粒子群优化算法的改进研究及在石油工程中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油工程中的很多问题都可以抽象为优化问题。面对这些复杂优化问题,传统优化方法往往无能为力,于是智能优化方法成为解决复杂优化问题的有效方法,而粒子群优化算法是得到广泛关注和应用的一种智能优化方法。
     粒子群优化算法计算简单、控制参数少、易于实现、具有较强的鲁棒性,非常适合于求解复杂优化问题,但它有易陷入局部最优、收敛精度不高等缺点。因此,本文对其在求解无约束单目标、有约束单目标和有约束多目标等优化问题时的性能进行了研究与改进,并将改进后的算法应用于几个典型的石油工程优化问题,取得了令人满意的效果。
     1.本文提出一种基于混沌变异的动态量子粒子群优化算法。该算法根据群体进化因子动态划分子群,当种群进化速度减慢时,对由适应值较差的粒子组成的子群采用混沌变异,并对全局最优位置加一小扰动,以保持种群的多样性,提高算法的全局搜索能力。对典型高维复杂函数的测试结果表明,该算法不易陷入局部极值,收敛速度快,优化效果明显优于混沌优化算法和量子粒子群优化算法,体现出良好的全局优化性能。将该方法与罚函数法相结合,应用于油田注水系统运行调度优化,取得了较好的效果。
     2.目前最常用的约束条件处理方法是惩罚函数法,但确定适当的罚因子是很困难的,常常需要多次实验来不断调整。本文提出一种基于双适应值的量子粒子群优化算法。该算法将目标函数和约束条件分离,从而赋予每个粒子双适应值,并根据这两个适应值来决定粒子优劣,同时提出保持不可行解比例的自适应策略。数值实验证明该算法在求解精度和稳定性上明显优于采用罚函数的量子粒子群优化算法和其他几种算法。将该方法应用于油田注水管网布局优化设计,取得了较好的优化效果。
     3.本文提出基于空间划分树的多目标粒子群优化算法。该算法把外部集所对应的目标空间划分为多个单元格,使用空间划分树来索引非空单元,降低了算法的时间复杂度。优先选择拥挤距离密度比最大的粒子作为全局极值,使全局极值的选取更加准确,从而使非劣解集的多样性有了进一步提高。数值实验验证了该方法的有效性。将该方法应用于油品调和优化,取得了较好的优化效果。
     4.将基于双适应值的量子粒子群优化算法分别应用于分层开发指标动态劈分预测和管道保温优化设计,都取得了很好的优化效果;将基于空间划分树的多目标粒子群优化算法分别应用于配注方案优化和管道保温优化,也都取得了令人满意的结果。
Many problems in petroleum engineering can be abstracted to optimization problems.The traditional optimization methods are powerless in dealing with these complexoptimization problems. Intelligent optimization methods have become the effective methodsto solve complex optimization problems. Particle Swarm Optimization (PSO) is an intelligentoptimization method which is concerned and used widely.
     PSO has simple calculation, less control parameters, easy realization and strongrobustness. PSO is very suitable for solving complex optimization problems. It has theshortcomings of being easy to fall into local optimum and low convergence precision.Therefore its performance is studied and improved in this paper as it is used to solve theproblems of unconstrained single objective optimization, constrained single objectiveoptimization and constrained multi-objective optimization. The improved algorithms areapplied to several typical petroleum engineering optimization problems and satisfactoryresults have been achieved.
     1. Dynamic Quantum-behaved Particle Swarm Optimization Based on Chaos (CDQPSO)is proposed in this paper. According to population evolution factor, a particle swarm will bedivided dynamically into two subgroups. When the evolution of the population slows down,chaotic mutation will be used to update the particles in the subgroup which is composed ofparticles having worse fitness values, and a small perturbation will be given to the globaloptimal particle to keep population diversity and improve the global searching ability. Thetest results of typical complex high dimension functions indicate that CDQPSO is not easy tofall into local extremum and its convergence speed is high. Its optimization effect is betterthan that of CO and QPSO. It shows good global optimization performance. Combining withpenalty function, better effect is achieved as it is applied to operation optimization of oilfieldwater injection system.
