南黄海中华哲水蚤(Calanus sinicus)脂质含量、组成及在度夏期间的生态功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂质作为构成生物有机体的大分子之一,具有十分重要的生理功能在浮游动物生长代谢过程中,尤其是环境饵料缺乏雌体繁殖早期发育和休眠等关键时期,脂质都扮演着重要的角色本文以中国近海的的浮游动物优势种-中华哲水蚤作为研究对象,首先对其脂质组成的种类和脂肪酸构成情况进行了研究,并且通过与南极桡足类的脂肪酸对比分析了中华哲水蚤脂质的构成特点(第二章)随后,通过对黄海春秋季以及胶州湾中华哲水蚤脂质组成的周年变动进行了研究,讨论了不同脂质的功能作用(第三章)最后,着重对黄海冷水团内度夏的中华哲水蚤的脂质变化过程进行了研究,并对度夏中华哲水蚤脂质的功能作用进行了讨论(第四章)
     首先,对中华哲水蚤的脂质组成进行了研究通过对不同发育期中华哲水蚤的脂质组成的分析发现,中华哲水蚤的脂质主要由蜡脂磷脂和三酰甘油构成,其中蜡脂和磷脂含量占总脂含量在90%左右,三酰甘油含量较少,约占6%左右中华哲水蚤在C3期已经开始积累蜡脂,并且在C5期时含量最多构成蜡脂的脂肪酸主要是14:016:016:1ω718:1ω918:4ω320:1ω920:5ω322:1ω11和22:6ω3,而磷脂主要的脂肪酸为14:016:018:018:1ω918:4ω320:5ω3和22:6ω3蜡脂和磷脂的脂肪酸构成明显不同,通过分析发现:(1)蜡脂中含有较高的单不饱和脂肪酸(MUFA),主要由桡足类的特征脂肪酸20:1和22:1构成;(2)磷脂中的脂肪酸中的多不饱和脂肪酸含量可以达到50%以上,并且主要由DHA构成蜡脂的脂肪醇部分主要由16:020:1和22:1三种长链醇构成
     其次,脂质组成与含量的季节变化及其功能在2010年11月(秋季)和2011年4月(春季)对采自黄海的中华哲水蚤的脂质组成进行分析,发现黄海春秋季中华哲水蚤的脂质组成存在明显的差异在磷脂含量上,春季的雌体磷脂含量显著高于秋季的雌体;在蜡脂含量上,秋季雌体的蜡脂含量显著高于春季雌体;三酰甘油的含量较少,两个季节没有显著的差异另外,对胶州湾中华哲水蚤雌体脂质含量的周年变动(2012年03月-2013年03月)进行了研究,结果显示,胶州湾雌体中华哲水蚤的磷脂含量在春季达到最大值,在其余月份差别并不明显;蜡脂含量也在春季达到最大值,但在其余月份含量较少结合种群生长状态等背景资料,对脂质各组分的生理功能进行了初步探讨:(1)春季是中华哲水蚤的繁殖活跃季节,雌体此时的磷脂含量全年最高,说明磷脂在中华哲水蚤繁殖活动中具有重要作用;(2)中华哲水蚤以蜡脂作为主要的能量储存方式,其含量变化反映出不同季节中华哲水蚤的能量需求变化;(3)三酰甘油在中华哲水蚤中的含量不高,主要是作为一种短期的能量储备
     最后,对中华哲水蚤度夏过程中的脂质变化进行了研究通过2011年08月黄东海现场调查航次研究了中华哲水蚤夏季种群的分布和脂质含量,结果表明,夏季在黄海中部以及浙江近岸存在中华哲水蚤的密集分布区域脂质含量结果显示,冷水团内的C5期中华哲水蚤的总脂含量最高(平均43.1μg/ind),浙江近岸雌体的总脂含量(平均24.6μg/ind)和黄海冷水团周边雌体的总脂含量(平均18.2μg/ind)较低,黄海冷水团内的度夏的C5期中华哲水蚤具有明显的能量储存优势通过对度夏前中后时期(2010年11月份2011年6月份和8月份)中华哲水蚤的脂质变化特点进行了研究结果表明,与极区的休眠桡足类不同,中华哲水蚤在度夏休眠过程中消耗了大量脂质,而不是将脂质用于休眠末期的繁殖发育活动在度夏过程中除了蜡脂和三酰甘油外,作为结构性脂质的磷脂也被消耗,可能与中华哲水蚤度夏过程中较高的能量代谢需求有关两种主要的脂质(蜡脂和磷脂)在度夏过程中的消耗方式并不相同,在磷脂消耗过程中,其脂肪酸组成在整个度夏过程中保持不变,而蜡脂中的多不饱和脂肪酸则被选择性的消耗
As one of the important biological macromolecules, lipids play an importantrole in crucial period of zooplankton life-history like diapause, reproduction andontogeny. However, as an ecologically important copepod species in the shelf watersof the North-west Pacific Ocean, there are few studies concern the lipid of Calanussinicus. The present research studied the lipid content and compositions, as well asthe role of lipid, in Calanus sinicus in the sourthern Yellow Sea.
