天然植物纤维塑化改性工艺及促进机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然植物纤维是自然界中最为丰富的可再生资源,具有生物可降解性和环境友好性的特点,其主要成分纤维素、半纤维素和木素大分子结构中含有能够参与化学反应的官能团,可制备出多种用途的功能性材料,如高吸水材料、重金属离子吸附材料、医疗卫生用材料等。在诸多纤维制品中,热塑性复合材料因具有环境友好性,其制备技术是目前较为活跃的研究热点。天然植物纤维可以通过酯化、醚化等方法改变其热性能,从而制备出具有良好热塑性能的功能材料。具有热塑性的纤维可替代部分化石原料,通过热压成型的方法制成各种性能优良,并可自然降解的复合材料。这既能减少人类对化石资源的依赖,又能为天然植物纤维的高效利用找到新的途径,缓解世界能源、环境和生态问题,具有非常重要的意义。
     论文中以天然针叶木纤维为原料,在前人研究工作的基础上,较系统的研究了纤维氰乙基化改性、苄基化改性以及烷基化改性的工艺和改性纤维的相关性能。
     丙烯腈氰乙基化改性针叶木纤维的最佳工艺为:在纤维打浆度为40°SR时,经KSCN饱和的1mol/LNaOH溶液浸渍2h,丙烯腈用量为8.5mL/g(对绝干纤维),在50℃下反应2h,改性纤维增重率可达92.31%,N元素含量为12.88%,相应取代度为2.91。
     苄基氯苄基化改性针叶木纤维的最佳工艺为:苄基氯用量5mL/g(对绝干纤维),NaOH溶液浓度为30%,NaOH溶液用量5mL/g(对绝干纤维),反应时间5h,反应温度105℃。在此条件下改性纤维的增重率为129.47%,纤维中C元素的含量为67.30%,相应取代度为1.58。采用十六烷基三甲基溴化铵作催化剂后改性纤维的增重率提高到了149.53%,纤维中C元素的含量提高到了71.55%,相应的取代度达到了2.24。
     环氧氯丙烷烷基化改性针叶木纤维的最佳工艺为:环氧氯丙烷用量为5mL/g(对绝干纤维),6mol/LNaOH溶液用量为4mL/g(对绝干纤维),十六烷基三甲基溴化铵用量为0.01g,1,4-二氧六环用量为7.5ml/g(对绝干纤维),反应温度为70℃,反应时间6h。在此条件下改性纤维的环氧值为8.39mmol/g,增重率为88.67%,相应取代度为2.56。
     对塑化改性后的纤维采用红外光谱、X射线衍射、扫描电镜、热重和差式扫描量热分析等技术手段进行了结构和性能的分析表征。红外光谱图显示,经氰乙基化改性、苄基化改性以及烷基化改性纤维都出现了相应的特征吸收峰(氰乙基化纤维在2257cm~(-1)处出现了-CN吸收峰;苄基化纤维分别在3062cm~(-1)、3029cm~(-1)、736cm~(-1)和697cm~(-1)处出现了表征芳环结构的新吸收峰;烷基化纤维的谱图中1160cm~(-1)处则充分显示了醚键吸收峰的加强);扫描电镜观察发现改性后纤维表面都被改性产物包覆,纤维圆挺,体积膨胀,说明改性反应已经深入到纤维细胞壁内部;X射线衍射图分析表明氰乙基化改性、苄基化改性以及烷基化改性纤维的相对结晶度都比天然针叶木纤维的要低很多,分别下降到了7.26%、23.14%和21.40%;热重和差式扫描量热曲线分析表明,三种改性方法所获得的纤维都具有了热塑性,其玻璃化转变温度分别约为85℃、134℃和137℃。
     从反应的难易程度以及改性纤维的热塑性两方面综合比较,氰乙基化改性能在较温和的条件下赋予改性纤维较好的热塑性,而苄基化改性温度较高,烷基化改性耗时较长,且后两者改性纤维的热塑性都不如氰乙基化纤维,所以,氰乙基化改性是针叶木纤维塑化改性较适宜的方法。
     通过研究反应温度、反应时间对针叶木纤维塑化改性效果的影响,分析了各反应的动力学特性,并确定了不同反应温度下针叶木纤维塑化改性反应的速率常数和表观活化能。在改性试剂用量过量的情况下,天然针叶木纤维的氰乙基化、苄基化、烷基化改性反应都属于一级反应。氰乙基化反应在40℃和50℃下的反应速率常数分别为1.04和1.62,反应表观活化能为36.58kJ/mol;苄基化反应在95℃、100℃、105℃条件下的反应速率常数分别为0.12、0.15、0.18,反应表观活化能为46.06kJ/mol;烷基化反应在60℃、70℃和80℃下的反应速率常数分别为0.11、0.25和0.35,反应表观活化能为48.14kJ/mol。
     课题还以针叶木木粉为原料研究分析了原料中一些少量组分对塑化改性效果的影响。研究表明:原料中的苯醇抽出物和木素等组分的含量会对其化学改性产生影响。去除苯醇抽出物后,马尾松木粉的氰乙基化改性产物增重率提高了8.27%,苄基化改性产物增重率提高了5.88%,烷基化改性产物增重率提高了7.31%;并且,原料中木素的去除打开了改性试剂渗透的通道,显著提高了马尾松木粉氰乙基化、苄基化、烷基化的反应性能,改性产物的增重率随着木素去除量的增加而增加。热重曲线说明,改性木粉的热稳定性比原马尾松木粉下降,并且随着木粉中木素去除量的增大而逐渐下降。
     最后,研究了植物纤维物理结构性能改变对其塑化改性的影响,并揭示了氰乙基化、苄基化和烷基化产物增重率和热性能之间的关系。结果表明,机械磨浆不会改变天然针叶木纤维的化学结构和晶型,但是却能够破坏纤维内部的氢键结合,使纤维表面分丝,结晶度下降,保水值增大,显著提高纤维素纤维对改性试剂的可及度和化学反应活性。改性纤维的增重率随着纤维磨浆程度的增加而增加。红外光谱分析显示,改性纤维的特征吸收峰强度随着纤维打浆度、改性增重率的增加而增强;改性后纤维的热重和差式扫描量热曲线显示改性纤维的热塑性随纤维增重率的提高而改善,说明机械磨浆能够有效提高天然针叶木纤维的反应性能。与未磨浆纤维相比,打浆度49°SR纤维氰乙基化改性后玻璃化转变温度从135℃降低到了83℃,苄基化改性纤维的玻璃化转变温度从162℃降低到了119℃,烷基化改性纤维的玻璃化转变温度从189℃降低到了132℃。