     2. Currently penalty function is most commonly used to handle the constraints. It isdifficult to determine appropriate penalty factor. It needs to be adjusted through manyexperiments. In this paper, Quantum-behaved Particle Swarm Optimization with DoubleFitness (DFQPSO) is proposed for constrained optimization. Double fitness values aredefined for every particle by separating objective function and the constraints. Whether theparticle is better or not will be decided by its two fitness values. An adaptive strategy is usedto keep a proper proportion of infeasible particles. Numerical experimental results show that DFQPSO is better on precision and convergence than QPSO using a penalty function and afew other algorithms. The effect is good when it is applied to layout optimization design ofoilfield water injection pipe network.
     3. Multi-objective Particle Swarm Optimization Based on Spatial Partition Tree(SPTMOPSO) is proposed in this paper. The target space, corresponding to archive set, isdivided into many cell-grids. Nonempty cell-grids are indexed by spatial partition tree. As aresult, the time complexity of the algorithm is cut down. The particle, whose density ratio ofcrowding distance is the largest, has priority to be selected as the global extremum. Globalextremum selection is more accurate. Pareto optimal set has better diversity. Numericalexperimental results show that SPTMOPSO is effective. The effect is good when it is appliedto oil blending optimization.
     4. The effects are good when DFQPSO is applied respectively to dynamic divisionprediction of development indexes and pipeline insulation optimization. The results aresatisfactory when SPTMOPSO is applied respectively to injection allocation schemeoptimization and pipeline insulation optimization.
引文
[1]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001,1-122.
    [2] Kennedy J, Eberhart R. Particle Swarm Optimization[C]. In: Proceeding of IEEEInternational Conference on Neural Networks, Piscataway, NJ: EEECS,1995:1942-1948.
    [3] Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]. In: Proceedingof the6th International Symposium on Micro Machine and Human Scienee, NJ: IEEECS,1995:39-43.
    [4]陈宝林.最优化理论与算法(第二版)[M].北京:清华大学出版社,2005,10.
    [5] J H Holland. Adapatation in Nature and Artifieial Systems[M].USA:The University ofMiehigan Press,1975:l-211.
    [6] Dorigo M, Maniezzo V C A.The ant system:optimization by a colony of cooperatingagents[J]. IEEE Transaction on System, Man and Cyternetics PartB,1996,26(l):29-41.
    [7] Clerc M, Kennedy J.The particle swarm-explosion, stability and convergence inmultidimesional complex space[J].IEEE Transaction on Evolutionary Computation,2002,6(1):58-73.
    [8] Ozcan E, Mohan C.Particle Swarm Optimization: Surfing the Waves[C]. In: Proceedingof1999Congress on Evolutionary Computation, IEEE CS,1999:1939-1944.
    [9] F.solis R W.Minimization by random search techniques[J].Mathematics of OperationsResearch,1981,6(l):937-971.
    [10] Van de Bergh F.An Analysis of Particle Swarm Optimizer[D].South Africa: Universityof Pretoria,2002:78-143.
    [11] Van de Bergh F, A P Engelbrecht.A study of particle swarm optimizationtrajectories[J].Information Seienees,2006,17(6):937-971.
    [12] Trelea I C.The particle swarm optimization algorithms: convergence analysis andparameter Selection[J].Information Proeessing Letters,2003,8(5):317-325.
    [13] Cai X.J.,Cui Z.H.,Zeng J.C., et al. Particle Swarm Optimization with Self-adjustingCognitive Selection Strategy[J]. International Journal of Innovative Computing,Information and Control,2008,14(4):943-952.
    [14] Zheng Y, Ma L, Zhang L.et.al.On the Convergence Analysis and ParameterSelection in Particle Swarm Optimization[C].in:Proeeeding of the Second InternationalConference on Machine Learning and Cyberneties, Xi'an,2003:1802-1807.
    [15] Zhang L, Yu H, Hu S.Optimal Choice of Parameters for Particle SwarmOptimization[J].Journal of Zhenjian University SCIENCE,2005,6A(6):528-534.