     First, we studied the the lipid content and compositions of Calanus sinicus.Samples of Calanus sinicus in different development stages (CIII to Adult) werecollected from the Southern Yellow Sea in spring (April,2011). The results showthat the major lipid components were wax ester and phospholipid, and they togethercontributed about90%to total lipid, while triglyceride accounted for only6%. TheCIII copepodite has been started to accumulate wax ester and CV copepodite shownthe highest content in all development stages. The fatty acid compositions wereanalyzed for the two major lipid classes, wax ester and phospholipid. For wax ester,the dominate fatty acids were14:0,16:0,16:1ω7,18:1ω9,18:4ω3,20:1ω9,20:5ω3,22:1ω11and22:6ω3. For phospholipid, the dominate fatty acids were14:0,16:0,18:0,18:1ω9,18:4ω3,20:5ω3and22:6ω3. The fatty acid compositions ofwax ester and phospholipid show great differences. The fatty acids of wax ester has ahigh percentage of moneunstaturated fatty acis (MUFA) while phospholipid show ahigh content of polyunsaturated fatty acids (PUFA), with the percentage of more than50%.
     Second, the roles of the major lipid classes were studied via in situ collectedsamples. We collected samples from the Southern Yellow Sea in autumn (November,2010) and spring (April,2011). The results show that the total lipid content of femaleC. sinicus was about10.6%~12%of dry body mass, while C5stage in spring had ahigher percentage, about17%of dry mass. The role of different lipid classes wasdiscussed as follows:(1) Wax ester served as an important energy deposit. Thefluctuated wax ester content of C. sinicus suggested the different strategies in energyneeds and utilization of different development stages and seasons.(2) Thecoincidence of active reproduction and high content of phospholipid in femaleindicated that phospholipid plays an important role in the egg production of C.sinicus.(3) The composition of TAG was relatively lower than that of wax ester andphospholipid in C. sinicus, but it might work in the transformation of different lipidclasses.
     Last, as over-summering is important for C. sinicus, we studied the dynamics ofdifferent lipid classes and FAs and their functions during this period. In August2011,the most abundant of C. sinicus was found at the certain regions in the Yellow SeaCold Bottom Waters (YSCBW, water temperature <10oC, ranging from93.3ind/m3to446.9ind/m3, mean,242.6ind/m3). The area near the shore of the East China Seaalso showed an abundant C. sinicus population (range,60.8–148.4ind/m3; mean,91.0ind/m3). The lipid content of C5in the YSCBW was43.1μg/ind, while the lipidcontent of the females in the YSCBW (mean,24.6μg/ind) and at the area near theshore of the East China Sea (mean,18.2μg/ind) was lower than C5in YSCBW. TheC5in the YSCBW can use stored lipid and sustain on a limited food supply duringover-summering, while C. sinicus in other areas require active feeding to surviveduring the summer. To further our understand of lipid dynamics duringover-summering, lipids and FAs of were analysied for samples which were got at thecentral part of Southern Yellow Sea in June, August, and November which areconsidered as the pre-, during-and end-diapause period. The results show that C. sinicus store up lipids (mainly wax ester and phospholipid) against summer. Theyconsumed most of the stored lipid, even some phospholipid, for energy needs duringthe over-summering period. This is different from Calanus spp. in high latitudewhich uses most of their storage lipids for ascent or reproduction needs. In addition,although polyunsaturated fatty acids (PUFA) in wax ester exhibited a selectivelyutilization, this selection was unrelated to diapause termination. What is the functionof this selection need further studies.
引文
Albers C.S., Kattner G., Hagen W. The Compositions of Wax ester, Triacylglycerolsand Phospholipids in Arctic and Antarctic Copepods: Evidence of EnergeticAdaptations. Marine Chemistry.1996,55(3–4):347-358.
    Arts M.T., Ackman R.G., Holub B.J. Essential Fatty Acids in Aquatic Ecosystems: ACrucial Link between Diet and Human Health and Evolution. CanadianJournal of Fisheries and Aquatic Sciences.2001,58(1):122-137.
    Arts M.T., Brett M.T., Kainz M.J. Lipids in Aquatic Ecosystems.2009.
    Auel H., Klages M., Werner I. Respiration and Lipid Content of the Arctic CopepodCalanus hyperboreus Overwintering1M above the Seafloor at2,300m WaterDepth in the Fram Strait. Marine Biology.2003,143(2):275-282.