Natural plant fibers are the most abundant renewable resources in the nature world, which are biodegradable and compatible with environment. The major components of natural plant fibers are cellulose, hemicellulose, and lignin. The functional groups of these components are employed in preparation of functional materials with versatile applications, including materials for water absorbing, heavy metal ion absorbing, medical and health, and so on. Among all the fibers, thermoplastic composites are focused currently because of their environmental compatibility. The thermal stability of natural plant fibers are decreased by esterification and etherification thus functional materials with good thermoplasticity can be obtained. Thermoplastic fibers can be made into high-performance and biodegradable composites by thermoforming in replacement of fossil based materials partially. This will reduce the dependency on fossil resources as well as find a new way to applications of natural plant fibers. Furthermore, it will have an important significance on the ease of energy, environment, and ecology issues in China.
     In this dissertation, natural softwood fibers were selected as resources. The fiber modification processes through cyanoethylation, benzylation, and alkylation were studied as well as the properties of the modified fibers based on previous research.
     The optimal process condition for softwood fibers modification by acrylonitrile cyanoethylation was given by followings:fibers were immersed in KSCN saturated1mol/L NaOH aqueous solution for2h under the beating degree of40℃SR; the dosage of acrylonitrile was8.5mL per gram of absolute dry fibers; reaction was carried out at50℃for2h. The weight gain rate of modified fibers reached92.31%, the nitrogen content was12.88%, and the corresponding degree of substitution was2.91(elemental analysis).
     The optimal process condition for softwood fibers modification by benzyl chloride benzylation was given by followings:the dosage of benzyl chloride was5mL per gram of absolute dry fibers; the concentration of NaOH aqueous solution was30wt.%; the dosage of NaOH aqueous solution was5mL per gram of dry fibers; the reaction was carried out at105℃for5h. The weight gain rate of modified fibers was129.47%, the carbon content was67.30%, and the corresponding degree of substitution was1.58. In presence of cetyl trimethyl ammonium bromide catalysts, the weight gain rate of modified fibers was149.53%, the carbon content was increased to71.55%, and corresponding degree of substitution reached2.24.