    [16]潘峰,陈杰,甘明刚等.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-375.
    [17]李宁.粒子群优化算法的理论分析与应用研究[D].武汉:华中科技大学,2007:24-67.
    [18]李宁,孙德宝,邹彤等.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,(11):2052-2061.
    [19]金欣磊,马龙华,吴铁军等.基于随机过程的PSO收敛性分析[J].自动化学报,2007,33(12):1263-1268.
    [20]申元霞,王国胤,曾传华.PSO模型种群多样性与学习参数的关系研究[J].电子学报,2011,39(6):1238-1244.
    [21]申元霞,王国胤,曾传华.相关性粒子群优化模型[J].软件学报,2011,22(4):695-708.
    [22]曾建潮,崔志华.微粒群算法的统一模型及分析[J].计算机研究与发展,2006,43(1):96-100.
    [23]迟玉红,孙富春,王维军,喻春明.基于空间缩放和吸引子的粒子群优化算法[J].计算机学报,2011,34(1):115-130.
    [24]苏守宝,曹喜滨,孔敏.群活性与粒子群优化的稳定性分析[J].控制理论与应用,2010,27(10):1411-1417.
    [25] Shi Y, Eberhart R C.A modified particle swarm optimizer[C].Proeeedings of the IEEEInternational Conference on Evolutionary Computation, Piscataway, NJ:IEEE Press,1998:69-73.
    [26] Shi Y, Eberhart RC. Fuzzy adaptive particle swarm optimization [C]. In: Proceedings ofthe IEEE International Conference on Evolutionary Computation,2001:101-106.
    [27] Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarmoptimization[C]. In: Proceedings of the1999Congress on Evolutionary Computation,Piscataway,NJ, USA: IEEE,1999:1927-1930.
    [28] Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarmoptimization[C]. In: Proceedings of the2000Congress on Evolutionary Computation,Piscataway, NJ, USA: IEEE,2000:84-88.
    [29] Rodriguez A, Reggia JA. Extending Self-organizing Particle Systems to ProblemSolving[J]. Artificial Life,2004,10(4):379-395.
    [30] Suganthan P N.Particle swarm optimiser with neighbourhood operator[C].In:Proceedings of the1999Congress on Evolutionary Computation,1999,3:1962.
    [31] Kennedy J.Small worlds and mega-minds:effects of neighborhood topology on particleswarm performance[C]. In: Proceedings of the1999Congress on EvolutionaryComputation,1999,3:1938.
    [32] Lovbjerg M, Rasussen T K, Krink T.Hybrid Particle Swarm Optimiser with Breeding andSubpopulations[C]. In: Proceedings of the third Genetic and Evolutionary ComputationConferenees, San Francisco,2001:469-476.
    [33] Kennedy J.Probability and dynamics in the particle swarm[C].2004Congress onEvolutionary Computation,2004,1:340-347.
    [34] Krohling R A.Gaussian swarm:a novel particle swarm optimization algorithm[C].2004IEEE Conference on Cybernetics and Intelligent Systems,2004, l:372-376.
    [35] Riget J, Vesterstroem J.A diversity-guided particle swarm optimizer-theARPSO[R].Department of Computer Science, University of Aarhus,2002.
    [36] Van den Bergh F,Engelbrecht A P. A cooperative approach to particle swarmoptimization[C]. IEEE Trans. on Evolutionary Computation,2004,8(3):225-239.
    [37] Iwamatsu M. Locating all global minima using multi-species particle swarm optimizer:the inertia weight and the constriction factor variants[C].In: Proceedings of2006IEEECongress on Evolutionary Computation. Vancouver, BC, Canada,2006:816-822.
    [38] Seo J H, Im C H, and et al. Multimodal Function Optimization Based on Particle SwarmOptimization[J]. IEEE Trans. on Magnetics,2006,42(4):1095-1098.
    [39] Gang Ma, Wei Zhou, Xiaolin Chang.A novel particle swarm optimization algorithmbased on particle migration[J]. Applied Mathematics and Computation,2012,218(11):6620-6626.
