地震体数据可视化与分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体绘制技术是一种重要的科学计算可视化方法,它能够将体数据中所隐藏的信息,交互地以图形图像方式展示给用户。在医学、气象学和油气地震勘探等领域,体绘制技术被广泛应用,用于辅助用户分析数据、发现其中蕴含的科学规律。随着大量复杂油气勘查难题的出现,传统三维地震可视化解释技术面临着新的挑战。因此研究地震体数据可视化与分析技术,具有重要的理论意义和实用价值。
     本文主要研究地震体数据可视化与分析中的关键技术。提出了三种地震体数据可视化与分析算法,集成这些算法并开发了地震体数据可视化与分析原型系统,大量实验结果验证了本文算法的有效性。
     1.提出基于光线不透明度调整的区间体绘制算法,克服传输函数设置复杂、多特征相互遮挡和特征剥离依赖视点等现有体绘制算法的局限性。本文采用区间体定义体数据结构特征,区间体是三维空间中标量值属于特定范围的所有数据的集合,能够更准确描述视觉特征。本文提出的基于光线不透明度调整的区间体绘制算法,通过区间体的数值局部相关性计算,自动识别体数据的主要区间体,依据区间体识别结果自动设置传输函数;通过分析投射光线上区间体的不透明度分布,定义区间体绘制方程,保证所有区间体同时可见。应用本文提出的基于光线不透明度调整的区间体绘制算法,用户能够交互地剥离并绘制区间体,剥离结果不依赖视点。
     2.提出保特征量化方法和特征增强体绘制算法,解决高动态范围地震体数据在采用传统量化方法时所带来的特征丢失问题。在普通显示器上绘制高动态范围地震体数据,需要对其进行量化预处理。通过对高动态范围地震体数据分段可视化分析,定义体数据的细节结构、局部相关结构和奇异点结构等特征。采用迭代保边滤波算法分离细节结构特征,根据局部相关性统计属性获得局部相关结构特征,然后分离奇异点结构特征。基于结构特征分类结果及它们对体绘制结果的影响,提出保特征量化准则和优化策略,实现高动态范围地震体数据量化。对于量化后地震体数据,为抑制噪声对体绘制结果的影响,提出了特征增强体绘制算法。
     3.提出鲁棒多尺度地震层位识别与可视化方法,解决复杂层位识别和分类难题。地震层位能够揭示岩石属性变化,层位识别对地质构造解释非常重要。现有层位识别算法由于受噪声干扰往往无法有效工作,经过非连续点所识别的层位常常会产生歧义连接问题。为抑制噪声,增强层位连续性,本文提出了基于多属性滤波的地震体数据结构增强算法。该方法采用体数据强度、空间距离和局部结构定义滤波权值;根据倾角属性旋转滤波核窗口,保证滤波处理沿地震层位进行,增强层位连续性;基于相干体属性平移滤波核窗口,避免平滑非连续特征;参照紊乱度属性自适应调整滤波参数,调整不同噪声水平区域的滤波效果。对于滤波后的地震体数据,提出多尺度层位识别方法,根据层位平坦度,在层位识别过程中自动调整识别尺度实现层位自动分类。为观察所识别层位,还给出了多体可视化与层位识别过程可视化方法。
     最后,本文介绍了集成上述特征增强体绘制技术与层位识别技术的地震体数据可视化与分析系统,该系统实现了地震属性计算与多属性体可视化、地震体数据剖面分析与处理等功能。
     本文研究工作结合了地震属性分析、可视化算法和图形硬件技术,为解决复杂油气勘查难题,探索新的思路和技术手段。大量实验结果验证了本文所提方法的有效性。
Volume Rendering is one of the primary methods in scientific visualization field. The intrinsic information of volume dataset can be visualized interactively by this method. In medicine, meteorology and oil and gas seismic exploration application, volume rendering technology is widely used, and helps users to analyze the data and to find the rule or law concerning the data. With the emergence of various complex oil and gas discovering and forecasting problems, the traditional interpretation of seismic volume data visualization technology faces new challenges. Thus, it is vital important to study further the seismic volume data visualization in theory and practice.
     This thesis focuses on the key technologies of seismic volume data visualization and analysis, and proposed three novel seismic volume data visualization and analysis algorithms. All three new algorithms are integrated into our developed seismic volume data visualization and analysis system. Some seismic exploration data are tested by our system and the experimental results demonstrate the efficiency of our new algorithms.
