5-FU-N-琥珀酰壳聚糖纳米粒制备及肿瘤靶向性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
N-琥珀酰壳聚糖(N-succinyl-chitosans,Suc-Chi)是由壳聚糖和丁二酸酐反应合成的一种羧基酰化的水溶性壳聚糖衍生物。N—琥珀酰壳聚糖是一种两亲聚合物,具有较好的生物相溶性,较低的毒性、较长的体内半期及肿瘤亲和性。这些特性使其成为一种新型“隐形NPs”和“高肿瘤趋向性NPs”的较为理想载体材料。
     本文设计以N-琥珀酰壳聚糖为载体,5-氟尿嘧啶为抗肿瘤模型药,制备纳米粒(5-FU-Suc-Chi/NPs)。5-FU-Suc-Chi/NPs肿瘤靶向传递系统的研究结果,证实了5-FU-Suc-Chi/NPs具有长循环特性,并可以通过EPR效应及其对肿瘤的亲和力实现肿瘤靶向。本文研究的主要方法、内容和结论包括以下几个方面:
     1 N-肛琥珀酰壳聚糖的制备及结构表征:采用非均相法以二甲亚砜作为溶剂,合成N-琥珀酰壳聚糖,通过IR、~1H NMR、~(13)C NMR对产物进行结构确证。采用灰分分析法测定Suc-Chi样品取代度,并通过~1H NMR法验证。
     2 N-琥珀酰壳聚糖理化性质及药用特性:N-琥珀酰壳聚糖是一种聚两性电解质,Suc-Chi(DS=0.33)在4.5~6.8 pH值范围内不溶,在pH 4.5以下和pH 6.8以上溶解性较好;Suc-Chi(DS=0.33)等电点(pI)为5.20,玻璃化温度(Tg)为304.16℃;Suc-Chi(DS=0.33)zata电位(ξ)随pH增大而降低,在pH约为5.0时zata电位等于零;Suc-Chi(DS=0.33)油/水分配系数(P_(app))在pH 5.87达到最大值,P_(app))0.16。采用凝胶渗透色谱法(GPC)法测定N-琥珀酰壳聚糖不同降解产物的分子量(Mw)。
     3 5-FU-Suc-Chi/NPs制备及工艺处方优化:采用乳化溶剂扩散法制备5-FU-Suc-Chi/NPs。建立纤维素酶降解法测定5-FU-Suc-Chi/NPs包封率的分析方法。以包封率、载药量、粒径为评价指标,在单因素实验基础上,按正交设计L_9(3~4)表进行试验,优化处方。最优处方:5-FU初始浓度为1000μg/mL;乙醇与Span-80体积比为1∶4;Suc-Chi浓度为4mg/mL;超声时间为5 min。
     4 5-FU-Suc-Chi/NPs理化特征及体外释放行为:采用透射电镜和扫描电镜观察5-FU-Suc-Chi/NPs外观形态,激光粒度仪测定其粒径,结果表明5-FU-Suc-Chi/NPs外观平滑呈球形或类球形,形态比较均匀完整;分散性好,粒径分布窄,呈正态分布,其平均粒径为236.6±64.7 nm;zeta电位为-27.2±0.2 mv;包封率和载药量分别为62.36±0.74%和18.98±0.68%。
     采用透析袋法测定5-FU-Suc-Chi/NPs体外释药速度,在释药的初始阶段出现突释,1h药物释放达到45%,24小时达到67%,随后持续缓慢释放一直到第4d。5-FU注射液释药速度较快,1h基本释药完毕。两者体外释药存在显著差异(P<0.05),说明5-FU-Suc-Chi/NPs有明显的缓释作用。5-FU-Suc-Chi/NPs释放速度随介质pH值升高而减慢。5-FU初始浓度与5-FU-Suc-Chi/NPs释药量之间不存在线性关系。采用Origin7.5软件拟合药物体外释药模型的研究表明,5-FU注射液的释放符合一级动力学方程,5-FU-Suc-Chi/NPs的释放较符合双指数双相动力学模型。
     5 5-FU-Suc-Chi/NPs的体内组织分布及靶向性:采用流式细胞仪检测荧光强度来评价FITC-Suc-Chi/NPs与K562白血病肿瘤细胞之间的亲和性。结果表明,FICT-Suc-Chi/NPs与FICT-CS/NPs对K562白血病肿瘤细胞都具有较高的亲和力,两者相比FICT-Suc-Chi/NPs的亲和力更强。建立FITC-Suc-Chi/NPs的体内荧光分析方法,检测空白Suc-Chi/NPs在Sarcoma180-荷瘤小鼠体内组织分布,并通过组织切片的荧光显微照片确证FICT-Suc-Chi/NPs的组织分布结果。研究发现,FICT-Suc-Chi/NPs能够长时间的滞留在血液中,在各组织及血浆中分布的数量次序依次为肾>肿瘤>血液>肝>脾>肺。结果表明,FICT-Suc-Chi/NPs具有长循环特性和肿瘤靶向性。
     建立5-FU体内分析方法,评价5-FU-Suc-Chi/NPs在荷瘤小鼠体内靶向性。研究发现,5-FU-Suc-Chi/NPs中的5-FU能够在血中长时间的滞留,与5-FU原形药相比较具有明显的缓释作用。5-FU-Suc-Chi/NPs中的5-FU在荷瘤小鼠体内分布趋势为:1 h时,肝>肿瘤>血>肾>脾>心>肺;1d时,肿瘤>肝>脾>肾>血>肺>心;3d时,肿瘤>肝>肾>脾>血>肺>心。表明5-FU-Suc-Chi/NPs具有肿瘤靶向作用,可降低心脏、肾脏的毒副作用。肿瘤相对摄取率Re和峰浓度比Ce分别为:9.43±1.86,2.75±0.26,说明5-FU-Suc-Chi/NPs对肿瘤的趋向性大于5-FU注射液。
     6 5-FU-Suc-Chi/NPs的药动学及药效学:建立5-FU在大鼠血浆中分析方法,5-FU-Suc-Chi/NPs在大鼠体内动力学研究发现,5-FU-Suc-Chi/NPs与5-FU注射液的主要药物动力学参数之间存在显著性差异。5-FU-Suc-Chi/NPs的T_(1/2)显著延长11.98倍,AUC显著增大3.5倍,MRT显著延长11.8倍,CL显著减小0.124倍;表明5-FU-Suc-Chi/NPs具有长循环特性,实现了药物的缓释作用。
     5-FU-Suc-Chi/NPs在Sarcoma 180-荷瘤小鼠体内药效学的研究表明,5-FU-Suc-Chi/NPs与5-FU注射液相比较,5-FU-Suc-Chi/NPs能够更有效地抑制Sarcoma 180肿瘤的生长,而且组织毒性较温和。
N-Succinyl-chitosan (Suc-Chi) was obtained by introduction of succinyl groups into chitosan N-terminal of the glucosarnine units. Suc-Chi, the amphiphilic copolymers is ideal as a novel carrier for stealthy nanoparticles and Tumor-targeted nanoparficles because of its good solubility, biocompatibility, low toxicity and long-term retention in the body and high affinity to tumor cells.