    [40] Kennedy J and Mendes R. Population structure and particle swarm performance[C]. In:proc. IEEE Congress on Evolutionary Computation, May2002, vol.2:1671-1676.
    [41] Mendes R, Kennedy J and Neves J. The fully informed particle swarm: Simpler, maybebetter[C]. IEEE Trans. Evolutionary Computation, June2004,8(6):204–210.
    [42] Angeline P. Evolutionary optimization versus particle swarm optimization: Philosophyand performance differences[C]. In: Proceedings of evolutionary programming VII,1998:601–610. Berlin: Springer.
    [43] Miranda V, Fonseca N. New evolutionary particle swarm algorithm (EPSO) applied tovoltage VAR control[C]. In: Proceedings of the14th power systems computationconference (PSCC),2002:1–6.
    [44] Wei C, He Z, Zhang Y and Pei W. Swarm directions embedded in fast evolutionaryprogramming[C]. In: Proceedings of the IEEE congress on evolutionary computation(CEC),2002:1278–1283.
    [45] Poli R, and Stephens CR. Constrained molecular dynamics as a search and optimizationtool[C].In M. Keijzer et al.(Eds.), Lecture notes in computer science: Vol.3003. In:Proceedings of the7th Europeanconference on genetic programming (EuroGP),2004:150–161.
    [46] Hendtlass T. A combined swarm differential evolution algorithm for optimizationproblems[C].In L. Monostori, J. Váncza&M. Ali (Eds.), Lecture notes in computerscience: Vol.2070.In: Proceedings of the14th international conference on industrial andengineering applications of artificial intelligence and expert systems (IEA/AIE),2001:11–18.
    [47] Zhang WJ, Xie XF. DEPSO: hybrid particle swarm with differential evolutionoperator[C]. In: Proceedings of the IEEE International conference on systems, man andcybernetics(SMCC),2003:3816–3821.
    [48] Poli R, Di Chio Cand Langdon WB. Exploring extended particle swarms: a geneticprogramming approach[C]. In H.-G. Beyer, et al.(Eds.), GECCO2005. In: Proceedingsof the2005conference on genetic and evolutionary computation,2005:169–176.
    [49] Poli R, Langdon WB, Holland O. Extending particle swarm optimization via geneticprogramming[C]. In M. Keijzer et al.(Eds.), Lecture notes in computer science: Vol.3447. In: Proceedings of the8th European conference on genetic programming,2005b:291–300.
    [50] Katare S, Kalos A, West D. A Hybrid Swarm Optimizer for Efficient ParameterEstimation[C].In: Proceedings of the IEEE Congress on Evolutionary Computation,2004,309-315.
    [51] Sabat S.L., Ali L., Udgata S.K.. Integrated Learning Particle Swarm Optimizer forGlobal Optimization[J]. Applied Soft Computing,2011,11(1):574-584.
    [52] Wang Y., Li B., Weise T., et al. Self-adaptive Learning based Particle SwarmOptimization [J]. Information Science, doi:10.1016/j.ins.2010.07.013.
    [53]赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044.
    [54]高海兵,周驰,高亮.广义粒子群优化模型[J].计算机学报,2005,28(12):1980-1987.
    [55]崔志华,曾建潮.基于微分模型的改进微粒群算法[J].计算机研究与发展,2006,43(4):646-653.
    [56]吕艳萍,李绍滋,陈水利,郭文忠,周昌乐.自适应扩散混合变异机制微粒群算法[J].软件学报,2007,18(11):2740-2751.
    [57]胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868.
    [58]胡建秀,曾建潮.二阶微粒群算法[J].计算机研究与发展,2007,44(11):1825-1831.
    [59]介婧,曾建潮,韩崇昭.基于群体多样性反馈控制的自组织微粒群算法[J].计算机研究与发展,2008,45(3):464-471.
    [60]倪庆剑,张志政,王蓁蓁,邢汉承.一种基于可变多簇结构的动态概率粒子群优化算法[J].软件学报,2009,20(2):339-349.