     Firstly, we proposed an interval volume rendering algorithms by ray-opacity-modulation. Our algorithm can overcome complex specification of transfer function, feature occlusion, and view-dependent feature peeling which are the limitations of existing volume rendering algorithm. We adopted the interval volume to define the structures of volume data, in which the interval volume is defined by a sub-space with scalar values in a specific range and it can be used to describe visual feature with more accuracy. Transfer function can be automatically generated by the principle interval volume which is detected based on corresponding level of local data relevance. To assure the visibility of all interval volumes at once, we proposed a novel interval volume rendering equation based on ray interval profile analysis. By the application of our rendering equation, users can interactively achieve interval volume peeling rendering without view dependence.
     Secondly, to solve the problem of features missing by traditional high dynamic range seismic volume data quantization method, we proposed a feature preserved seismic volume data quantization method, and introduced a feature enhanced volume rendering algorithm. The seismic volume data quantization is an important preprocessing step before rendering high dynamic range seismic volumes on regular display screen. Base on the sub-range visual analysis of the high dynamic range seismic volume data, a series of features such as the fine structures, the local relevant structures and singularities structures of volume data are defined. Fine structures can be isolated by series iteratively edge preserved filter algorithms, local relevant structures are obtained by local relevance statistics, and then singularities structures are departed from them. We proposed guidelines and an optimization strategy of feature preserved quantization by analyzing the classification of features and their effects on volume rendering. To suppress the noise which may affect the quality of volume rendering of the scaled seismic volume data, we introduced a feature enhanced volume rendering algorithm.
     Thirdly, a method of robust multi-scale seismic horizon detection and visualization is introduced for more complex horizon detection and classification. Seismic horizons are the predominant geological features which indicate changes in rock properties, so horizon detection is more important to seismic interpretation. But many existing horizon detection algorithm cannot work well due to the high noise of seismic data, and discontinuity points often results in ambiguous horizons detected. To suppress the noise and enhance the continuity of horizon, we proposed a multi-attribute based filtering algorithm to enhance the structures of seismic volume data. Our multi-attribute based filtering algorithm defined the filter weight by the intensity, space distance and local structures of seismic volume data. The filter window of our multi-attribute based filtering algorithm can be rotated along dip to enhance the continuity of horizon, translated with coherence to keep the discontinuity features. The filter weight can be adaptively adjusted with chaos due to the noise level of region to achieve different filter effects. We proposed a flatness-based multi-scale horizon detection method for the enhanced seismic volume data by our multi-attribute based filtering algorithm. The method can adaptively adjust the scale of detection by local flatness and achieve horizon classification. To observe the detected horizons, we implemented the multi-volume visualization technique and proposed a method to visualize the processing of horizon detection.
     Finally, we developed a seismic volume data visualization and analysis system that integrates the above feature enhanced visualization and horizon detection methods. The system also provides various functions, such as seismic attributes estimation, multi-attribute volume visualization and seismic slice processing, etc.
     The research of this thesis explored seismic attributes calculation algorithms, volume rendering methods and graphics hardware techniques, and provides the new methods for complex seismic interpretation. A number of experimental results demonstrate the efficiency of our proposed methods.
引文
[1]石教英,蔡文立编著.科学计算可视化算法与系统[M].1996,北京:科学出版社.
    [2]唐泽圣等.三维数据场可视化[M].1999,北京:清华大学出版社.
    [3]彭群生,鲍虎军,金小刚编著.计算机真实感图形的算法基础[M].1999,北京:科学出版社.
    [4]J. KrAuger and R. Westermann. Acceleration Techniques for GPU-based Volume Rendering[C]. In Proc. of IEEE Visualization 2003,2003:287-292.
    [5]Philip Lacroute and Marc Levoy. Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transform[C]. In ACM Computer Graphics (SIGGRAPH'94 Proceedings),1994:451-458.
    [6]Kniss J, Kindlmann G., Hansen C. Interactive Volume Rendering Using Multi-Dimensional Transfer Functions and Direct Manipulation Widgets [C]. Proceedings IEEE Visualization'01 Conference,2001:255-262
    [7]N. Max, P.H.A.R. Area and volume coherence for efficient visualization of 3D scalar functions[C]. ACM SIGGRAPH Computer Graphics,1990,24(5):27-33.