     In our study, 5-fluorouracil (5-FU) loaded N-Succinyl-chitosan (Suc-Chi) nanoparticles (5-FU-Suc-Chi/NPs) have been developed. The experimental results, which tumour targeted delivery system of 5FU-Suc-Chi/NPs were investigated, demonstrated that 5FU-Suc-Chi/NPs could be circulated in blood for a longer time and achieve effective tumor-specific drug delivery due to the enhanced permeability and retention (EPR) effect and its high affinity to tumor cells. Six main sections were included in this paper:
     1. Synthesis of N-succinyl-chitosan and its identification: A simple ring-opening reaction in dimethyl sulfoxide system was developed to synthesize successfully N-succinyl-chitosan. Suc-Chi was characterized by FTIR, ~1H NMR, ~(13)C NMR. The degree of substitution (DS) was determined by cineration assay and testified further by ~1H NMR.
     2. Physical-chemical properties of N-succinyl-chitosan: Suc-Chi have a property as polyampholyte. Suc-Chi (DS=0.33) showed the good solubility in the acidic region below pH 4.5 and the basic region above pH 6.8. the N-acylated derivative couldn't dissolved between pH. 4.5-6.8; The Isoelectric point (pI) of Suc-Chi (DS=0.33) is pH. 5.26; we concluded the glass transition temperatrure(Tg) at about 304.16℃; At pH 5.87, the octanol/water partition coefficient (P_(app)) achieves its maximum P_(app), which is 0.16; The molecular weights (M_w) of the products were determined by gel permeation chromatography (GPC).
     3. Preparation of 5-FU-Suc-Chi/NPs and optimization to the formulation: 5-FU-Suc-Chi-nanoparticles were prepared by a emulsification solvent diffusion method. A cellulase degradation method was developed to determine the entrapment efficiency (EE) of 5-FU-Suc-Chi/NPs. The formulation of 5-FU-Suc-Chi/NPs was optimized by orthogonal design on the basis of expcrimention of the effects of formulation and preparation factors. The ideal combination preparation and formulation is the initial 5-FU concentration: 1000μg/ml; ethanol: Span-80(v/v)=1:4; Suc-Chi concentration: 4mg/ml; ultrasonication time: 5min.
     4. Physieo-ehemieal characterization and in vitro evaluation of 5-FU-Sue-Chi/NPs: The morphological examination of the Suc-Chi nanopaxficles was performed using the transmission electron microscope and the scan electron microscope, The size (Z-average mean) and zeta potential of the nanopaxticles were analyzed by Zeta PotentiaL AnaLyzer. The obtained Suc-Chi nanoparticles was regular spherewith same particle size. The 5-FU entrapment efficiency of the nanoparticles and their loading capacity were 62.36±0.74% and 18.98±0.68% respectively. The Suc-Chi nanoparticles have a particle diameter (Z-average)approximately(236.6±64.7) nm and a negative zeta potential (-27.2±0.2) mV.
     A burst release was found in the initial 1hour followed by a continuous sustained release in vitro from 5-FU-Suc-Chi/NPs for 4 days, the drug of 5-FU injections was released completely within 1h. The drug release from 5-FU-Suc-Chi/NPs was sustained evidently compared with 5-FU injections. The drug release from 5-FU-Suc-Chi/NPs decreased with the increase of pH. The concentration-time curves of 5-FU and 5-FU-Suc-Chi/NPs were fitted to the first class kinetic equation and the bi-exponent and bi-phase kinetic equations respectively.
     5. In vivo biodistribution and evaluation for tumor targeting of 5-FU-Sue-Chi/NPs: The binding of Suc-Chi/NPs to human chronic myelogenous leukemia cell lines K562 cells was evaluated by using flow cytometry. The results of flow cytometry analysis demonstrated that the Suc-Chi/NPs and CS/NPs were able to bind to K562 cells effectively, the Suc-Chi/NPs displayed higher affinity to k562 cells than CS/NPs.
     The distributed amount of FITC-Suc-Chi/NPs in tissues and blood of Sarcoma180-bearing mice was estimated by the fluorescence measurement. These observations were further confirmed by our fluorescence microscopy results of the tissues sections. The rank order of tissue distribution was kidney>tumor>blood>liver>spleen>lung. The results revealed that Suc-Chi/NPs were accumulated in the tumor tissue due to the EPR effect and its long systemic retention in blood circulation.
     A simple HPLC method was developed for the quantitation of 5-fluorouracil in vivo to evaluate the biodistribution and tumor selectivity of 5-FU-Suc-Chi/NPs in Sarcoma 180-beating mice. The 5-FU-Suc-Chi/NPs could be sustained at a high level in blood throughout a very long time, implying its long systemic retention in blood circulation. 5-FU-Suc-Chi/NPs were distributed mainly in tumor, liver and a small quantity of 5-FU-Suc-Chi-NPs was found in kidney and speen. 5-FU-Suc-Chi/NPs scarcely accumulated in the heart and lung, lowered the toxic effect of 5-FU to them. The results indicates that longevity in blood circulation and tumor targeting of 5-FU-Suc-Chi/NPs should be achieved. The relative tumor tissue exposures (Re)and the ratios of peak concentrations(Ce) were 9.43±1.86 and 2.75±0.26 respectively. This showed that the tumor affinity of 5-FU-Suc-Chi/NPs was increased Compared with 5-FU.
     6. In vivo pharmacokineties and pharmacodynamies of 5-FU-Sue-Chi/NPs: Pharmacokinetic analysis in plasma of showed that the T_(1/2) of 5-FU-Suc-Chi/NPs was 11.98-fold of that of 5-FU, the AUC of serum of 5-FU-Sue-Chi/NPs was 3.5-fold of that of 5-FU, the MRT of 5-FU-Suc-Chi/NPs was 11.8-fold of that of 5-FU. The CL of 5-FU-Suc-Chi/NPs was 0.124-fold of that of 5-FU. The results further showed that the long-circulation characteristics of 5-FU-Suc-Chi/NPs was evident.