    [61]陶新民,徐晶,杨立标,刘玉.改进的多种群协同进化微粒群优化算法[J].控制与决策,2009,24(9):1406-1411.
    [62]高芳,崔刚,吴智博,杨孝宗.一种新型多步式位置可选择更新粒子群优化算法[J].电子学报,2009,37(3):529-534.
    [63]窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904.
    [64]高岳林,李会荣.非线性约束优化问题的混合粒子群算法[J].计算数学,2010,32(2):135-146.
    [65]任子晖,王坚.加速收敛的粒子群优化算法[J].控制与决策,2011,26(2):201-206.
    [66]刘朝华,张英杰,章兢,吴建辉.一种双态免疫微粒群算法[J].控制理论与应用,2011,28(1):65-72.
    [67] Riccardo Poli.An Analysis of Publications on Particle Swarm OptimizationApplications[R].London:Department of Computer Science in University ofEssex,2007:l-41.
    [68] Riccardo Poli, James Kennedy, Tim Blackwell. Particle swarm optimization, Anoverview[J].Swarm Intelligence,2007, l(l):33-57.
    [69] F Van den Bergh, A P Engelbrecht.Cooperative learning in neural networks using Particleswarm Optimizers[J].South African Computer Journal,2000,26(l):84-90.
    [70]刘宇,覃征,卢江,史哲文.多模态粒子群集成神经网络[J].计算机研究与发展,2005,42(9):1519-1526.
    [71]于广滨,李瑰贤,金向阳,白彦伟.改进的粒子群动态过程神经网络及其应用[J].吉林大学学报(工学版),2008,38(5):1141-1145.
    [72]高海兵,高亮,周驰,喻道远.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574.
    [73]吕强,俞金寿.基于粒子群优化的自组织特征映射神经网络及应用[J].控制与决策,2005,20(10):1115-1119.
    [74]刘坤,谭营,何新贵.基于粒子群优化的过程神经网络学习算法[J].北京大学学报(自然科学版),2011,47(2):238-244.
    [75] Tiagl Sousa, Arlindo Silva, Ana Neves.Particle Swarm based Data MiningAlgorithms for classification taskslJ].Parallel Computing,2004,30(5-6):767-783.
    [76] Christopher K M, Kevin D, seppij.Bayesian Optimization Models for ParticleSwarms[C].In: Proceedings of the2005conference on Genetic and evolutionarycomputation, New York, USA:ACM,2005:193-200.
    [77] Tao Du, S S Zhang, Zongjiang Wang.Efficient Learning Bayesian Networks UsingPSO[J].Lecture notes in computer science,2005,3801(2005):151-156.
    [78] Dw Van Der Merwe, Ap Engelbrecht.Data Clustering using Particle SwarmOptimization[C].The2003Congress on Evolutionary Computation,2003:215-220.
    [79] Walter Cedeno, Dimitris K Agrafiotis.Using Particle swarms for the development ofQSAR models based on K-nearest neighbor and kemel regression[J].Journal ofComputer-Aided Molecular Design,2003,17(2-4):255-263.
    [80]吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法[J].机器人,2009,31(6):556-560.
    [81]邓高峰,张雪萍,刘彦萍.一种障碍环境下机器人路径规划的蚁群粒子群算法[J].控制理论与应用,2009,26(8):879-883.
    [82]毛宇峰,庞永杰.改进粒子群在水下机器人路径规划中的应用[J].计算机应用,2010,30(3):789-792.
    [83]蒲兴成,张军,张毅.基于时变适应度函数的改进粒子群算法及其在移动机器人路径规划中的应用[J].计算机应用研究,2010,27(12):4454-4463.
    [84]马千知,雷秀娟.改进粒子群算法在机器人路径规划中的应用[J].计算机工程与应用,2011,47(25):241-244.
    [85] Li B.B., Wang L, Liu B. An effective PSO-based Hybrid Algorithm for Multi-objectivePermutation Flowshop Scheduling [J]. IEEE Transactions on Systems, Man andCybernetics-Part A: Systems and Humans,2008,38(4):818-831.