    [8]E. Lum, B.Wilson, and K.-L.Ma. High-quality lighting and efficient preintegration for volume rendering[C]. In Proceedings of Joint Eurographics-IEEE TVCG Symposium on Visualization,2004:25-34.
    [9]C. M. Wittenbrink, T. Malzbender, and M. E. Goss. Opacity-weighted color interpolation for volume sampling[C]. In Proc. of IEEE Symposium on Volume Visualization,1998:135-142.
    [10]Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (Second Edition)[M]. Wiley-Interscience,2001.
    [11]Tzeng F, Lum E, Ma K.-L. A novel interface for higher-dimensional classification of volume data[C]. Proceedings of IEEE Visualization'03 Conference,2003:505-512.
    [12]Kindlmann G., Whitaker R, Tasdizen T, Moller T. Curvature-Based Transfer Functions for Direct Volume Rendering:Methods and Applications [C]. Proceedings of IEEE Visualization'03 Conference,2003:67-75.
    [13]Correa, C. and K. Ma, Size-based Transfer Functions:A New Volume Exploration Technique[J]. IEEE Transactions on Visualization and Computer Graphics,2008,14(6):1380-1387.
    [14]Correa, C. and K. Ma, The Occlusion Spectrum for Volume Classification and Visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2009.15(6):1465-1472.
    [15]Mroz, L., A. Konig and E. Groller. Real-Time Maximum Intensity Projection. TR-186-2-99-09,1999.
    [16]Kindlmann G., Durkin J. W. Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering[C]. IEEE Symposium On Volume Visualization, 1998:79-86.
    [17]Sereda, P. Vilanova A, Gerritsen F. Automating transfer function design for volume rendering Using Hierarchical Clustering of Material Boundaries[C]. Proceedings IEEE/EuroGraphics Symposium on Visualization,2006:243-250.
    [18]R Y. Sato, N. Shiraga, and S. Nakajima. Local maximum intensity projection (lmip):A new rendering method for vascular visualization [J]. Journal of Computer Assisted Tomography,1998,22(6):912-917.
    [19]Stefan Bruckner, M. Eduard Groller. Instant Volume Visualization using Maximum Intensity Difference Accumulation [J]. Computer Graphics Forum, 2009,28(3):775-782.
    [20]MALIK M. M., MOLLER T., GROLLER M. E.:Feature peeling[C]. In Proceedings of Graphics Interface (New York, NY, USA,2007), GI'07, ACM, 2007:273-280.
    [21]Christof Rezk-Salama and Andreas Kolb. Opacity peeling for direct volume rendering[J]. Computer Graphics Forum,2006,25:596-606.
    [22]M. Kraus. Scale-invariant volume rendering[C]. In Proceedings of IEEE Visualization, IEEE Computer Society,2005:295-302
    [23]Ament, M., D. Weiskopf and H. Carr, Direct Interval Volume Visualization[J]. IEEE Transactions on Visualization and Computer Graphics,2010,16(6): 1505-1514.
    [24]Takafumi Saito. Real-time previewing for volume visualization[C]. In VVS'94: Proceedings of the 1994 symposium on Volume visualization,1994:99-106.
    [25]Csebfalvi, B., et al., Fast visualization of object contours by non-photorealistic volume rendering[J]. Computer Graphics Forum,2001:452-460.
    [26]V S Ereda, P., et al., Visualization of Boundaries in Volumetric Data Sets Using LH Histograms[J]. IEEE Transactions on Visualization and Computer Graphics, 2006:208-218.
    [27]Marchesin, S., J. Dischler and C. Mongenet, Per-Pixel Opacity Modulation for Feature Enhancement in Volume Rendering[J]. IEEE Transactions on Visualization and Computer Graphics,2010,16(6):560-570.
    [28]马在田.三维地震勘探方法[M].1992,北京:石油工业出版社.
    [29]麦克奎林.地震解释概论[M].1985,北京:石油工业出版社.
    [30]A, G., Modern 3-D seismic interpretation[J]. The Leading Edge,1998,17(9): 1262-1269.
    [31]王宏琳.地震软件技术[M].2005,北京:石油工业出版社.
    [32]熊翥.隐蔽油气藏勘探[J].勘探地球物理进展,2004.27(6):391-396.
    [33]汪新,唐鹏程,谢会文等.库车坳陷西段新生代盐构造特征及演化[J].大地构造与成矿学,2009.33(1):57-65.
