced Desradation Of VOCs Labouatory and Pilot-Scale Field Demonstration,Intermational Containment Technology Conference,Feb.9-12:
    858-864,St.Petersburg,Florida,USA
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.