    [86] Chen W., Zhang W.G.. The Admissible Portfolio Selection Problem with TransactionCosts and an Improved PSO Algorithm [J]. Physics A389,2010,2070-2076.
    [87] Zhang X.L., Zhang W.G, Xu W.J., et al. Possibilistic Approaches to Portfolio SelectionProblem with General Transaction Costs and a CLPSO Algorithm [J]. ComputationalEconomics,2010,36:191–200.
    [88] Jarboui B., Damak N., Siarry P. A.. A Combinatorial Particle Swarm Optimization forSolving Multi-mode Resource-constrained Project Scheduling Problems [J]. AppliedMathematics and Computation,2008,195(1):299-308.
    [89] Jun Sun,Bin Feng,Wenbo Xu.Particle Swarm optimization with particles having quantumbehavior[C].Congress on Evolutionary Computation,2004:325-331.
    [90] Sun J, Xu W B.A global search strategy of quantum-behaved particle swarmoptimization[C].In: Proceedings of the IEEE Congress on Cybemetics and IntelligentSystem,2004:111-116.
    [91]孙俊.量子行为粒子群优化算法研究[D].无锡:江南大学,2009.
    [92]管芳景,须文波,孙俊,张春燕.QPSO算法求解无约束多目标优化问题[J].计算机工程与设计,2007,28(14):3285-3290.
    [93]李盘荣,须文波.基于QPSO方法优化求解TSP[J].计算机工程与设计,2007,28(19):4738-4740.
    [94]康燕,冯海朋,须文波,杨燕萍.合作的具有量子行为粒子群优化算法[J].计算机工程与应用,2010,46(4):39-42.
    [95]程伟,陈森发.权重自适应调整的混沌量子粒子群优化[J].计算机工程与应用,2010,46(9):46-48.
    [96]李壮阔,李宁.改进的耗散量子粒子群优化算法及其应用[J].计算机应用研究,2010,27(8):2923-2925.
    [97]周頔,孙俊,须文波.具有量子行为的协同粒子群优化算法[J].控制与决策,2011,26(4):582-586.
    [98]龙海侠,马生全.基于多样性变异的量子行为粒子群优化算法[J].计算机应用研究,2011,28(6):2064-2066.
    [99]童小念,施博,王江晴.基于量子粒子群算法的双阈值图像分割方法[J].四川大学学报(工程科学版),2010,42(3):132-138.
    [100]颜惠琴,吴锡生.基于高斯扰动量子粒子群优化的图像分割算法[J].计算机仿真,2011,28(3):275-278.
    [101]李晓,黄纯.电力系统故障诊断的量子粒子群优化算法[J].电力系统及其自动化学报,2011,23(4):61-66.
    [102]基于量子粒子群混合算法的电力系统无功优化[J].华中电力,2011,24(2):16-19.
    [103]许东杰,贾春玉,崔艳超,叶亚宁.基于量子粒子群算法的BP网络板形模式识别研究[J].燕山大学学报,2011,35(1):35-39.
    [104]王坤,张洪,杨柳,柴志雷.基于量子粒子群算法的机器人路径规划[J].机器人技术,2010,26(4-2):155-156.
    [105]Moore, J. and Chapman, R. Application of Particle Swarm to Multi-objectiveOptimization[D]. Department of Computer Science and Software Engineering, AuburnUniversity,1999.
    [106]K.E. Parsopoulos, M.N. Vrahatis. Particle swarm optimization method in multiobjectiveproblems[C].2002: ACM.
    [107]U.Baumgartner,C.Magele,W.Renhart. Pareto optimality and particle swarm optimization.Magnetics[J], IEEE Transactions on,2004.40(2):1172-1175.
    [108]张利彪,周春光.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291.
    [109]X. Hu, R. Eberhart. Multiobjective optimization using dynamic neighborhood particleswarm optimization[J]. In: Proceedings of the Evolutionary Computation on,2002:1677-1681.
    [110]X. Hu, R.C. Eberhart,Y. Shi. Particle swarm with extended memory for multiobjectiveoptimization[J].2003: IEEE.