    [34]FARAKLIOTI M,PETROU M. Horizon picking in 3D seismic data volumes [J]. Machine Vision and Applications,2004,15(4):216-219.
    [35]Salom, P., et al., Dynamic picking system for 3D seismic data:Design and evaluation[J]. Int. J. Hum.-Comput. Stud.,2009:551-560.
    [36]M Aurnhammer and KToennies, A genetic algorithm for automated horizon correlation across faults in seismic images[J]. IEEE Tran. Evolutionary Computation,2005,9(2):201-210.
    [37]Jeong W K, Whitaker R, Dobin M. Interactive 3D seismic fault detection on the Graphics Hardware. [C] Proceedings of the International Workshop on Volume Graphics, Boston Park Plaza, Boston, Massachusetts, USA,2006:111-118.
    [38]Benjamin J. Kadlec, Channel Segmentation using Confidence and Curvature Guided Level Sets on Noisy Seismic Images[C]. Proceedings of the 2008 IEEE Workshop on Applications of Computer Vision.2008:1-6.
    [39]王大锐,齐兴宇等编著.探索地下石油奥秘[M].2005,北京:石油工业出版社.
    [40]Kidd, G.D., Fundamentals of 3-D seismic volume visualization[J]. The Leading Edge,1999,18(6):702-709.
    [41]Chopra, S. and K.J. Marfurt, Emerging and future trends in seismic attributes[J]. The Leading Edge,2008,27(3):298-318.
    [42]Bahorich, M. and S. Farmer,3-D seismic discontinuity for faults and stratigraphic features; the coherence cube[J]. The Leading Edge,1995,14(10): 1053-1058.
    [43]Marfurt, K.J., et al.,3-D seismic attributes using a semblance-based coherency algorithm[J]. Geophysics,1998,63(4):1150-1165.
    [44]Marfurt, K.J., Robust estimates of 3D reflector dip and azimuth[J]. Geophysics, 2006,71(4):29-40.
    [45]Marfurt, K.J., et al., Coherency Calculations in the Presence of Structural Dip[J]. Geophysics,1999:104-111.
    [46]Gersztenkorn, A. and K.J. Marfurt, Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping[J]. Geophysics,1999,64(5):1468-1479.
    [47]Bakker, P., L.J. Van Vliet and P.W. Verbeek, Edge Preserving Orientation Adaptive Filtering[C]. Computer IEEE Computer Society Conference on Vision and Pattern Recognition,1999:535-543.
    [48]Chopra, S. and K. Marfurt, Curvature attribute applications to 3D surface seismic data[J]. The Leading Edge,2007,26(4):404-414.
    [49]Chopra, S. and K.J. Marfurt, Integration of coherence and volumetric curvature images[J]. The Leading Edge,2010,29(9):1092-1107.
    [50]Al-Dossary, S. and K.J. Marfurt.3D volumetric multispectral estimates of reflector curvature and rotation[J]. Geophysics,2006,71(5):41-51.
    [51]Randen, T. and L. Sφnneland. Atlas of 3D Seismic Attributes[M]. in Mathematics in Industry, H. Bock, et al., H. Bock, et al.Editors. Springer Berlin Heidelberg.2005:23-46.
    [52]CASTANIE L., LEVY B., and BOSQUET F. Volume explorer:roaming large volumes to couple visualization and data processing for oil and gas exploration [C].Visualization,2005. VIS 05. IEEE,2005:247-254.
    [53]JAMES H and KOSTROVA T. Use of lighting in the 3D display of seismic data[C] First Break.2005,23(3):53-57.
    [54]ROPINSKI T, H.K., Interactive visualization of subsurface information[C]. In Proceedings of the 8th International Conference on Visual Information Systems (ⅥSual05).2005:121-131.
    [55]PATEL D, G.C.T.J., The seismic analyzer:Interpreting and illustrating 2d seismic data[J]. IEEE Transactions on Visualization and Computer Graphics (IEEE TVCG),2008,14(6):1571-1578.
    [56]Guo, H., S. Lewis and K.J. Marfurt, Mapping multiple attributes to three- and four-component color models-A tutorial[J]. Geophysics,2008.73(3):w7-wl9.
    [57]Kadlec, B.J., H.M. Tufo and G.A. Dorn, Knowledge-Assisted Visualization and Segmentation of Geologic Features[J]. IEEE Comput. Graph. Appl.,2010: 30-39.