     The optimal process condition for softwood fibers modification by epoxy chloropropane alkylation was given by followings:the dosage of epichlorohydrin was5mL per gram of absolute dry fibers; the dosage of6mol/L NaOH aqueous solution was4mL per gram of absolute dry fibers; the dosage of cetyl trimethyl ammonium bromide catalyst was0.01g; the dosage of1,4-dioxane was7.5mL per gram of absolute dry fibers; the reaction was carried out at70℃for6h. The epoxy value of modified fibers was8.39mmol/g, the weight gain rate was88.67%, and the corresponding degree of substitution was2.56.
     Thermoplastified fibers were analyzed and characterized by IR, XRD, SEM, TGA, and DSC. The characteristic absorption peaks of cyanoethylated, benzylate, and alkylated fibers were observed from IR spectrum (-CN at2257cm-1; new absorption peaks at3062cm-1,3029cm-1,736cm-1,and697cm-1; enhanced absorption peak intensity of ether bonds of the alkylated fibers). The SEM photo exhibited that orignial fibers were coated by modified products. Modified fibers were round and erect with volume expansion. The calculations based on XRD photos showed the crystallinity was reduced to7.26%,23.14%, and21.40%. TGA and DSC analysis indicated that fibers had thermoplasticity after modification. The glass transition temperatrues of cyanoethylated, benzylated, and alkylated fibers were85℃,134℃, and137℃.
     Comprehensively analysing the difficulty of of plasticizing reaction and the thermoplasticity of modified fiber, it was clear that cyanoethylation modification could give modified fiber better thermoplasticity under some mild conditions. However, the temperature of benzylation was higher and alkylation was time-consuming, and the thermoplasticity of modified fiber was not in the same class as cyanoethyl fiber. So, cyanoethylation was more appropriate for plasticizing softwood fibers.
     The reaction kinetics of the modification process was analyzed by studying the influences of reaction temperatures and reaction times on the modification effects of softwood fibers. The rate constant and apparent activation energy at different temperatures were determined,In case of excessive modification reagents dosage, all the cyanoethylation, benzylation, and alkylation were first-order reactions. The rate constants of cyanoethylation were1.04and1.62at40℃and50℃, and the apparent activation energy was36.58kJ/mol. The rate constants of benzylation were0.12,0.15, and0.18at95℃,100℃, and105℃, and the apparent activation energy was46.06kJ/mol. The rate constants of alkylation were0.11,0.25, and0.35at60℃,70℃, and80℃, and the apparent activation energy was48.14kJ/mol.
     The influences of some minor components on the thermoplastification effects of Mason pine wood powders were studied. The benzyl alcohol extractives and the lignin constituents had effects on the chemical modification. After the removal of benzyl alcohol extractives, the weight gain rates of cyanoethylated, benzylated, and alkylated Mason pine wood powder were increased8.27%,5.88%, and7.31%. At the same time, the removal of lignin from raw biomass opened the diffusion tunnels of modification reagents, which reinforced the cyanoethylation, benzylation, and alkylation performance significantly. The weight gain rate of modified products increased with the amount of lignin removed from the resources. TGA curves revealed that the thermal stability of modified wood powder was lower than original Mason pine wood powder. The thermoplasticity of Mason pine wood powder were strengthened with the amount of lignin removed and weight gain rate increasing.
     Finally, the influences of the physical structure property changes on the effects of thermoplastification were studied. It was observed that there was relationship between the weight gain rates of cyanoethylation, benzylation, and alkylation and the properties of modified products. The results showed that the chemical structures and crystal categories were not changed by mechanical refining. However, the hydrogen bonds of fibers were destroyed, which resulted in external fibrillation, reduction of crystallinity, and increase of water retention value of the fibers. The accessibility and chemical reactivity of cellulose fibers were also enhanced consequently. The weight gain rates of modified fibers increased with the beating degree of pulp fiber increasing. IR spectrum showed that the peak intensities of modified fibers were reinforced with the increase of beating degree and weight gain rate. The TGA and DSC curves of modified fibers exhibited that refining could increase the reactivity, decease the stability, and enhance the thermoplasticity of natural softwood fibers. Compared with the fibers unrefined, the glass transition temperature of cyanoethylated fiber(beating degree49°SR) decreased from135℃to83℃, the glass transition temperature of benzylated fiber(beating degree49°SR) decreased from162℃to119℃, and the glass transition temperature of alkylated fiber(beating degree49°SR) reduced from189℃to132℃.