     The anti-tumor activity of 5-FU-Suc-Chi-NPs were evaluated by measuring the change in the tumor volume of Sarcoma180-bearing mice after intravenous injection of Suc-Chi/NPs, 5-FU-Suc-Chi/NPs, and 5-FU. The 5-FU-Suc-Chi/NPs showed good antitumour activities against Sarcoma 180 solid tumour and mild toxicity, compared with 5-FU injections.
引文
[1] Leaf C. Why we're losing the war on cancer (and how to win it) [J]. Fortune. 2004, 149(6): 76-82, 84-86, 88
    [2] Barichello JM., Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method[J]. Drug Dev. Ind. Pharm. 1999, 25: 471-476.
    [3] Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumor tropic accumulation of proteins and antitumor agent SMANCS[J]. Cancer Res. 1986, 46, 6387-6392
    [4] Grossfeld G D, Carroll P R, et al. Thrombospondin-1 expression in patients with pathologic stage T3 prostate cancer undergoing radical prostatectomy: association with p53 alterations, tumor angiogenesis, and tumor progression[J]. Urology. 2002, 59(1): 97-102
    [5] Storm G, et al. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system[J]. Adv DrugDeliv Rev. 1995, 17(1): 31-48
    [6] Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease[J]. Nat. Med. 1995, 1: 27-31
    [7] Skinner S A, Tutton P J, O'Brien P E. Microvascular architecture of experimental colon tumors in the rat[J]. Cancer Res. 1990, 50(8): 2411-2417
    [8] Suzuki, M. et al. A new approach to cancer chemotherapy: selective enhancement of tumor blood flow with angiotensin Ⅱ[J]. J. Natl. Cancer Inst. 1981, 67: 663-669
    [9] Maeda, H. and Matsumura, Y. Tumoritropic and lymphotropic principles ofmacromolecular drugs[J]. Crit. Rev. Ther. Drug Carrier Syst. 1989, 6: 193-210
    [10] Iwai K, et al. Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X-ray image[J]. Cancer Res. 1984, 44(5): 2115-2121
    [11] Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumor tropic accumulation of proteins and antitumor agent SMANCS[J]. Cancer Res. 1986, 46: 6387-6392
    [12] Courtice FC. The origin of lipoproteins in lymph. In Lymph and Lymphatic system (Mayerson, H. S., ed.). Charles C. Thomas, Springfield, IL. 1963, pp. 89-126
    [13] Greish, K. et al. Enhanced permeability and retention(EPR) effect and tumorselective delivery of anticancer drugs. In Delivery of protein and peptide drugs in cancer(Torchillin, V. P., ed.). London: Imperial College Press, 2006, pp. 37-52
    [14] Stroh M. et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo[J]. Nat. Med. 2005, 11: 678-682
    [15] Kirnura NT, et al. Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration[J]. Cancer Res. 1980, 40: 2061-2068
    [16] Noguchi Y, et al. Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues[J]. Jpn J Cancer Res. 1998, 89(3): 307-314
    [17] Maeda, H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy[J]. Adv Drug Deliv Rev. 2001, 46(1-3): 169-185
    [18] Li, C. J. et al. Augmentation of tumour delivery of macromolecular drugs with reduced bone marrow delivery by elevating blood pressure[J]. Br J Cancer. 1993, 67(5): 975-980
    [19] Yuan F, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoffsize[J]. Cancer Res. 1995, 55(17): 3752-3756
    [20] Satchi-Fainaro R, et al. Polymer therapeutics for cancer:, current status and future challenges[J]. Adv. Polym. Sci. 2006, 193: 1-65
    [21] Lee BS, et al. Polycefin, a new prototype of a multiftmctional nanoconjugate based on poly(beta-L-malic acid) for drug delivery[J]. Bioconjug. Chem. 2006, 17(2): 317-326
    [22] Maeda H, et al. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS[J]. J. Control. Release. 2001, 74: 47-61
    [23] Rosenthal RA, et al. Conditioned medium from mouse sarcoma 180 cellscontains vascular endothelial growth factor[J]. Growth Factors. 1990, 4(1): 53-59
    [24] Leung DW, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen[J]. Science. 1989, 246(4935): 1306-1309
    [25] Senger DR, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid[J]. Science. 1983, 219: 983-985
    [26] Maeda H, et al. Bradykinin and nitric oxide in infectious disease and cancer[J], Immunopharmacology. 1996, 33(1-3): 222-230
    [27] Maeda H, et aI. Purification and identification of [hydroxypropyl 3]bradykinin in ascetic fluid from a patient with gastric cancer[J]. J. Biol. Chem. 1988, 263: 16051-16054
    [28] Maeda H, et al. Kallikrein-kinin in infection and cancer[J]. Immunopharmacology. 1999, 43(2-3): 115-128
    [29] Strausser HR, Humes JL. Prostaglandin synthesis inhibition: effect on bone changes and sarcoma tumor induction in balb/c mice[J]. Int. J. Cancer. 1975, 15(5): 724-730
    [30] Trevisani A, et al. Elevated levels of prostaglandin E2 in Yoshida hepatoma and the inhibition oftumour growth by non-steroidal anti-inflammatory drugs[J]. Br. J. Cancer. 1980, 41(3): 341-347
    [31] Wu J, et al. Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger[J]. Cancer Res. 1998, 58: 159-165
    [32] Tanaka S, et aI. Modulation of tumor-selective vascular blood flow and extravasation by the stable prostaglandin I2 analogue beraprost sodium[J], J. Drug Target. 2003, 11: 45-52
    [33] Maeda H, et al. Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor[J]. Jpn. J. Cancer Res. 1994, 85(4): 331-334
    [34] Wu J, et al. Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases[J]. Jpn. J. Cancer Res. 2001, 92: 439-451
    [35] Doi K, et al. Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth[J]. Cancer. 1996, 77(8): 1598-604.