    Bathmann U., Bundy M.H., Clarke M.E., Cowles T.J., Daly K., Dam H.G.,Dekshenieks M.M., Donaghay P.L., Gibson D.M., Gifford D.J., Hansen B.W.,Hartline D.K., Head E.J.H., Hofmann E.E., Hopcroft R.R., Jahnke R.A.,Jonasdottir S.H., Kiorboe T., Kleppel G.S., Klinck J.M., Kremer P.M., LandryM.R., Lee R.F., Lenz P.H., Madin L.P., Manahan D.T., Mazzocchi M.G.,McGillicuddy D.J., Miller C.B., Nelson J.R., Osborn T.R., Paffenhofer G.A.,Pieper R.E., Prusova I., Roman M.R., Schiel S., Seim H.E., Smith S.L., TorresJ.J., Verity P.G., Wakeham S.G., Wishner K.F.,2M.Z.C. Future MarineZooplankton Research-a Perspective. Marine Ecology Progress Series.2001,222:297-308.
    Beaugrand G., Brander K.M., Lindley J.A., Souissi S., Reid P.C. Plankton Effect onCod Recruitment in the North Sea. Nature.2003,426(6967):661-664.
    Bligh E.G., Dyer W.J. A Rapid Method of Total Lipid Extraction and Purification.Canadian Journal of Biochemistry and Physiology.1986,37(8):911-917.
    Blumer M., Mullin M.M., Thomas D.W. Pristane in the Marine Environment.Helgolaender Wissenschaftliche Meeresuntersuchungen.1964,10(1-4):187-201.
    Budge S.M., Iverson S.J. Quantitative Analysis of Fatty Acid Precursors in MarineSamples: Direct Conversion of Wax Ester Alcohols and Dimethylacetals toFames. Journal of Lipid Research.2003,44(9):1802-1807.
    Campbell R., Dower J. Role of Lipids in the Maintenance of Neutral Buoyancy byZooplankton. Marine Ecology Progress Series.2003,263:93-99.
    Campbell R.W. Overwintering Habitat of Calanus finmarchicus in the North AtlanticInferred from Autonomous Profiling Floats. Deep Sea Research Part I:Oceanographic Research Papers.2008,55(5):630-645.
    Chen M., Liu H., Chen B. Effects of Dietary Essential Fatty Acids on ReproductionRates of a Subtropical Calanoid Copepod, Acartia Erythraea Marine EcologyProgress Series.2012,455:95-110.
    Clark K.A.J., Brierley A.S., Pond D.W. Composition of Wax ester Is Linked toDiapause Behavior of Calanus finmarchicus in a Sea Loch Environment.Limnology and Oceanography.2012,57(1):65-75.
    Conover R.J. Reproductive Cycle, Early Development, and Fecundity in LaboratoryPopulations of the Copepod Calanus Hyperboreus. Crustaceana.1967:61-72.
    Conover R.J, Huntley M. Copepods in Ice-Covered Seas—Distribution, Adaptationsto Seasonally Limited Food, Metabolism, Growth Patterns and Life CycleStrategies in Polar Seas. Journal of Marine Systems.1991,2(1):1-41.
    Coull B.C., Grant J. Encystment Discovered in a Marine Copepod. Science.1981,212:342-344.
    Cushing D. Plankton Production and Year-Class Strength in Fish Populations: AnUpdate of the Match/Mismatch Hypothesis. Advances in Marine Biology.1990,26:249-293.
    Dalsgaard J., St. John M., Kattner G., Müller-Navarra D., Hagen W. Fatty AcidTrophic Markers in the Pelagic Marine Environment. In: Advances in MarineBiology: Academic Press,2003:225-340.
    Diel S., Tande K. Does the Spawning of Calanus finmarchicus in High LatitudesFollow a Reproducible Pattern? Marine Biology.1992,113(1):21-31.
    Ederington M.C., McManus G.B., Harvey H.R. Trophic Transfer of Fatty Acids,Sterols, and a Triterpenoid Alcohol between Bacteria, a Ciliate, and theCopepod Acartia tonsa. Limnology and Oceanography.1995,40(5):860-867.
    Falk-Petersen S., Sargent J.R., Tande K.S. Lipid Composition of Zooplankton inRelation to the Sub-Arctic Food Web. Polar Biology.1987,8(2):115-120.
    Falk-Petersen S., Sargent J.R., L nne O.J., Timofeev S. Functional Biodiversity ofLipids in Antarctic Zooplankton: Calanoides acutus, Calanus propinquus,Thysanoessa macrura and Euphausia crystallorophias. Polar Biology.1999,21(1):37-47.
    Falk-Petersen S., Hagen W., Kattner G., Clarke A., Sargent J. Lipids, TrophicRelationships, and Biodiversity in Arctic and Antarctic Krill. Canadian Journalof Fisheries and Aquatic Sciences.2000,57:178-191.
    Falk-Petersen S., Mayzaud P., Kattner G., Sargent J. Lipids and Life Strategy ofArctic Calanus. Marine Biology Research.2009,5(1):18-39.
    Fiksen. The Adaptive Timing of Diapause–a Search for Evolutionarily RobustStrategies in Calanus finmarchicus. ICES Journal of Marine Science: Journaldu Conseil.2000,57(6):1825-1833.
    Folch J., Lees M., Sloane-Stanley G. A Simple Method for the Isolation andPurification of Total Lipids from Animal Tissues. Journal of Biochemistry.1956,226(1):497-509.