引文
[1]Zoebelein H. Dictionary of Renewable Resources[M]. New York:John Wiley&Sons,2001.13-20.
    [2]朱清时,阎立峰,郭庆祥.生物质洁净能源[M].北京:化学工业出版社,2002.1-10.
    [3]Gross D L. Biopolymers from polysaccharides and agroproteins. Washington DC: American Chemical Society[M],2001.2-71.
    [4]Mohanfty A K, Misra M, Drzal L T. J Polym Envir,2002,10:19-25.
    [5]张俐娜.天然高分子科学与材料[M].北京:科学出版社,2007.1-24.
    [6]黄慧,王玉,王小东.天然纤维材料内部塑化研究综述[J].江西林业科技.2010,1:53-56.
    [7]曲保雪.木质纤维氰乙基化、苄基化及其应用研究[D].中国林业科学研究院学位论文,2010.
    [8]鲁博.天然纤维复合材料[M].北京:化学工业出版社,2005.
    [9]詹怀宇.纤维化学与物理[M].北京:科学出版社,2005.
    [10]杨淑惠.植物纤维化学[M].北京:中国轻工业出版社,2001.
    [11]陈衍夏.纤维材料改性[M].北京:中国纺织出版社,2009.
    [12]钱学仁.造纸纤维与填料改性技术[M].北京:化学工业出版社,2010.
    [13]赵丽红,何北海,李军荣等.低温等离子体技术在造纸工业中的应用前景[J].中国造纸学报,2008,23(1):115-119.
    [14]赵义平,刘敏江,张环.热塑性树脂/植物纤维复合材料的纤维改性方法[J].中国塑料,2001,12:17-20.
    [15]刘英俊,刘伯元.塑料填充改性[M].中国轻工业出版社,1998(1):35-101.
    [16]唐爱民,梁文芷.超声波预处理对速生材木纤维结构的影响[J].声学技术,2000,19(2):78-82.
    [17]Arndt T,Zelm R. New nanotechnology-produced fibre compounds in papermaking applications-review and first own experiences[J]. Das Papier/ipw2008,9, T110-T114/59-63.
    [18]Kohnke T. Adsorption of xylans on cellulosic fibers-Influence of xylan composition on adsorption characteristics and kraft pulp properties. Doctoral Dissertation:Chalmers University of Technology Goteborg, Sweden,2010.
    [19]王高升,李建,陈夫山.聚合电解质在纸浆纤维表面多层沉积的研究[J].中国造纸学 报,2006,21(3):52-55.
    [20]鲁鹏,刘温霞.逐层涂覆技术在纸张增强中的应用[J].造纸化学品,2009,21(2):15-18.
    [21]李贤慧,钱学仁.纸浆中的羧基及其对造纸过程和纸张性能的影响[J].中国造纸,2008,27(7):51-57.
    [22]Dang Zheng. The Investigation of Carboxyl Groups of Pulp Fibers during Kraft Pulping, Alkaline Peroxide Bleaching,and TEMPO-mediated Oxidation. Doctorial dissertation: Georgia Institute of Technology, Atlanta,Georgia,2007.
    [23]朱玉琴,汤烈贵.纤维素接枝共聚物[J].化学通报,1995,9:18-21.
    [24]高洁,汤烈贵主编.纤维素科学[M].北京:科学出版社,1996,126-157.
    [25]Okieimen F E,Ogbeifun D E. Graft Copolymerization of Modified:Grafting of Methyl Aery late, Ethyl Acrylate and Ethyl Methacrylate on Carboxy Methyl Cellulose. J. Eur. Polym,1996,32(3):311-315.
    [26]Chatterjee S, Sarkar S,Bhattacharyya S N, et al. J. Appl Polym Sci,1996,59(3):1973-1978.
    [27]宋路明,李淳,任亮.等离子体引发亚麻接枝丙烯酞胺的研究[J].印染,25(1):5-8.
    [28]李延刚.纤维素接枝共聚及其产物的性能[J].人造纤维,1987(5):22-25.
    [29]文瑞名.浅谈MICHAEL反应及其在有机合成中的应用[J].益阳师专学报,1999,6:87-92.