    [36] Akaike T, et al. 8-nitroguanosine formation in viral pneumonia and its implication for pathogenesis[J]. Proc. Natl. Acad. Sci. U. S. A. 2003, 100(2): 685-690
    [37] Sawa T, et al. Superoxide generation mediated by 8-nitroguanosine, a highly redoxactive nucleic acid derivative[J]. Biochem. Biophys. Res. Commun. 2003, 311(2): 300-306
    [38] Okamoto T, et al. Activation of matrix metalloproteinases by peroxynitriteinduced protein S-glutathiolation via disulfide S-oxide formation[J]. J. Biol. Chem. 2001, 276: 29596-29602
    [39] G-reish K, et aI. Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin. Pharmacokinet. 2003, 42(13): 1089-1105
    [40] Maid S, et al. Image enhancement in computerized tomography for sensitive diagnosis of liver cancer and semiquantitation of tumor selective drug targeting with oily contrast medium[J]. Cancer. 1985, 56(4): 751-757
    [41] Sawa T, et al. Tumor-targeting chemotherapy by a xanthine oxidasepolymer conjugate that generates oxygen-free radicals in tumor tissue[J]. Cancer Res. 2000, 60: 666-671
    [42] Fang J, et al. Tumor-targeted delivery of polyethylene glycol-conjugated Damino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide[J]. Cancer Res. 2002, 62(11): 3138-3143
    [43] Vasey PA, et al. Phase I clinical and pharmacokinetic study of PK1[N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase Ⅰ/Ⅱ Committee[J]. Clin. Cancer Res. 1999, 5: 83-94
    [44] Maeda N, et al. Anti-neovascular therapy by use of tumor neovasculaturetargeted longcirculating liposome[J]. J. Control. Release. 2004, 100: 41-52
    [45] Maeda N, et al. Synthesis of angiogenesis-targeted peptide and hydrophobized polyethylene glycol conjugate. Bioorg. Med Chem. Lett. 2004, 14: 1015-1017
    [46] Greish K, et al. Copoly(styrene-maleic acid)-pirarubicin micelles: high tumor-targeting efficiency with little toxicity[J]. Bioconjug. Chem. 2005, 16: 230-236
    [47] Greish K, et al. SMA-doxorubicin, a new polymeric micellar drug for effective targeting to solid tumours[J]. J.. Control. Release. 2004, 97: 219-230
    [48] Reddy RK, et al. Use of peginterferon alfa-2a (40 KD)(Pegasys) for the treatment of hepatitis C[J]. Adv. Drug Deliv. Rev. 2002, 54: 571-586
    [49] Gabizon AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy[J]. Cancer lnvest. 2001, 19: 424-436
    [50] Maeda H, et al. Cancer selective macromolecular therapeutics: tailoring of an antitumor protein drug. In Protein tailoring for food and medical uses(Feeny, R. E. and Whitaker, J. R., eds). Marcel Dekker, 1986, pp. 352-382
    [51] Maeda H. et al. Tailor-making of protein drugs by polymer conjugation for tumor targeting, a brief review on SMANCS[J]. J. Protein Chem. 1984, 3: 181-193
    [52] Shvedova AA, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells[J]. J. Toxicol. Environ. Health A. 2003, 66: 1909-1926
    [53] Muller J, et aI. Respiratory toxicity of multi-wall carbon nanotubes[J]. Toxicol. Appl. Pharmacol. 2005, 207: 221-231
    [54] Grislain L, Couvreur P, et al. Pharmacokinetics and distribution of a biodegradable drug-carder[J], Int. J. Pharm. 1983, 15: 335-345
    [55] Storm G, Belliot SO, et al. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system[J]. Adv. Drug Deliv. Rev. 1995, 17: 31-48
    [56] Gref R, Minamitake Y, Peracchia MT, et al. merit nanospheres[J]. Science. 1994, 263: 1600-1603
    [57] Moghirni SM, Hunter AC,. Murray JC. Long-circulating and target-specific nanoparticles: theory to practice[J]. Phar-macol. Rev. 2001, 53: 283-318
    [58] Torchilin VP, Trubetskoy VS. Which polymer can make nanoparticulate drug carders long-circulating?[J]. Adv. Drug Deliv. Rev. 1995, 16: 141-155
    [59] Gaur U, Sahoo SK, De TK, et al. Biodistribution of fluoreseinated dextran using novel nanoparticles evading reticule ndothelial system[J]. Int. J. Pharm. 2000, 202(1-2): 1
    [60] Mitra S, Gaur U, Ghosh PC, et al. Tmnourtargeted delivery of encapsulated dextrandoxombicin conjugate using chitosan nanoparticles as carder[J]. J Controlled Release. 2001, 74(1-3): 317
    [61] Muzzarelli R. Biochemical significance at exogenous chitins and chitosans in animals and patients[J]. Biomaterials. 1973, 20: 7-16.
    [62] Muzzarelli R. Baldassarre V, Coni F. Biological activity of chitosan: Ultrastructural study[J]. Biomaterials. 1988, 9: 247-252.
    [63] Roberts GAF. Chitin chemistry[M]. London: Macmillan Press, 1992, pp78-84
    [64] Hirano S, Moriyasu T. N-(Carboxyacyl)chitosans[J]. Carbohydr. Res. 1981, 92: 323-327
    [65] Sannan T, Kurita K, Iwakura, Y. Makromol. Chem. 1976, 177: 3589-3600
    [66] Varum K M, Ottoy M H, Smidsrod O. Water-solubility of partially N-acetylated chitosans as a function of pH: effect of chemical composition and depolymerisation[J]. Carbohydr. Polym. 1994, 25: 65-70
    [67] Yamaguchi R, Arai Y, Itoh T, Hirano S. Preparation of partially N-succinylated chitosans and their cross-linked gels[J]. Carbohydr. Res. 1981, 88: 172-175
    [68] Riccardo Muzzarelli, Maria Weckx, Oscar Filippini and Catherine Lough Characteristic properties ofN-Carboxybutyl chitosan. Carbohydr. Polym.[J]. 1989, 11: 307-320
    [69] Kamiyama K, Onishi H, MachidaY, et al. Biodisposition characteristics of N-succinyl-chitosan and glycol-chitosan in normal and tumor-bearing mice[J]. Biol. Pharm. Bull. 1999, 22(2): 179-186
    [70] Kato Y, Onishi H, Machida Y, et al. Evaluation of N-succinyl-chitosan as a systemic long-circulating polymer[J]. Biomaterials. 2000, 21: 1579-1585.
    [71] Sato M, Onishi H, Kitano M, Machida Y, Nagai T. Preparation and drug release characteristics of the conjugates of mitomycin C with glycol-chitosan and N-succinyl-chitosan[J]. Biol. Pharm. Bull. 1996, 19(2): 241-245.