    Fraser A., Tocher D., Sargent J. Thin-Layer Chromatography—Flame IonizationDetection and the Quantitation of Marine Neutral Lipids and Phospholipids.Journal of Experimental Marine Biology and Ecology.1985,88(1):91-99.
    Freem C.P., WES D. Complete Separation of Lipid Classes on a Single Thin-LayerPlate. Journal of Lipid Research.1966,7:324-327.
    Graeve M., Albers C., Kattner G. Assimilation and Biosynthesis of Lipids in ArcticCalanus Species Based on Feeding Experiments with a13C Labelled Diatom.Journal of Experimental Marine Biology and Ecology.2005,317(1):109-125.
    Hagen W., Kattner G., Graeve M. Calanoides acutus and Calanus propinquus,Antarctic Copepods with Different Lipid Storage Modes Via Wax esters orTriacylglycerols. Marine Ecology Progress Series.1993,97(2):135-142.
    Hagen W., Kattner G., Graeve M. On the Lipid Biochemistry of Polar Copepods:Compositional Differences in the Antarctic Calanoids Euchaeta Antarctica andEuchirella Rostromagna. Marine Biology.1995,123(3):451-457.
    Hagen W., Van Vleet E., Kattner G. Seasonal Lipid Storage as Overwintering Strategyof Antarctic Krill. Marine Ecology Progress Series.1996,134(1):85-89.
    Hagen W., Auel H. Seasonal Adaptations and the Role of Lipids in OceanicZooplankton. Zoology.2001,104(3-4):313-326.
    Hakanson J.L. The Long and Short Term Feeding Condition in Field-Caught Calanuspacificus, as Determined from the Lipid Content. Limnology andOceanography.1984,29(4):794-804.
    Heath M., Boyle P., Gislason A., Gurney W., Hay S., Head E., Holmes S.,Ingvarsdottir A., Jonasdottir S., Lindeque P. Comparative Ecology ofover-Wintering Calanus finmarchicus in the Northern North Atlantic, andImplications for Life-Cycle Patterns. ICES Journal of Marine Science.2004,61(4):698.
    Hind A., Gurney W., Heath M., Bryant A. Overwintering Strategies in Calanusfinmarchicus. Marine Ecology-Progress Series.2000,193:95-107.
    Hirche H.J., Kattner G. Egg-Production and Lipid-Content of Calanus glacialis inSprine Indication of a Food-Dependent and Food-Independent ReproductiveMode. Marine Biology.1993,117(4):615-622.
    Hirche H.-J. Diapause in the Marine Copepod, Calanus finmarchicus—a Review.Ophelia.1996,44(1-3):129-143.
    Hopkins C.C.E., Tande K.S., Gr nvik S., Sargent J.R. Ecological Investigations of theZooplankton Community of Balsfjorden, Northern Norway: An Analysis ofGrowth and Overwintering Tactics in Relation to Niche and Environment inMetridia longa (Lubbock), Calanus finmarchicus (Gunnerus), Thysanoessainermis (Kr yer) and T. raschi (M. Sars). Journal of Experimental MarineBiology and Ecology.1984,82(1):77-99.
    Hopkins T.L., Ainley D.G., Torres J.J., Lancraft T.M. Trophic Structure in OpenWaters of the Marginal Ice Zone in the Scotia-Weddell Confluence RegionDuring Spring (1983). Polar Biology.1993a,13(6):389-397.
    Hopkins T.L., Lancraft T.M., Torres J.J., Donnelly J. Community Structure andTrophic Ecology of Zooplankton in the Scotia Sea Marginal Ice Zone inWinter (1988). Deep Sea Research Part I: Oceanographic Research Papers.1993b,40(1):81-105.
    Huang C., Uye S., Onbe T. Ontogenic Diel Vertical Migration of the PlanktonicCopepod Calanus sinicus in the Inland Sea of Japan.3. Early Summer andOverall Seasonal Pattern. Marine Biology.1993,117(2):289-299.
    Hudson E.D., Helleur R.J., Parrish C.C. Thin-Layer Chromatography-Pyrolysis-GasChromatography-Mass Spectrometry: A Multidimensional Approach toMarine Lipid Class and Molecular Species Analysis. Journal ofChromatographic Science.2001,39(4):146-152.
    Irigoien X. Some Ideas About the Role of Lipids in the Life Cycle of Calanusfinmarchicus. Journal of Plankton Research.2004,26(3):259-263.
    Johnson C.L., Leising A.W., Runge J.A., Head E.J., Pepin P., Plourde S., Durbin E.G.Characteristics of Calanus finmarchicus Dormancy Patterns in the NorthwestAtlantic. ICES Journal of Marine Science.2008,65(3):339-350.
    Jónasdóttir S.H. Lipid Content of Calanus finmarchicus During Overwintering in theFaroe–Shetland Channel. Fisheries Oceanography.1999,8:61-72.