    [111]Parsopoulos, K.E., Tasoulis, D.K., and Vrahatis, M.N. Multiobjective optimization usingparallel vector evaluated particle swarm optimization[C].In: Proceedings of the IASTEDInternational Conference on Artificial Intelligence and Applications,2004,volume2,823–828.
    [112]Chow, C. and Tsui, H. Autonomous agent response learning by a multi-species particleswarm optimization[C]. In Congress on Evolutionary Computation, CEC2004,2004,volume1,778–785.
    [113]Coello, C.A.C., Pulido, G.T., and Lechuga, MS. Handling multiple objectives withparticle swarm optimization[J]. IEEE Transactions on Evolutionary Computation,2004,8(3):256–279.
    [114]Fieldsend, J. and Singh, S. A multi-objective algorithm based upon particle swarmoptimization, an efficient data structure and turbulence[C]. In: Proceedings of The UKWorkshop on Computational Intelligence,2002:34–44.
    [114]Mostaghim, S. and Teich, J. The role of ε-dominance in multi objective particle swarmoptimization methods[C]. In: Proceedings of the2003Congress on EvolutionaryComputation,2003:1764–1771.
    [116]Sierra, M.R. and Coello, C.A.C. Improving pso-based multi-objective optimization usingcrowding, mutation and ε-dominance[C]. The Third International Conference onEvolutionary Multi-Criterion Optimization,EMO2005,2005:505–519.
    [117]Ho, SL., Yang, S., Ni, G., Lo, EWC., and Wong, HC. A particle swarmoptimization-based method for multiobjective design optimizations[J]. IEEETransactions on Magnetics,2005,41(5):1756–1759.
    [118]陈民铀,张聪誉,罗辞勇.自适应进化多目标粒子群优化算法[J].控制与决策,2009,24(12):1851-1855.
    [119]胡广浩,毛志忠,何大阔.基于两阶段领导的多目标粒子群优化算法[J].控制与决策,2010,25(3):404-410.
    [120]张勇,巩敦卫,任永强,张建化.用于约束优化的简洁多目标微粒群优化算法[J].电子学报,2011,39(6):1436-1440.
    [121]Liu, D., Tan, KC., Goh, CK., and Ho, WK. A Multiobjective Memetic Algorithm Basedon Particle Swarm Optimization[C]. IEEE Transactions on Systems, Man andCybernetics, Part B,2007,37(1):42–50.
    [122]Li, X. Better spread and convergence: Particle swarm multiobjective optimization usingthe maximin fitness function[C]. In: Proceeding of the Genetic and EvolutionaryComputation, Springer,2004:117–128.
    [123]Balling, R. The maximin fitness function; multiobjective city and regional planning[C].Second International Conference on Evolutionary Multi-Criterion Optimization, EMO,Springer,2003:1–15.
    [124]Mahfouf, M., Chen, M.Y., and Linkens, D.A. Adaptive weighted particle swarmoptimisation for multi-objective optimal design of alloy steels[C]. In: Proceedings ofParallel Problem Solving from Nature-PPSN VIII, Springer,2004:762–771.
    [125]F. van den Bergh,A.P.Engelbrecht.Effects of swarm size on cooperative particle swarmoptimisers[C].In: Proceedings of the Genetic and Evolutionary ComputationConference,San Francisco,USA,2001.
    [126]A. Ratnaweera,S.K. Halgamuge,H.C. Watson. Self-organizing hierarchical particleswarm optimizer with time-varying acceleration coefficients[J]. EvolutionaryComputation, IEEE Transactions on,2004.8(3):240-255.
    [127]Mendes R.Population Topologies and Their Influence in Particle SwarmPerformance[D].Lisbon,Portugal:University of Minho,2004.
    [128]Mikki S.,Kishk A.A.Investigation of the quantum Partiele swarm optimization teehniquefor electromagnetic applications[C].2005IEEE Antennas and Propagation SocietyInternational Symposium, Volume:2A:45-48.
    [129]王小刚.一种新的多目标粒子群算法的研究与应用[J].东北大学学报(自然科学版),2008,29(10).