    [72] Song Y, Onishi H, et al. Conjugate of mitomycin C with Nsuccinyl-chitosan: in vitro drug release properties, toxicity and antitumor activity[J], Int J Pharm. 1993, 98: 121-130
    [73] Onishi H, Song Y, et al. Macromolecular prodrugs of cytarabine and mitomycin C with chitosan, N-succinyl-chitosan and 6-O-carboxymethyl-chitin as drug carriers. In: Karnicki ZS, Brzeski MM, Bykowski PJ, Wojtasz-Pajak A, editors. Chitin World. Bremerhaven: Wirtschaftsv erlag NWVerlag fur neue wissenschaft; 1994. pp 301-310
    [74] Izume M. The application of chitin and chitosan to cosmetics[J]. Chitin Chitosan Res. 1998, 4: 12-17
    [75] Kato Y, Onishi H, Machida Y. Lactosaminated N-succinylchitosan: preparation and biodistribution into the intestine, bone, lymph nodes and male genital organs after i. v. administration[J]. Macromol Res. (in press)
    [76] Kato Y, Onishi H, Machida Y. Biological fate of highly succinylated N-succinyl-chitosan and antitumor characteristics of its water-soluble conjugate with mitomycin C at i. v. and i. p. administration into tumor-bearing mice[J]. Biol Pharm Bull. 2000, 23: 1497-503
    [77] Min H, Zengshuan M, et al. Uptake of FITC-Chitosan Nanoparticles by A-549 Cell[J]. Pharmaceutical Research. 2002, 19(10): 1488-1494
    [78] Song Y, Onishi H, Nagai T. Synthesis and drug release characteristics of the conjugates of mitomycin C with Nsuccinyl-chitosan and carboxymethyl-chitin[J]. Chem. Pharm. Bull. 1992, 40: 2822-2825
    [79] Song Y, Onishi H, Nagai T. Pharmacokinetic characteristics and antitumor activity of the N-succinyl-chitosanmitomycin C conjugate and the carboxymethyl-chitinmitomycin C conjugate[J]. Biol. Parm. Bull. 1993, 16: 48-54
    [80] Song Y, Onishi H, Nagai T. Conjugate of mitomycin C with N-succinyl-chitosan: in vitro drug release properties, toxicity and antitumor activity[J]. In. J. Pharm. 1993, 98: 121-130
    [81] Song Y, Onishi H, Nagai T. Toxicity and antitumor activity of the conjugate of mitomycin C with carboxymethyl-chitin[J]. Yakuzaigaku. 1993, 53: 141-147
    [82] Song Y, Onishi H, Machida Y, Nagai T. Particle characteristics of carboxymethyl-chitin-mitomycin C conjugate and N-succinyl-chitosan-mitomycin C conjugate and their distribution and histological effect on some tissues after intravenous administration[J]. S. T. P. Pharm. Sci. 1995, 5: 162-170
    [83] Song Y, Onishi H, Machida Y, Nagai T. Drug release and antitumor characteristics of N-succinyl-chitosanmitomycinC as an implant[J]. Journal of Controlled Release. 1996, 42: 93-100
    [84] Yamaguchi R, Arai Y, Itoh T, Hirano S. Preparation of partially N-succinylated ehitosans and their cross-linked gels[J]. Carbohydr Res. 1981, 88: 172-175
    [85] Kuroyanagi Y, Shiraishi A, Shimsaki Y, Nakakita N, Yasutomi Y, Takano Y, Shioya N. Development of a new wound dressingwith antimicrobial delivery capability[J]. Wound Repair Regen. 1994, 2: 122-129
    [86] Tajima M, Izume M, Fukuhara T, Kimura T, Kuroyanagi Y. Development of new wound dressing composed of N-succinylchitosan and gelatin[J]. Seitai Zairyo. 2000, 18: 220-226
    [87] Nakagawa A, Myata S, Shimozono J, Soejima Y, Saida M. Water-soluble chitosan or chitin for treatment of arthritis[P]. J Patent No. 06107551, 1994
    [88] Shengling S, Aiqin W. Adsorption properties of N-succinyl-chitosan and cross-linked N-succinyl-chitosan resin with Pb(Ⅱ) as template ions[J]. Separation and Purification Technology. 2006, 136(3): 930-937
    [89] Matsuyama H, Tamura T, Kitamura Y. Permeability of ionic solutes in a polyamphoteric membrane[J]. Separation and Purification Technology. 1999, 16: 181-187
    [1] Ouchi T, Banba T, Matsumoto T, Suzuki S, Sttzuki M. Synthesis and antiturnor activity of conjugates of 5-fluorouracil and chito-oligosaccharides involving a hexamethylene spacer group and carbamoyl bonds[J]. Drug. Des. Deliv. 1990, 6: 281-287
    [2] Sanzgiri YD, Blanton CD, Gall J M. Synthesis, characterization, and in vitro stability of chitosan-methotrexate conjugates[J]. Pharm. Res. 1990, 7: 418-421
    [3] Song Y, Onishi H, Nagai T. Synthesis and drug-release characteristics of the conjugates of mitomycin C with N-succinyl-ehitosan and carboxymethyl-ehitin[J]. Chem. Pharm. Bull. 1992, 40: 2822-2825
    [4] Ichikawa H, Onishi H, et al. Evaluation of the conjugate between N4-(4-carboxybutyryl)- 1-beta-D-arabinofuranosylcytosine and chitosan as a macromolecular prodrug of 1-beta-D-arabinofuranosylcytosine Drug[J]. Des. Discov. 1993, 10: 343-353