    Kattner G., Krause M., Trahms J. Lipid Composition of Some Typical North SeaCopepods. Marine Ecology-Progress Series.1981,4:69-74.
    Kattner G., Fricke H.S.G. Simple Gas-Liquid Chromatographic Method for theSimultaneous Determination of Fatty Acids and Alcohols in Wax ester ofMarine Organisms. Journal of Chromatography A.1986,361(0):263-268.
    Kattner G., Krause M. Changes in Lipids During the Development of Calanusfinmarchicus S.L. From Copepodid I to Adult. Marine Biology.1987,96(4):511-518.
    Kattner G., Graeve M. Wax Ester Composition of the Dominant Calanoid Copepodsof the Greenland Sea/Fram Strait Region. Polar research.1991,10(2):479-485.
    Kattner G., Graeve M., Hagen W. Ontogenetic and Seasonal Changes in Lipid andFatty Acid/Alcohol Compositions of the Dominant Antarctic CopepodsCalanus propinquus, Calanoides acutus and Rhincalanus gigas. MarineBiology.1994,118(4):637-644.
    Kattner G., Hagen W. Polar Herbivorous Copepods–Different Pathways in LipidBiosynthesis. Ices Journal of Marine Science.1995,52(3-4):329-335.
    Kattner G., Hagen W., Lee R.F., Campbell R., Deibel D., Falk-Petersen S., Graeve M.,Hansen B.W., Hirche H.J., Jónasdóttir S.H., Madsen M.L., Mayzaud P.,Müller-Navarra D., Nichols P.D., Paffenh fer G.A., Pond D., Saito H., StübingD., Virtue P. Perspectives on Marine Zooplankton Lipids. Canadian Journal ofFisheries and Aquatic Sciences.2007,64(11):1628-1639.
    Kattner G., Hagen W. Lipids in Marine Copepods: Latitudinal Characteristics andPerspective to Global Warming. In: Lipids in Aquatic Ecosystems--M. Kainz,M.T. Brett, M.T. Arts, eds.: Springer New York,2009:257-280.
    Kattner G., Graeve M., Hagen W. Energy Reserves of Southern Ocean Copepods:Triacylglycerols with Unusually Long-Chain Monounsaturated Fatty Acids.Marine Chemistry.2012:7-12.
    Laender F.D., Oevelen D.V., Frantzen S., Middelburg J.J., Soetaert K. Seasonal PcbBioaccumulation in an Arctic Marine Ecosystem: A Model AnalysisIncorporating Lipid Dynamics, Food-Web Productivity and Migration.Environmental Science&Technology.2009,44(1):356-361.
    Lee H., Cho S., Kim W., Kang D. The Diel Vertical Migration of the Sound-ScatteringLayer in the Yellow Sea Bottom Cold Water of the Southeastern Yellow Sea:Focus on Its Relationship with a Temperature Structure. Acta OceanologicaSinica.2013,32(9):44-49.
    Lee R., Nevenzel J., Paffenhofer G. Wax ester in Marine Copepods. Science.1970,167:1510-1511.
    Lee R., Nevenzel J., Paffenh fer G. Importance of Wax ester and Other Lipids in theMarine Food Chain: Phytoplankton and Copepods. Marine Biology.1971a,9(2):99-108.
    Lee R.F., Hirota J., Barnett A.M. Distribution and Importance of Wax ester in MarineCopepods and Other Zooplankton. Deep Sea Research.1971b,18:1147-1165.
    Lee R.F., Nevenzel J.C., Paffenh fer G.-A. The Presence of Was Esters in MarinePlanktonic Copepods. Naturwissenschaften.1972,59(9):406-411.
    Lee R.F. Lipids in the Marine Environment. California Cooperative Oceanic FisheriesInvestigations.1972,16(1):95-102.
    Lee R., Hirota J. Wax ester in Tropical Zooplankton and Nekton and the GeographicalDistribution of Wax ester in Marine Copepods. Limnology and Oceanography.1973,18(2):227-239.
    Lee R., Nevenzel J., Lewis A. Lipid Changes During Life Cycle of Marine Copepod,Euchaeta japonica Marukawa. Lipids.1974,9(11):891-898.
    Lee R. Lipid Composition of the Copepod Calanus Hyperboreas from the ArcticOcean. Changes with Depth and Season. Marine Biology.1974a,26(4):313-318.
    Lee R.F. Lipids of Zooplankton from Bute Inlet, British-Columba. Journal of theFisheries Research Board of Canada.1974b,31(10):1577-1582.
    Lee R.F. Lipids of Arctic Zooplankton. Comparative Biochemistry and PhysiologyPart B: Comparative Biochemistry.1975,51(3):263-266.
    Lee R.F., Hagen W., Kattner G. Lipid Storage in Marine Zooplankton. MarineEcology Progress Series.2006,307:273-306.
    Lewis R. The Densities of Three Classes of Marine Lipids in Relation to TheirPossible Role as Hydrostatic Agents. Lipids.1970,5(1):151-153.