    [58]Yuan, X., et al., HDR VolVis:High Dynamic Range Volume Visualization[J]. IEEE Transactions on Visualization and Computer Graphics,2006:433-445.
    [59]Chopra, S. and K.J. Marfurt, Seismic attributes --- A historical perspective[J]. Geophysics,2005,70(5):3SO-28SO.
    [60]PATEL D, BRUCKNER S, VIOLA I, et al. Seismic volume visualization for horizon extraction [C]. Proceedings of the IEEE Pacific Visualization Symposium, Taipei:IEEE,2010:73-80
    [61]Hall, M., Smooth operator:Smoothing seismic interpretations and attributes[J]. The Leading Edge,2007,26(1):16-20.
    [62]Bakker, P., L.J. Van Vliet and P.W. Verbeek, Edge Preserving Orientation Adaptive Filtering[C]. Computer IEEE Computer Society Conference on Vision and Pattern Recognition,1999:535-543.
    [63]Lavialle, O., et al., Seismic fault preserving diffusion[J]. Journal of Applied Geophysics,2007,61(2):132-141.
    [64]Fujishiro, I., Y. Maeda and H. Sato, Interval volume:a solid fitting technique for volumetric data display and analysis[C]. Visualization Conference, IEEE, 1995:151-158.
    [65]Ning, P. and J. Bloomenthal, An Evaluation of Implicit Surface Tilers[J]. IEEE Comput. Graph. Appl.,1993:33-41.
    [66]G. M. Nielson and J. Sung. Interval volume tetrahedrization[C]. In Proceedings of IEEE Visualization, Los Alamitos, CA, USA. IEEE Computer Society Press.,1997:221-228
    [67]Edelsbrunner, H. and E.P. M U Cke, Three-dimensional alpha shapes[J]. ACM Trans. Graph.,1994:43-72.
    [68]Guo, B., Interval Set:A Volume Rendering Technique Generalizing Isosurface Extraction[C]. In Proceedings of IEEE Visualization,1995:3-10.
    [69]Weber, G.H., et al., Topology-Controlled Volume Rendering[J]. IEEE Transactions on Visualization and Computer Graphics,2007:330-341.
    [70]Carr, H., J. Snoeyink and M. van de Panne, Flexible isosurfaces:Simplifying and displaying scalar topology using the contour tree[J]. Comput. Geom. Theory Appl.,2010:42-58.
    [71]Carr, H., D. Brian and D. Brian, On Histograms and Isosurface Statistics [J]. IEEE Transactions on Visualization and Computer Graphics,2006:1259-1266.
    [72]Scheidegger, C.E., et al., Revisiting Histograms and Isosurface Statistics[J]. IEEE Transactions on Visualization and Computer Graphics,2008:1659-1666.
    [73]Gomes, J. and L. Velho, Image Processing for Computer Graphics[M].1st ed. 1997, Secaucus, NJ, USA:Springer-Verlag New York, Inc.
    [74]Lundstrom, C., P. Ljung and A. Ynnerman, Local Histograms for Design of Transfer Functions in Direct Volume Rendering[J]. IEEE Transactions on Visualization and Computer Graphics,2006:1570-1579.
    [75]Stefan Bruckner, Soren Grimm, Armin Kanitsar, and Meister Eduard Groller. Illustrative context-preserving volume rendering[C]. In Proceedings of EuroVis, 2005:69-76.
    [76]S. R"ottger, M. Kraus, and T. Ertl. Hardware-accelerated volume and isosurface rendering based on cell-projection[C]. In Proceedings of IEEE Visualization, 2000:109-116.
    [77]Chan, M., et al., Perception-Based Transparency Optimization for Direct Volume Rendering[J]. IEEE Transactions on Visualization and Computer Graphics,2009:1283-1290.
    [78]Andre Gerhardt, Anselmo Paiva, Ana Elisa Schmidt,etc. Requisites of 3-D Seismic Data Volume Rendering[C]. GOCAD ENSG Conference 3D Modeling of Natural Objects,1998.
    [79]Heckbert, P., Color image quantization for frame buffer display[C]. SIGGRAPH Comput. Graph.,1982:297-307.
    [80]Jens Ketterer, Jan Puzicha, Marcus Held, etc. On spatial quantization of color images[C]. Computer Vision,ECCV'98, Lecture Notes in Computer Science, 1998:563-577.
    [81]Brown, A.R., Seismic attributes and their classification[J]. The Leading Edge, 1996,15(10):1090.