    [30]王利君.己内酰胺与纸浆纤维接枝共聚改性的研究.陕西科技大学硕士学位论文,2010.
    [31]韩晶,程发,魏玉萍.原子转移自由基聚合方法在纤维素及其衍生物改性方面的应用[J].高分子通报,2009,(12):25-37
    [32]Lindqvist J. Yailoring surface properties of bio-fibers via atom transfer radical polymerization. Doctorial dissertation, KTH, Stockholm, Sweden,2007.
    [33]唐爱民,梁文芷.纤维素的功能化[J].高分子通报,2000,12:1-9.
    [34]Spasojevic L D, Majdanac L D, Petrovic S D, et al. Cellul Chem Technol,1997,31:297-308.
    [35]Hon David N S, San Luis Josefina M[J]. Polym Sci, Part A:Polym Chem,1989,27(12):4143.
    [36]Morita M, Sakata I. Chemical conversion of wood to thermoplastic material[J]. Journal of Applied Polymer Science,1986,31:3,831-840.
    [37]Morita M, Koga T, M. Shigematsu, et al. Functional materials derived from cyanoethylated wood and pulp[J]. Wood processing and utilization,1989,293-298.
    [38]Morita M, Sakata I. Development of the thermoplasticity and the solubility of cyanoethylated woods and barks of various species[J]. Mokuzai Gakkaishi Journal of the Japan Wood Research Society,1988,34:11,917-922.
    [39]余权英,李国亮.氰乙基化木材的制备及其热塑性研究[J].纤维素化学与技术,1994,2(1):47.
    [40]万东北,郭国瑞,罗序中.微波辐射作用下氰乙基化木材的制备[J].赣南师范学院学报,2003,(6):32.
    [41]万东北,尹波,郭国瑞.微波辐射作用下木材氰乙基化改性研究[J].生物质化学工程,2006,40(1):5.
    [42]Rusu G, Teaca C A. The chemical modification of wood V. The carboxyethylation reaction[J]. Revista De Chime.2002,53(5):380-38.
    [43]容敏智,卢殉,章明秋.剑麻增强氰乙基化木复合材料的研究[J].中山大学学报:自然科学版.2007,46(1):52-56.
    [44]金永安,张曙光,常克平.苎麻纤维的氰乙基化改性初探[J].毛纺科技.2004,(5):14-16.
    [45]Hon David N S, Ou Nian Hua. Thermoplasticization of wood. I. Benzylation of wood[J]. Journal of Polymer Science Part A:Polymer Chemistry.1989,27(7):2457-2482.
    [46]Honma S, Okumura K, Yoshioka M, et al. Mechanical and thermal properties of benzylated wood[C]. Rotorua, New Zealan:International symp on chemical modification of lignocellulosics.1992,176:140-146.
    [47]Shiraishi N. Plasticization of wood and its application[J]. Abstracts of Papers of the American Chemical Society.1988,195:121-125.
    [48]Shiraishi N, Matsunaga T, Yokota T. Thermal softening and melting of esterified wood prepared in an N2O4-DMF cellulose solvent medium[J]. J. Appl. Polymer Sci.1979,24,2361-2368.
    [49]木口实.木材学会蓄,1990;36(8):651.
    [50]木口实.山本一木材学会蓄,1992;38(2):150.
    [51]木口实.木材学会蓄,1993;39(1):80.
    [52]余权英,蔡宏斌.苄基化木材的制备及其热塑性研究[J].林产化学与工业,1998,18(1):23-29.
    [53]卢殉.全植物纤维复合材料的制备、结构与性能[D].中山大学博士学位论文.2001,32-40.
    [54]卢殉,石光,章明秋等.植物纤维增强塑化天然纤维复合材料的制备与性能研究[M].合肥:中国科学技术大学出版社,2000:115-119.
    [55]万东北,罗序中,黄桂萍等.甘蔗渣苯甲基化改性研究.林业科技[J].2005,30(3):57-59
    [56]牛盾.改性稻草的制备及性能研究.东北大学学位论文,2005.
    [57]沈莉.苄基化稻草的制备及其流变性分析.东北大学学位论文,2005.
    [58]Kiguchi M. Chemical modification of wood surfaces by etherification I. Manufacture of surface hot-melted wood by etherification[J]. Journal of the Japan Wood Research Society.1990,36(8):651-658.