    [5] Yomota C, Komuro T, Kimura T. Studies on the degradation of ehitosan films by lysozyme and release of loaded chemicals[J]. Yakugaku Zasshi. 1990, 110: 442-448
    [6] Roberts GAF. Chitin chemistry[M]. London: Macmillan Press, 1992, pp 79
    [7] Sannan T, Kurita K, Iwakura Y. Makromol. Chem. 1976, 177: 3589-3600
    [8] Varum KM, Ottoy M H, Smidsrod O. Water-solubility of partially N-acetylated chitosans as a function of pH: effect of chemical composition and depolymerisation[J]. Carbohydr. Polym. 1994, 25: 65-70
    [9] Yamaguchi R, Arai Y, Itoh T, Hirano S. Preparation of partially N-succinylated chitosans and their cross-linked gels[J]. Carbohydr. Res. 1981, 88: 172-175
    [10] Hirano S, Moriyasu T. N-(Carboxyacyl)chitosans[J]. Carbohydr. Res. 1981, 92: 323-327
    [11] Kato Y, Onishi H, Machida Y, et al. Evaluation of N-suceinyl-chitosan as a systemic long-circulating polymer[J]. Biomaterials. 2000, 21: 1579-1585
    [12] Song Y, Onishi H. Pharmacokinetic characteristics and antitumor activity of the N-succinyl-chitosan-mitomyein C conjugate and the carboxymethyl-chitin-mitomycin C conjugate[J]. Biol Pharm Bull. 1993, 16(1): 48-54
    [13] Onishi H, Takahashi H. Preparation and in vitro properties of N-succinylchitosan-or carboxymethylchitin-mitomycin C conjugate microparticles with specified size[J]. Drug Dev Ind Pharm. 2001, 27(7): 659-667
    [14] Song Y, Onishi H. Synthesis and drug-release characteristics of the conjugates of mitomycin C with N-succinyl-chitosan and carboxymethyl-chitin[J]. Chem Pharm Bull. 1992, 40(10): 2822-2825
    [15] Roberts G A F, Domsy J G D. Etermination of the viscometric constants for chitosan[J]. Int J Biol Macromol. 1982, 4: 374-377
    [16] Kubota N, tatsumoto N. A simple preparation of half N-aeetylated chitosan highly soluble in water and aqueous organic solvents[J]. Carbohydr Res. 2000, 324(4): 268-274
    [17] 刘羿君,蒋英,封云芳,等.用GPC研究壳聚糖氧化降解过程中的分子量及其分布[J].功能高分子学报,2004,12(17):671-674
    [18] Hong KN, et al. Antibacterial activity of chitosans and ehitosan oligomers with diferent molecular weights[J]. International Journal of Food Microbiology. 2003, 74(1): 65-72
    [19] 蒋英,刘羿君,封云芳,等.过氧化氧氧化降解壳聚糖及其分子量分布的研究[J].浙江工程学院学报,2004,12(4):279-282
    [20] 袁向华,蔡妙颜,等.壳低聚糖的制备与应用[J].生命的化学,2001,21(2):165-166
    [21] Kato Y, Onishi H, Machida Y. Depolymerization of N-succinylchitosan by hydrochloric acid. Carbohydr Res. 2002, 337: 561-564
    [22] Hirano S, Sakaguchl T, Kuramitsu K, et al. N-ALanyL and some N-(N'-arycyL derives of chitosan[J]. Carbobydr PoLym. 1992, 19: 135-138
    [23] Hirano S, Ohe Y, Ono H. SeLectiveN-acyLation ofchitosan[J]. Carbohydr Res. 1976, 47: 315-320
    [24] Sashiwal H, Shigemasa Y. Chemical modification of chitin and chitosan 2: preparation and water soluble property of N-acylated or N-alkylated partially deacctylated chitins[J]. Carbohydrate Polymers. 1999, 39: 127-138
    [25] 王志铭,叶心宇.灰分分析法测定羧甲基壳聚糖羧甲基取代度[J].分析化学,1994,22(11):1121-1124
    [26] 杜上鉴,路彦,岳淑嫒.紫外光谱法测定甲壳素的脱乙酰化值[J].应用化学,1994,11(2):108-109
    [27] 董炎明,许聪义,汪剑炜,等.红外光谱法测定N-酰化壳聚糖的取代度[J].中国科学(B辑),2001,31(2):153-160
    [28] 黄少斌,方建章.田菁胶羧甲基取代度的定量分析[J].华南理工大学学报(自然科学版),1997,25(12):116-118
    [29] 杨绪杰,黄海荣,刘孝恒,等.用~1H NMR测定纤维素的摩尔取代度[J].南京理工大学学报,1998,22(6):526-528,547
    [30] Dong Y, Yuan Q, et al. Studies on the efect of substitution degree on the liquid crystalline behavior of eyancethyl chitosan[J]. J Appl Polym Sci. 2000, 76(14): 2057-2061
    [31] Verraest DL, Peters JA, Kuzee HC, et al. Distribution of substituents in O-carboxyme and O-cyan oethyl ethers of inulin[J]. Carbohydrate Research. 1997, 302: 203-212
    [32] 张健,田庚元.羟乙基化牛膝多糖的制备、结构及生物活性研究[J].化学学报,2003,61(10):1692-1696
    [1] Tsigos I, Martinou A, Kafetzopoulos D, et al. Chitin deacetylases: new, versatile tools in biotechnology[J]. Trends in biotechnology. 2000, 18(1): 30-35
    [2] Chiarelli P, Chielini E, Malucchi B, et al. Chemomechanical Characterisation of a new stimuli-responsive gel[J]. Biomedicine& Pharmacotherapy. 1998, 52(3): 317-318
    [3] Dittrich M, Sibler S. Cell surface groups of two picocyanobacteria strains studied by zeta potential investigations, potentiometric titration, and infrared spectroscopy[J], dournal of Colloid and Interface Science. 2005, 286: 487-495
    [4] Yoshinori Kato Y, Hiraku Onishi H, Yoshiharu Machida Y. Depolymerization of N-succinyl-chitosan by hydrochloric acid[J]. Carbohydrate Research. 2002, 337: 561-564
    [5] Sangster[J]. Phys. Chem. Ref. Data. 1989, 18: 1111-1229.