    [82]Paris S, Kornprobst P, Tumblin J, et al. A gentle introduction to bilateral filtering and its applications [C] Proceedings of the International Conference on Computer Graphics and Interactive Techniques, ACM SIGGRAPH courses, New York, USA,2008.
    [83]Hosssain, Z. and T. Moller, Edge Aware Anisotropic Diffusion for 3D Scalar Data[J]. IEEE Transactions on Visualization and Computer Graphics, 2010,16(6):1376-1385.
    [84]Knoll, A., et al., Volume Ray Casting with Peak Finding and Differential Sampling[J]. IEEE Transactions on Visualization and Computer Graphics,2009: 1571-1578.
    [85]Ropinski, T., et al., Interactive Volume Rendering with Dynamic Ambient Occlusion and Color Bleeding[J]. Computer Graphics Forum (Eurographics 2008),2008,27(2):567-576.
    [86]M. Schott, V. Pegoraro, C. Hansen, K. Boulanger, J. Stratton, and K. Bouatouch. A directional occlusion shading model for interactive direct volume rendering[J]. Computer Graphics Forum,2009,28(3):855-862.
    [87]Malley S M O. and Kahadiaris I A. Towards robust structure-based enhancement and horizon picking in 3D seismic data [C] Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2004,482-489.
    [88]Luo, Y., W.G. Higgs and W.S. Kowalik, Edge detection and stratigraphic analysis using 3D seismic data[J]. SEG Technical Program Expanded Abstracts, 1996,15(1):324-327.
    [89]Taner, M.T., F. Koehler and R.E. Sheriff, Complex seismic trace analysis[J]. Geophysics,1979,44(6):1041-1063.
    [90]Hocker, C. and G. Fehmers, Fast structural interpretation with structure-oriented filtering[J]. The Leading Edge,2002,21(3):238-243.
    [91]Y. Sato, S. Nakajima, N. Shiraga.3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images [J].Medical Image Analysis,1998,2(2):143-168
    [92]Faraklioti, M. and M. Petrou, The Use of Structure Tensors in the Analysis of Seismic Data[M], in Mathematics in Industry, H. Bock, et al., H. Bock, et al.Editors. Springer Berlin Heidelberg.2005:47-88.
    [93]Hasan, K.M., et al., Analytical Computation of the Eigenvalues and igenvectors in DT-MRI[J]. Journal of Magnetic Resonance,2001,152(1):41-47.
    [94]P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans. Pattern Anal. Mach. Intell.,1990,12(7):629-639.
    [95]Zhong, R.C.A.S., Adaptive smoothing respecting feature directions [J]. IEEE Transactions on Medical Imaging,1998,11(2):221-232.
    [96]Gerig, G., et al., Nonlinear Anisotropic Filtering Of MRI Data[J]. IEEE Transactions on Medical Imaging,1992,11(2):221-232.
    [97]J. Weickert. Anisotropic Diffusion in Image Processing[M]. B.G. Teubner, Stuttgart, Germany,1998.
    [98]Weickert, J., Coherence-Enhancing Diffusion Filtering[J]. Springer Netherlands. 1999:111-127.
    [99]Tomasi C, Manduchi R. Bilateral filtering for gray and color images [C] Proceedings of the IEEE International Conference on Computer Vision, Bombay, India,1999:836-846.
    [100]Paris, S. and F.E.D. Durand, A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach[J]. Int. J. Comput. Vision,2009:24-52.
    [101]张鑫,王章野,范涵奇,彭群生.保特征的三维模型的三边滤波去噪算法[J].计算机辅助设计学报.2009,21(7):936-943.
    [102]Chen, Jia and Tang, Chi-Keung and Wang, Jue. Noise brush:interactive high quality image-noise separation[J]. ACM Trans. Graph.2009,28(5): 146:1-146:10.
    [103]Buades, A., B. Coll and J. Morel, Nonlocal Image and Movie Denoising[J]. Int. J. Comput. Vision,2008:123-139.
    [104]Cipriano, G., G.N. Phillips Jr. and M. Gleicher, Multi-Scale Surface Descriptors[J]. IEEE Transactions on Visualization and Computer Graphics, 2009:1201-1208.
    [105]Wenli Cai, G.S. Data Intermixing and Multi-volume Rendering[J]. Computer Graphics Forum,1999,18(3):359-368.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.