    [59]Kiguchi M. Chemical modification of wood surfaces by etherifi cation II-Weathering ability of hot-melted wood surfaces and manufacture of self hot-melt bonded particleboard[J]. Journal of the Japan Wood Research Society.1990,36:10,867-875.
    [60]Kiguchi M. Chemical modification of wood surfaces by etherifi cation Ⅲ-Some properties of self-bonded benzylated particleboard[J]. Journal of the Japan Wood Research Society.1992,38(2):150-158.
    [61]Kiguchi M. Chemical modification of wood surfaces by etherifi cation Ⅳ-Benzylation with solvent-dilution and vapor-phase methods[J]. Journal of the Japan. Wood Research Society.1993,39(1):80-85.
    [62]Suzuki M, Iwagiri S. Physical properties of hardboard produced by benzylated Asplund pulp[J]. Bulletin of the Experiment Forests, Tokyo University of Agriculture and Technology.1986,22:25-31.
    [63]牛盾,王林山,王育红.环氧氯丙烷改性稻草[J].应用化学,2005,22(9):1033.
    [64]武晓滨.稻草环氧氯丙烷改性及其流变性研究.东北大学学位论文,2005.
    [65]大越诚.木材学会志,1990,36(1):57.
    [66]大越诚.木材学会志,1991,37(10):917.
    [67]大越诚.木材学会志,1991,37(10):917.
    [68]白石信夫,合田和弘.木材工业,1984,39(7):329.
    [69]Cho T S, Doh G H, Park S B, et al. Conversion of chemically modified wood to thermoplastic material (I) Chemical treatments for thermoplasticization[J]. Research Reports of the Forestry Research Institute Seoul.1993,47:77-85.
    [70]Kiguchi M. Chemical modification of wood surfaces by etherification I. Manufacture of surface hot-melted wood by etherification [J]. Journal of the Japan Wood Research Society.1990,36(8):651-658.
    [71]Kiguchi M. Chemical modification of wood surfaces by etherification II-Weathering ability of hot-melted wood surfaces and manufacture of self hot-melt bonded particleboard[J]. Journal of the Japan Wood Research Society.1990,36:10,867-875.
    [72]Kiguchi M. Chemical modification of wood surfaces by etherification III-Some properties of self-bonded benzylated particleboard[J]. Journal of the Japan Wood Research Society.1992,38(2):150-158.
    [73]Kiguchi M. Chemical modification of wood surfaces by etherification Ⅳ-Benzylation with solvent-dilution and vapor-phase methods[J]. Journal of the Japan. Wood Research Society.1993,39(1):80-85.
    [74]Ohkoshi M. Bonding of wood by thermoplasticizing the surfaces II-Possible cross-linking of wood by the graft-copolymerizing of styrene onto allylated surfaces[J]. Journal of the Japan Wood Research Society.1991,37(10):917-923.
    [75]Ohkoshi M, Hayashi N, Ishihara M. Bonding of wood by thermoplasticizing the surfaces III-Mechanism of Thermoplasticization of wood by Allylation[J]. Journal of the Japan Wood Research Society.1992,38(9):854-861.
    [76]Ohkoshi M. FTIR-PAS study of light-induced changes in the surface of acetylated or polyethylene glycol-impregnated wood[J]. Journal of Wood Science.2002,48:394-401.
    [77]Ohkoshi M, Kato A, Suzuki K. et al. Characterization of acetylated wood decayed by brown-rot and white-rot fungi[J]. Journal of Wood Science.1999,45(1):69-75.
    [78]Zafeiropoulos N E, Williams D R, Baillie C A, et al. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments[J]. Composites Part A,2002,33:1083-1093.
    [79]Zafeiropoulos N E, Baillie C A, Hodgkinson J M. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part Ⅱ. The effect of surface treatments on the interface[J]. Composites Part A,2002,33:1185-1190.
    [80]Brelid P Larsson,Simonson R. Bergman O,et al. Resistance of acetylated wood to biological degradation[J]. Holz Rohund Werksto.2000,58:331-337.
    [81]Brelid P Larsson. The influence of post-treatments on acetyl content for removal of chemicals after acetylation[J]. Holz Roh-und Werksto,2002,60:92-95.
    [82]Chang H T,&Chang S T. Improvements in dimensional stability and lightfastness of wood by butyrylation using microwave heating [J]. Journal of Wood Science.2003,49:455-460.