    [130]李宁.基于粒子群的多目标优化算法[J].计算机工程与应用,2005.,41(23).
    [131]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [132]李兵,蒋慰孙.混沌优化方法及其应用.控制理论及应用[J].1997,14(4):613-615.
    [133]Holland J H, Reitman J S. Cognitive Systems Based on Adaptive Algorithms[M].Waterman D A&Hayes–Roth F Eds. Pattern Directed Inference Systems, NewYork:Academic Press,1978,313-329.
    [134]纪震,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社.2009,72-89.
    [135]丰国斌.油田注水系统节能[J].石油规划设计,1996,7(2):7-9.
    [136]多源油田注水系统运行调度优化[J].石油钻采工艺,2007,29(3):59-62.
    [137]Powell D,Skolnick M.Using genetic algorithms in engineering design optimization withnonlinear constraints[C].In: Proceedings of the5th International Conference on GeneticAlgorithms. SanMateo, CA: Morgan Kaufmann Publishers,1993:424-430.
    [138]詹士昌.基于退火不可行度的约束优化问题遗传算法[J].应用基础与工程科学学报.2004,12(3):229~304.
    [139]潘正君,康立山.演化计算[M].北京:清华大学出版社.2001.
    [140]Mitsuo Gen,Runwei Cheng. Genetic algorithms and engineering design [M]. New York:John Wiley&Sona Press.1997.
    [141]张春慨,邵惠鹤.自适应乘子在工程优化问题中的应用[J].控制与决策.2001,16(6):669-672.
    [142]Homaifar A, S H Y Lai, X Qi. Constrained optimization via genetic algorithms[J].Simulation,1994,62(4):242-254.
    [143]David M Himmelblau. Applied nonlinear programming[M].New York:McGraw-HillPress.1972.
    [144]王兴峰,赵兰水,葛家理.原油集输网络系统优化软件的开发[J].西安石油学院学报,2001,16(5):33-36.
    [145]顾艳秋,刘开伦,唐旭.注水管网布局优化设计[J].内蒙古石油化工,2007;33(10):138-139.
    [146]韩二涛,蒋建勋,王永清.油田地面注水管网布局优化中的遗传算法[J].断块油气田,2005;12(5):22-24.
    [147]任伟建,黄晶,杨有为,孟翠茹.基于改进粒子群算法的油田注水管网优化设计[J].科学技术与工程,2009,9(11):2929-2933.
    [148]G. Vaně ek Jr. Brep-index: A multidimensional space partitioning tree[C].1991: ACM.
    [149]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社,2009,47-48.
    [150]D.A. Van Veldhuizen, G.B. Lamont. Multiobjective evolutionary algorithm research: Ahistory and analysis[C]. Air Force Inst. Technol., Dayton, OH, Tech. Rep. TR-98-03,1998.
    [151]J.R. Schott. Fault tolerant design using single and multicriteria genetic algorithmoptimization[J].1995, Storming Media.
    [152]公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009.20(2):271-289.
    [153]廖良才,谭跃进,邓宏钟.成品油调合优化模型及其应用研究[J].模糊系统与数学,2003.17(004):104-110.
    [154]王继东,王万良.基于遗传算法的汽油调和生产优化研究[J].化工自动化及仪表,2005.32(001):6-9.
    [155]张建明,冯建华.两群微粒群算法及其在油品调和优化中的应用[J].化工学报,2008.59(7):1721-1726.
    [156]李世军.油田生产系统整体优化理论与方法[D].大庆:大庆石油学院,2005.
    [157]施振球.动力管道手册[M].北京:机械工业出版社,1994.
    [158]章熙民.传热学[M].北京:中国建筑工业出版社,1993.
    [159]夏敏文.热能工程设计手册[M].北京:化学工业出版社,1998.
    [160]李鸿发.设备及管道的保冷与保温[M].北京:化学工业出版社,2002.
    [161]Mitsuo Gen,Runwei Cheng. Genetic algorithms and engineering design [M]. New York:John Wiley&Sona Press.1997.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.