    [6] Moss G P, Cronin M T D. Quantitative structure-permeability relationships for percutaneous absorption: re-analysis of steroid data[J], lnt. J. Pharm. 2002, 238: 105-109
    [7] Thakur A, Thakur M, Khadikar P. Topological modeling of benzodiazepine receptor binding Bioorg[J]. Med. Chem. 2003, 11: 5203-5207
    [8] Vrakas D, 'Isantili-Kakoulidou A, Hadjipavlou-Litina D. Exploring the consistency of logP estimation for substituted eoumarins[J]. OSAR Comb. Sci. 2003, 22: 622-629
    [9] Tsantili-ICalcoulidou A, Varvaresou A, Siatra-Papastaikoudi T, et al. A comprehensive investigation of the partitioning and hydrogen bonding behavior of indole containing derivatives of 1, 3, 4-Thiadiazole and 1, 2, 4-Triazole by means of experimental and calculative approaches[J]. Quant. Struct. Act Relat. 1999, 18: 482-489
    [10] Klein W, Kbrdel W, et al. Updating of the OECD Test Guideline 107 "partition coefficient N-octanoUwater": DECD Laboratory Intercomparison Test on the HPLC method[J]. Chemosphere. 1988, 17(2): 361-386
    [11] 张书胜,刘红吸,刘玉华,等.高效液相色谱法测定双呱嚓双季钱盐药物的分配系数及对构效关系的考察.色谱.1996:14(3):1936-195
    [12] Cichna M, Markl P and Hutxr J R K. Determination of true octanol-water partition coefficients by means of solvent generated liquid-liquid chromatography[J]. J. Pharm. Biomed. Anal. 1995, 13(4): 339-351
    [13] Thlceda S, Wakida S, Yamane M. et al. Indirect determination of octanol-water partition coefficients by microcmulsion eleetroltinetie chromatography[J]. J. Chrom atogr. A. 1996, 744(1-2): 141-146
    [14] Alosp R M-Vlachogiannis G J. Determination the molecular weight of dinical dextran by gel permeation chromatography on TSR PW type columns [J]. J Chromatogr. 1982, 246: 287-289
    [15] 盛以虞,仲惠娟.高效凝胶渗透色谱法测定壳聚糖的分子量[J].中国药科大学学报.1994,85(4):242-244
    [16] 中华人民共和国药典[s].2000年版.二部.附录VH
    [17] BP[S]. 2000. Appendix ⅢC. A141
    [18] Li J, Zuo X J. Determination of molecular weight and relative content of the components of polysaccharide krestin with aqueous gel permeation chromatography[J]. Chin J Anal Chem (分析化学). 1999, 8: 942-944
    [19] Gan C J, Lin Q. High Performance gel chromatographic behaviour of sodium alginate and determination of its molecular weight parameters[J]. Chin J Chromatogr (色谱). 997, 15(2): 47-149
    [1] Ohya Y, Shiratani M, et al. Release behavior of 5-fluorouraeil from chitosan-gel nanopheres immobilizing5-fluorouracil coated with polysaecharides and their cell specific eytotoxicity[J]. Pure Appl Chem, 1994, A31: 629-642
    [2] Tanima B, Susmita M. et al. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles[J], Int J Pharm. 2002, 243(1-2): 93-102
    [3] Watzke H J, Dieschbourg C, et al. Novel silica-biopolymer nanocomposites: the silica sol-gel process in biopolymer organogels[J]. Adv Coll Interfac Sci. 1994, 50: 1-14
    [4] Alonso M J, Calvo P, et al. EP0860166, Aug, 1998
    [5] Huang M, MA ZS, et al. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res. 2002, 19(10): 1488-1494
    [6] De Campos A M, et al. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface Application to cyclosporin A[J]. Int J Pharm. 2001, 224(1-2): 159-168
    [7] Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles[J], Int J Pharm. 2001, 250(1): 215-226
    [8] Calvo P, Remunan-Lope C, et al. Novel hydmphilic chitosan-polyethylene oxide nanoparticles as protein carriers[J]. J Appl Polym Sci. 1997, 63: 125-132
    [9] Calvo P, et al. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carders for proteins, vaccines[J]. Pharm Res. 1997, 14: 1431-1436
    [10] Berthold A, Cremer K, et al. Preparation and characterization of chitosan microspheres as drug carder for prednisolone sodium phosphate as model for anti-inflammatory drugs[J]. J Contr Rel. 1996, 39: 17-25
    [11] Tian X X, Croves M J. Formulation and biological activity of antineoplastic proteoglycans derived from Mycobacterium vaccae in chitosan nanoparticles[J]. Pharm Pharmacol. 1999, 51: 151-157
    [12] E1-Shaboturi M H. Positively charged nanoparticles for improving the oral bioavailability of c yclo sporin-A[J]. Int J of Pharm. 2002, 249(1-2): 101-108
    [13] Hu Y, Jiang X, et al. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles[J]. Biomaterials. 2002, 23: 3193-3201
    [14] Mumper R J, Wang J, et al. Novel polymeric condensing carders for gene delivery[J]. Proc Intl Symp Control RelBioactMater. 1995, 22: 178-179
    [15] Mao H Q, Roy K, et al. DNA-chitosan nanosphems for gene delive[J]. Proc Intl Symp Control Rel Bioact Mater. 1996, 23: 401-402
    [16] Roy K, Mao H Q, et al. DNA-chitosan nanospheres: transfection eficiency and cellular uptak[J]. Proc Intl Symp Control Rel Bioact Mater. 1997, 24: 673-674
    [17] Leong K W, Mao H Q, et al. DNA-polycation nanospheres as non-viral gene delivery vehicles[J]. J Contr Rel. 1998, 53: 183-193
    [18] Ohya Y, Cai R, et al. Preparation of PEG-grifted chitosan nanoparticle for peptide drug carder[J]. Proc Intl Symp Control Rel Bioact Mater, 1999, 26: 655-656
    [19] Lee K Y, Kwon I C. et al. Preparation of chitosan self-aggregates as a gene delivery system[J]. J Contr Rel. 1998, 51: 213-220
    [20] LeeK Y, Kwon I C, et al. Structural investigation of chitosan self-aggregate prepared for gene delivery[J]. Proc Intl Symp Control Rel Bioac Mater. 1998, 25: 340-341
    [21] Song Y, Onishi H. Synthesis and drug-release characteristics of the conjugates of mitomycin C with N-succinyl-chitosan and carboxymethyl-chitin[J]. Chem Pharm Bull. 1992, 40(10): 2822-2825
    [22] Yin-Song W, Ying-Xia L, Ni S, Hua Z. Preparation and in Vitro Stability of Targeting Antitumor Drug: Methotrexate-Succinyl-Chitosan Conjugate[J]. Chemical Journal Of Chinese Universities. 2003, 24(11): 2103-2106
    [23] Marine S, Gaub H E. Molecular organization of surfactants at solid-liquid interface[J]. Science. 1995, 207: 1480
    [1] Ouchi T, Nishizawa H, Ohya Y. Aggregation phenomenon of PEG-grafted chitosan in aqueous solution[J]. Polymer. 1998, 39(21): 5171-5175
    [2] Rainer HM, Karsten M, Sven G.. Solid lipid nanoparticles(SLN) for controlled drug delivery-a review of the state of art[J]. Eur J Pharm Biopharm. 2000, 50(1): 161-162