    Li C., Sun S., Wang R., Wang X. Feeding and Respiration Rates of a PlanktonicCopepod (Calanus Sinicus) Oversummering in Yellow Sea Cold BottomWaters. Marine Biology.2004,145(1):149-157.
    Lischka S., Hagen W. Seasonal Lipid Dynamics of the Copepods Pseudocalanusminutus (Calanoida) and Oithona similis (Cyclopoida) in the ArcticKongsfjorden (Svalbard). Marine Biology.2006,150(3):443-454.
    Lovern J.A. Fat Metabolism in Fishes: The Fats of Some Plankton Crustacea.Biochemical Journal.1935,29(4):847.
    Marshall S., Nicholls A., Orr A. On the Biology of Calanus Finmarchicus. V. SeasonalDistribution, Size, Weight and Chemical Composition in Loch Striven in1933,and Their Relation to the Phytoplankton. Journal of the Marine BiologicalAssociation of the United Kingdom (New Series).1934,19(02):793-827.
    Mayzaud P., Albessard E., Cuzin-Roudy J. Changes in Lipid Composition of theAntarctic Krill Euphausia superba in the Indian Sector of the Antarctic Ocean:Influence of Geographical Location, Sexual Maturity Stage and Distributionamong Organs. Marine Ecology Progress Series.1998,173:149-162.
    Miller C.B., Crain J.A., Morgan C.A. Oil Storage Variability in Calanus finmarchicus.ICES Journal of Marine Science.2000,57(6):1786-1799.
    Niehoff B. The Effect of Food Limitation on Gonad Development and Egg Productionof the Planktonic Copepod Calanus finmarchicus. Journal of ExperimentalMarine Biology and Ecology.2004,307(2):237-259.
    Norrbin M.F, Olsen R.E, Tande K. Seasonal Variation in Lipid Class and Fatty AcidComposition of Two Small Copepods in Balsfjorden, Northern Norway.Marine Biology.1990,105(2):205-211.
    Norrbin M.F. Gonad Maturation as an Indication of Seasonal Cycles for SeveralSpecies of Small Copepods in the Barents Sea. Polar Research.1991,10(2):421-432.
    Ohman M.D. On the Determination of Zooplankton Lipid Content and the Occurrenceof Gelatinous Copepods. Journal of Plankton Research.1997,19(9):1235-1250.
    Olsen R., Henderson R. The Rapid Analysis of Neutral and Polar Marine Lipids UsingDouble-Development Hptlc and Scanning Densitometry. Journal ofExperimental Marine Biology and Ecology.1989,129(2):189-197.
    Parrish C.C. Separation of Aquatic Lipid Classes by Chromarod Thin-LayerChromatography with Measurement by Latroscan Flame Ionization Detection.Canadian Journal of Fisheries and Aquatic Sciences.1987,44(4):722-731.
    Patel S., Nelson D.R., Gibbs A.G. Chemical and Physical Analyses of Wax EsterProperties. Journal of Insect Science.2000,1:1-7.
    Peters J., Renz J., van Beusekom J., Boersma M., Hagen W. Trophodynamics andSeasonal Cycle of the Copepod Pseudocalanus acuspes in the Central BalticSea (Bornholm Basin): Evidence from Lipid Composition. Marine Biology.2006,149(6):1417-1429.
    Peterson W. Life Cycle Strategies of Copepods in Coastal Upwelling Zones. Journalof Marine Systems.1998,15(1):313-326.
    Pond D., Harris R., Head R., Harbour D. Environmental and Nutritional FactorsDetermining Seasonal Variability in the Fecundity and Egg Viability ofCalanus Helgolandicus in Coastal Waters Off Plymouth, Uk. Marine EcologyProgress Series.1996,143(1):45-63.
    Pond D.W. The Physical Properties of Lipids and Their Role in Controlling theDistribution of Zooplankton in the Oceans. Journal of Plankton Research.2012,34(6):443-453.
    Pond D.W., Tarling G.A., Ward P., Mayor D.J. Wax Ester Composition Influences theDiapause Patterns in the Copepod Calanoides Acutus. Deep Sea Research PartII: Topical Studies in Oceanography.2012,59–60(0):93-104.
    Pu X.-M., Sun S., Yang B., Zhang G.-T., Zhang F. Life History Strategies of Calanussinicus in the Southern Yellow Sea in Summer. Journal of Plankton Research.2004a,26(9):1059-1068
    Pu X.-M., Sun S., Yang B., Ji P., Zhang Y.-S., Zhang F. The Combined Effects ofTemperature and Food Supply on Calanus sinicus in the Southern Yellow Seain Summer. Journal of Plankton Research.2004b,26(9):1049-1057
    Rey-Rassat C., Irigoien X., Harris R., Carlotti F.o. Energetic Cost of GonadDevelopment in Calanus finmarchicus and C. helgolandicus. Marine EcologyProgress Series.2002,238:301-306.