    [83]Chang S T, Chang, H T. Comparisons of the photostability of esterified wood[J]. Polymer Degradation and Stability.2001,71(2):261-266.
    [84]Evans P D, Owen N L,Schmidc S et al. Weathering and photostability of benzoylated wood[J]. Polymer Degradation and Stability.2002,76:291-303.
    [85]Evans P D, Wallis F A, Owen N L. Weathering of chemically modified wood surfaces-Natural weathering of Scots pine acetylated to different weight gains[J]. Wood Science and Technology.2000,34:151-165.
    [86]Iwamoto Y, Itoh T. Vapor phase reaction of wood with maleic anhydride (I):Dimensional stability and durability of treated wood[J]. Journal of Wood Science.2005,51:595-600.
    [87]Iwamoto Y, Itoh T, Minato K. Vapor phase reaction of wood with maleic anhydride (II): Mechanism of dimensional stabilisation[J]. Journal of Wood Science.2005,51:601-606.
    [88]余权英,李国亮.乙酰化木材的制备及其热塑性研究[J].林产化学与工业,1994,14(2):33-38.
    [89]Matsuda H, Ueda M, Marakami K.1984,30(9):735.
    [90]汤烈贵,朱玉琴.功能材料,1995,26(2):101.
    [91]邵自强.纤维素醚[M].北京:化学工业出版社,2007:221.
    [92]袁清,董炎明.甲壳素类液晶高分子的研究Ⅲ.取代度和分子量对氰乙基壳聚糖液晶性的影响[J].高分子学报.2000,2000(1):5-8.
    [93]朱平,赵晓霞,王敏等.水溶性改性细菌纤维素的制备及表征[J].合成纤维.2009,38(4):30-33.
    [94]曲保雪,秦特夫等.微晶纤维素氰乙基化及其反应动力学研究[J].林产化学与工业,2010,30(5):5-11.
    [95]王正烈.反应机理和反应速率理论[J].化工高等教育,2001,1:35-40.
    [96]戚昌盛,高保娇,庄儒彬.乙酸苄酯合成中接枝型三相相转移催化剂的活性及催化反应动力学[J].化学研究与应用,2008,20(9):1115-112.
    [97]周遗品,赵永金,张延金Arrhenius公式与活化能[J].石河子大学学报(自然科学版),1995,13(4):281-286.
    [98]王正烈,周亚平等.物理化学(第4版)下册[M].北京:高等教育出版社2001,195-223.
    [99]赵艳涛,孙永强,康保安.月桂酸甲酯烷氧基化反应动力学研究[J].日用化学工业.2009,39(5):297-30.
    [100]Xiu Huijuan, Han Qing, Zhang Ru, Liu Lihui. Preparation and Characterization of Cyanoethylated Cellulose Fiber[J]. Advanced Materials Research. Vols.549(2012)344-348.
    [101]刘伟,刘晓洪,殷肖海等.热处理对苎麻纤维结晶度的影响[J].纺织科技进展,2009,31(4):50-51.
    [102]石雷,孙庆丰,邓疆.人工幼龄印度黄檀木材解剖性质和结晶度的径向变异及预测模型[J].林业科学研究.2009,22(4):553-558.
    [103]张红,刘鸿.热分析技术在高分子材料研究中的应用[J].广州化工,2001,29(4):39-42.
    [104]丁建军,梅一飞,白永智.热分析技术在高分子及复合材料检测中的应用[J].分析测试技术,2010:218-221.
    [105]陈浩凡,潘仕荣,胡瑜等.胶体滴定法测定羧甲基壳聚糖的取代度[J].分析测试学报,2003,22(6):70-73.
    [106]赵殊,张菲,张雯雯.丙烯酸纤维素的合成与表征[J].化学与黏合,2007,29(3):193-19.
    [107]邵自强,王飞俊,鹿红岩等.改性软木纤维素的NaOH水溶液体系成膜性研究[J].纤维素科学与技术,2002,(6):7-1.
    [108]翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005,1-200.
    [109]盐酸丙酮法测定环氧值.中华人民共和国国家标准GB1677—81.
    [110]贾敬华.稻草的醚化改性.东北大学硕士学位论文,2005.
    [111]Xiu Huijuan, Han Qing, Peng Ke, Zhang Kun. Preparation and Characterization of Cellulose Fibers Modified with Epoxy Chloropropane[J]. Advanced Materials Research. Vols.549(2012):382-386.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.