    [3] Lee WK, Park JY, Yang EH, et al. Investigation of the factors influencing the release rates of cyclosporin A-loaded micro-and nanoparticles prepared by high-pressure homogenizer[J]. J Controlled Release. 2002, 84(3): 1215-1231
    [4] Ubrich N, Bouillot P, Pellerin C, et al. Preparation and characterization of propranolol hydrochloride nanoparticles: a comparative study[J]. J Controlled Release, 2004, 97(2): 2091-3001
    [5] 林亚平,董芸.药物释放数学模型的评价及选择.数理医药学杂志.1994,7(4):308-310
    [6] Lu DR, Abu-Izza K, Mao F. Nonlinear data fitting for controlled release devices: an integrated computer program[J]. International Journal of Pharmaceutics. 1996, 129, (1-2): 243-251
    [7] PauloCosta, Jose Manuel Sousa Lobo, Mode lingand comparison of dissolution profiles. European Journal of Pharmaceutical Sciences. 2001, 13(2): 123-133
    [8] 彭永富,董慧.药物溶出度Weibull分布的计算机求解.中国药学杂志.1996,31(10):606-608
    [1] Tanaka T, Kaneo Y, Shiramoto S, Iguchi S. The disposition of serum proteins as drugcarriers in mice bearing Sarcoma 180[J]. Biol Pharm Bull. 1993, 16: 1270-1275
    [2] Kamiyama K, Onishi H, Machida Y. Biodisposition characteristics of N-succinyl-chitosan and glycol-chitosan in normal and tumor-bearing mice[J]. Biol Pharm Bull. 1999, 22: 179-186
    [3] Calvo P, Remunan-Lopez C, Vila-Jato J L, Alonso MJ. Novel hydrophilic chitosanpolyethylene oxide nanoparticles as protein carriers[J], J. Appl. Pol. Sci. 1997, 63: 125-132
    [4] Kato Y, Onishi H, Machida Y. Evaluation of N-succinyl-chitosan as a systemic long-circulating polymer[J]. Biomaterials. 2000, 21: 1579-1585
    [5] Kataoka K, Matsumoto T, Yokoyama M, et al. Doxorubicin-loaded poly(ethylene glycol)-poly(b-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance[J]. J Control Release. 2000, 64: 143-153
    [6] Gallo J M, Gupta P K, Hung C T, Perrier DG. Evaluation of drug delivery following the administration of magnetic albumin microspheres containing adriamycin to the rat[J], J. Pharm. Sci. 1989, 78: 190-194
    [7] Gupta P K, Hung C T. Quantitative evaluation of targeted drug delivery systems[J]. Int. J. Pharm. 1989, 56: 217-226
    [8] Muzarelli R A A, Weck M. Characteristic properties of N-Carboxybutyl chitosan[J]. Carbohydr. Polym. 1989, 11: 307-320
    [9] Kamiyama K, Onishi H. Biodisposition characteristics of N-succinyl-chitosan and glycolchitosan in normal and tumor-bearing mice[J]. Biol. Pharm. Bull. 1999, 22(2): 179-186
    [10] Kato Y. Evaluation of N-suecinyl-chitosan as a systemic long-circulating polymer[J]. Biomaterials. 2000, 21: 1579-1585
    [11] Min H, Zengshuan M, Eugene K, Lee-Yong L. Uptake of FITC-Chitosan Nanoparticles by A-549 Cell[J]. Pharmaceutical Research.. 2002, 19(10): 1488-1494
    [12] Teicher BA, Molecular targets and cancer therapeutics: discovery, development and clinical validation[J]. Drug Resist Updat. 2000. 3: 67-73
    [13] Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Res. 1986, 46: 6387-6392
    [14] Duncan R. The dawning em of polymer therapeutics[J]. Nat Rev Drug Discov. 2003, 2: 347-360
    [15] Son Y J, Jang J S, Cho Y W, Chung H, Park R W. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycolchitosan nanoaggregates by EPR effect[J]. J Control Release. 2003, 91: 135-145
    [16] Kwon G S, Okano T. Polymeric micelles as new drug carders[J]. Adv Drug Deliv Rev. 1996, 21: 107-116
    [17] Lavasanifar A, Samuel J, Kwon G S. Poly(ethyleneoxide)-bloekpoly(L-amino acid) micelles for drug delivery[J]. Adv DrugDeliv Rev. 2002, 54: 169-190
    [18] Hyung P J, Kwon S, Lee M, Chung H. Self-assembled nanopartieles based on glycol chitosan bearing hydrophobic moieties as carders for doxorubiein: In vivo biodistribution and anti-tumor activity[J]. Biomaterials. 2006, 27: 119-126
    [19] Duncan R. Polymer conjugates for tumour targeting and intraeytoplasrnic delivery. The EPR effect as a common gateway[J]. Pharm Sci Technol Today. 1999, 2: 441-449
    [20] Yuan F, Leunig M, Huang S K, Berk D A, Papahadjopoulos D, Jain R K. Microvascular permeability and interstitial penetration of sterically stabilized(stealth) liposomes in a human tumor xenograft[J]. Cancer Res. 1994, 54: 3352-3356
    [21] Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain R K. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size[J]. Cancer Res. 1995, 55: 3752-3756
    [22] Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood[J]. Cancer Res. 1991, 51: 3229-3236
    [23] Hobbs S K, Monsky W L, Yuan F, Roberts W G, Griffith L, Torchilin V P, Jain R K. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment[J]. Proc Natl Acad Sci USA. 1998, 95: 4607-4612
    [24] Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain R K, McDonald D M. Openings between defective endothelial cells explain tumor vessel leakiness[J]. Am J Pathol. 2000, 156: 1363-1380
    [25] 张志荣,廖工铁,刘凭.靶向给药系统的体内药物动力学模型[J].华西医科大学学报,1993,24(1):4953
    [1] Mitre S, Gaur U, Ghosh P C, Maitre AN. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier[J]. J Controlled Release. 2001, 74: 317-323
    [2] Son Y J, Jang J S, Cho YW, Chung H, Park RW. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycolchitosan nanoaggregates by EPR effect[J]. J Control Release. 2003, 91: 135-145
    [3] Coe R A, Earl R A, Johnson T C, Lee J W. Determination of 5-fluorouracil in human plasma by a simple and sensitive reversed-phase HPLC method[J]. Journal of Pharmaceutical and Biomedical Analysis. 1996, 14: 1733-1741
    [4] Walter J L, Peter de B, Lia van Z, et al. Determination of 5-fluorouracil in microvolumes of human plasma by solvent extraction and high-performance liquid chromatography[J]. Journal of Chromatography B. 1999, 735: 293-297
    [5] Ibrahim A A, Mohammed N A. Validated liquid chromatographic determination of 5-fluorouracil in human plasma[J]. Journal of Chromatography B. 2004, 804: 435-439
    [6] Nassim M A, Shirazi F H, Cripps C M, et al. An HPLC method for the measurement of 5-fluorouracil in human plasma with a low detection limit and a high extraction yield[J]. Int J Mol Med. 2002, 10(4): 513-516
    [7] Jiang-nan Y, Xi-ming X, Xiao-xia Z, et al. Establishment of HPLC for the determination of fluorouracil in biological samples and study on its phamaeokinetics in mice[J]. Journal of China Pharmaceutical University. 2000, 31(6): 434-437
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.