    Saito H., Tsuda A. Egg Production and Early Development of the Subarctic CopepodsNeocalanus Cristatus, N. Plumchrus and N. Flemingeri Deep Sea ResearchPart I: Oceanographic Research Papers.2000,47(11):2141-2158.
    Sargent J.R., Gatten R., Corner E., Kilvington C. On the Nutrition and Metabolism ofZooplankton.Xi. Lipids in Calanus Helgolandicus Grazing RiddulphiaSinensis. Journal of the Marine Biological Association of the United Kingdom.1977,57(2):525-533.
    Sargent J.R., Falkpetersen S. Ecological Investigations on the ZooplanktonCommunity in Balsfjorden, Northern Norway: Lipids and Fatty Acids inMeganyctiphanes norvegica, Thysanoessa raschi and T. inermis DuringMid-Winter. Marine Biology.1981,62(2-3):131-137.
    Schnack-Schiel S., Hagen W., Mizdalski E. Seasonal Comparison of Calanoidesacutus and Calanus propinquus(Copepoda: Calanoida) in the SoutheasternWeddell Sea, Antarctica. Marine Ecology Progress Series.1991,70(1):17-27.
    Scott C.L., Kwasniewski S., Falk-Petersen S., Sargent J.R. Lipids and Life Strategiesof Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in LateAutumn, Kongsfjorden, Svalbard. Polar Biology.2000,23(7):510-516.
    Smith S. Egg Production and Feeding by Copepods Prior to the Spring Bloom ofPhytoplankton in Fram Strait, Greenland Sea. Marine Biology.1990,106(1):59-69.
    Sun S. Over-Summering Strategy of Calanus Sinicus. GLOBEC Int Newsl.2005,11:34.
    Szakasits J.J., Peurifoy P.V., Woods L.A. Quantitative Thin-Layer ChromatographyUsing a Flame Ionization Detector. Analytical Chemistry.1970,42(3):351-354.
    T.lkeda, J.J.Torres, S.Hernandez-Leon, S.P.Geiger. Metabolism. In: Ices ZooplanktonMethodology Manual--R. Harris, P. Wiebe, J. Lenz, H.-R. Skjoldal, M.Huntley, eds. London: Academic Press,2000:455-532.
    Tande K.S., Hopkins C.C.E. Ecological Investigations of the ZooplanktonCommunity of Balsfjorden, Northern Norway: The Genital System in Calanusfinmarchicus and the Role of Gonad Development in Overwintering Strategy.Marine Biology.1981,63(2):159-164.
    Tande K.S., Henderson R. Lipid Composition of Copepodite Stages and AdultFemales of Calanus Glacialis in Arctic Waters of the Barents Sea. PolarBiology.1988,8(5):333-339.
    Tarling G., Shreeve R., Ward P., Atkinson A., Hirst A. Life-Cycle PhenotypicComposition and Mortality of Calanoides acutus (Copepoda: Calanoida) inthe Scotia Sea: A Modelling Approach. Marine Ecology Progress Series.2004,272:165-181.
    Thorisson K. How Are the Vertical Migrations of Copepods Controlled? Journal ofExperimental Marine Biology and Ecology.2006,329(1):86-100.
    Uye S.-i. Temperature-Dependent Development and Growth of Calanus Sinicus(Copepoda: Calanoida) in the Laboratory. Hydrobiologia.1988,167-168(1):285-293.
    Uye S.-i., Muras A. Relationship of Egg Production Rates of the Planktonic CopepodCalanus Sinicus to Phytoplankton Availability in the Inland Sea of Japan.Plankton Biology and Ecology.1997,44(1-2):3-11.
    Uye S.-i. Why Does Calanus Sinicus Prosper in the Shelf Ecosystem of the NorthwestPacific Ocean? ICES Journal of Marine Science.2000,57(6):1850-1855.
    Verheye H., Hagen W., Auel H., Ekau W., Loick N., Rheenen I., Wencke P., Jones S.Life Strategies, Energetics and Growth Characteristics of Calanoidescarinatus (Copepoda) in the Angola-Benguela Frontal Region. African Journalof Marine Science.2005,27(3):641-651.
    Visser A.W., Jónasdóttir S.H. Lipids, Buoyancy and the Seasonal Vertical Migrationof Calanus finmarchicus. Fisheries Oceanography.1999,8:100-106.
    Wang G., Jiang X., Wu L., Li S. Differences in the Density, Sinking Rate andBiochemical Composition of Centropages tenuiremis (Copepoda: Calanoida)Subitaneous and Diapause Eggs. Marine Ecology Progress Series.2005,288:165-171.
    Wang R., Zuo T. The Yellow Sea Warm Current and the Yellow Sea Cold BottomWater, Their Impact on the Distribution of Zooplankton in the SouthernYellow Sea. Journal Korean Society of Oceamography.2004,39(1):1-13.
    Wang S., Li C., Sun S., Ning X., Zhang W. Spring and Autumn Reproduction ofCalanus Sinicus in the Yellow Sea. Marine Ecology Progress Series.2009,379:123-133.
    Ward P., Shreeve R., Cripps G. Rhincalanus gigas and Calanus simillimus: LipidStorage Patterns of Two Species of Copepod in the Seasonally Ice-Free Zoneof the Southern Ocean. Journal of Plankton Research.1996,18(8):1439-1454.
    Wenk M.R. The Emerging Field of Lipidomics. Nat Rev Drug Discov.2005,4(7):594-610.
    Yayanos A.A., Benson A.A., Nevenzel J.C. The Pressure-Volume-Temperature (Pvt)Properties of a Lipid Mixture from a Marine Copepod, Calanus plumchrus:Implications for Buoyancy and Sound Scattering. Deep Sea Research.1978,25(3):257-268.
    Zhang G.T., Sun S., Zhang F. Seasonal Variation of Reproduction Rates and BodySize of Calanus sinicus in the Southern Yellow Sea, China. Journal ofPlankton Research.2005,27(2):135-143.
    Zhang G.T., Li C.L., Sun S., Zhang H.-Y., Sun J., Ning X.-R. Feeding Habits ofCalanus sinicus (Crustacea: Copepoda) During Spring and Autumn in theBohai Sea Studied with the Herbivore Index. Scientia Marina.2006,70(3):381-388.
    Zhang G.T., Sun S., Yang B. Summer Reproduction of the Planktonic CopepodCalanus sinicus in the Yellow Sea: Influences of High Surface Temperatureand Cold Bottom Water. Journal of Plankton Research.2007,29(2):179-186.
    陈丽华,陈钢,李少菁,郭东晖.温盐度对厦门港春季主要桡足类呼吸率影响的实验.台湾海峡.2001,20(S1):184-189.
    陈清潮.中华哲水蚤的繁殖,性比率和个体大小的研究.海洋与湖沼.1964,6(3):272-288.
    黄加祺,陈柏云.九龙江口浮游桡足类的种类组成和分布.台湾海峡.1985,4(1):79-88.
    黄加祺,李少青,陈亚萍.福建罗源湾浮游动物的种类组成和数量分布.厦门大学学报(自然科学版).1989,28(S1):85-95.
    金鑫.黄东海浮游食物网的初步研究[M].青岛:中国科学院海洋研究所,2011.
    李超伦,张芳,申欣,杨波,沈志良,孙松.胶州湾叶绿素的浓度分布特征及其周年变化.海洋与湖沼.2005,36(6):21-28.
    李铎,张永华.棒状薄层色谱扫描仪在不同季节蟹脂质成份分析中的应用.中国食品学报.2003,(z1):227-231.
    李少菁,陈峰,王桂忠.厦门海区浮游桡足类卵形态与孵化率的研究.厦门大学学报(自然科学版).1989,28(5):538-543.
    刘光兴,崔建丽,黄瑛.几种单胞藻对火腿许水蚤脂肪酸组成的影响.厦门大学学报(自然科学版).2006,45(2):250-255.
    刘光兴,徐东晖,邱旭春,黄瑛,崔建丽,朱丽岩.火腿许水蚤对牙鲆仔稚鱼成活,生长及脂肪酸组成的影响.中国海洋大学学报:自然科学版.2007,37(2):259-265.
    刘梦坛.脂肪酸标记在黄海生态系统营养关系研究中的指示作用[D].青岛:中国科学院海洋研究所,2010.
    刘梦坛,李超伦,孙松.脂肪酸对中华哲水蚤摄食两种海洋微藻的指示作用.生态学报.2011,31(4):933-942.
    蒲新明.中华哲水蚤夏季在南黄海的生活策略[D].青岛:中国科学院海洋研究所,2003.
    孙鲁峰,柯昶,徐兆礼,阙江龙,田丰歌.上升流和水团对浙江中部近海浮游动物生态类群分布的影响.生态学报.2013,33(6):1811-1821.
    孙松,王世伟,李超伦.黄海中华哲水蚤C5发育期油脂积累初步研究.海洋与湖沼.2011,42(2):165-169.
    万艾勇.胶州湾桡足类优势种死亡比例的研究[M].青岛:中国科学院海洋研究所,2010.
    王桂忠,吴荔生,李少菁.海洋浮游桡足类滞育及其生理生态学研究进展.厦门大学学报(自然科学版).2006,45(S2):46-53.
    王世伟.黄海中华哲水蚤繁殖种群补充与生活史研究[D].青岛:中国科学院海洋研究所,2009.
    翁学传,王从敏.黄海冷水团边界及温盐范围的确定.中国湖沼学会水文气象学术会议论文集.1980:61-70.
    徐兆礼,崔雪森,陈卫忠.东海浮游桡足类的种类组成及优势种.水产学报.2004,28(1):35-40.
    于非,张志欣,刁新源,郭景松,汤毓祥.黄海冷水团演变过程及其与邻近水团关系的分析.海洋学报.2006,28(5):26-34.
    张芳,孙松.中华哲水蚤生态学研究进展.海洋科学.2001,25(11):16-19.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.