基于聚合物/无机复合体系太阳能电池光伏特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于有机聚合物太阳能电池的设计性、成本低、重量轻、光吸收率高以及可制备大面积柔性器件等优点,备受人们的关注。然而,目前有机聚合物太阳电池的光电转换效率低下,使之不能商业化、实用化。而制约其转换效率提高的主要因素是:在聚合物中形成的激子束缚能大、激子扩散长度短、载流子迁移率低和电荷在电极处的无效收集。考虑到上述几个方面的原因,在本论文中我们对有机聚合物太阳能电池进行了改进,利用聚合物/无机材料复合体系,对该体系的光伏特性进行了研究。主要的研究内容如下:
     1为了增大聚合物中激子的分离界面、提高载流子的传输几率,我们引入了无机材料-TiO_2纳米管,采用ITO/PEDOT:PSS/聚合物:TiO_2/Al结构,制备了聚合物/无机TiO_2纳米管本体异质结结构光伏器件。研究取得以下结果:
     ITO/PEDOT:PSS/MEH-PPV:TiO_2/Al光伏器件。实验表明,TiO_2纳米管的加入增强了器件的光伏特性,并且随着TiO_2纳米管混合比例的提高,器件的短路光电流和光电转换效率也相应的提高了。
     ITO/PEDOT:PSS/MEH-PPV:C_(60)(+TiO_2)/Al光伏器件。器件的光伏特性与TiO_2纳米管的浓度紧密相关。适量的TiO_2纳米管将有效地连接C_(60)分子,为载流子尤其是电子的传输提供更直接的导带路径,进而提高载流子的传输几率。
     ITO/PEDOT:PSS/P3HT:PCBM(+TiO_2)/Al光伏器件。SEM电镜显示,TiO_2纳米管在薄膜中的分布是无序的,纵向和斜向分布为电子的传输提供了不间断的路径,减少了电子在传输过程中的跳跃次数,提高器件的转换效率;而横向分布的TiO_2纳米管则为载流子复合提供了场所,阻碍了载流子的传输,降低器件的转换效率。
     2为了进一步分离载流子的传输路径,减小载流子复合几率,以及加强载流子在电极处的收集效率,我们采用聚合物-富勒烯和无机半导体TiO_2以及CdS设计出聚合物—无机半导体层间复合结构光伏器件,并研究了该复合体系器件的光伏特性。
     ITO/PEDOT:PSS/MEH-PPV:C_(60)/TiO_2/LiF/Al光伏器件。TiO_2层的插入使器件的短路电流和填充因子得到了明显的提高,在光强为16.7mW/cm~2的500nm单色光照射下,器件的短路电流为2.35mA/cm~2,填充因子为0.284,光电转换效率提高了20%。器件的光电转换效率与无机半导体TiO_2层的厚度和激活层中MEH-PPV:C_(60)质量比有关,当TiO_2层厚度为20nm同时MEH-PPV:C_(60)质量比为2:1时,光电转换效率达到最大值。为了进一步证明器件效率的提高是来自于TiO_2层的插入。我们还制备了ITO/PEDOT:PSS/MEH-PPV/TiO_2/LiF/Al器件,结果显示器件的短路电流和填充因子提高明显。
     ITO/PEDOT:PSS/MEH-PPV:C_(60)/CdS/Al光伏器件。该器件则显示出了显著增大的短路电流,在光强为16.7mW/cm~2的500nm单色光激发下,器件的短路电流达到了4.67mA/cm~2,光电转换效率更是达到了5.3%。显著增大的光电流不仅是由于CdS层的引入改变了器件激活层中载流子的产生和传输区域,CdS层自身对入射光的吸收也是使光电流增大的一个重要因素。同样,器件的效率随无机半导体CdS层的厚度变化产生明显的不同,随CdS层厚度(40-10nm)的减小,器件的光电转换效率提高。
     ITO/PEDOT:PSS/P3HT:PCBM/CdS/Al光伏器件。由于CdS的插入改变了器件的串、并联电阻,不仅使器件的光电流和光电转换效率显著增大,而且器件的填充因子也明显得到了加强。
     3为了进一步研究热退火处理对聚合物光伏器件的作用,进一步加强聚合物链在薄膜中的取向作用以及载流子在薄膜中的传输效率,我们一方面研究了热处理对P3HT:PCBM薄膜表面形貌的影响。另一方面利用反向电场对ITO/PEDOT:PSS/MEH-PPV:C_(60)/Al器件进行热退火处理,并对处理后器件的光伏特性进行了研究。
     SEM电镜结果表明,热退火处理提高了P3HT:PCBM薄膜的表面粗糙度,而且后处理器件比之前处理器件表面粗糙度的提高更加明显。表面粗糙度的增加将增强入射光在界面处的反射作用,增强入射光在激活层中的吸收,进而提高器件的光电流和转换效率。
     在120℃热退火的同时对ITO/PEDOT:PSS/MEH-PPV:C_(60)/Al器件施加一个反向电压的作用,短路电流和光电转换效率提高5倍以上。器件光伏特性的改善来自于薄膜中热动分子沿着外加电压方向的有序分布。同时器件光伏特性与反向电压幅值和退火时间密切相关,采用-6V 10min可以使器件的光电转换效率达到最大。
     4为了加强聚合物器件中载流子尤其是电子在阴极处的收集效率,我们采用Ag材料制备了Ag/Al复合电极。Ag/Al复合电极有效地阻止了聚合物与Al电极的接触,防止了Al_2O_3层的形成,平衡了器件中载流子的传输,提高了器件的填充因子。而且Ag/Al复合电极对激活层还可以起到一定的保护作用,减缓器件光伏特性的衰减过程。
Recently,organic polymer solar cells have attacted much attention due to their unique optical,electronic,low cost and flexible properties.However,it is difficult for polymer photovoltaics(PV) to realize commercialization resulting from the low efficiency.The limited factors for increasing efficiency are:the bound-energy of exciton is high,the disffusion length of exciton is short,the mobility of carrier is low and charge collection efficiency near the interface of polymer/electrode is uneffective. In this dissertation,we use polymer/inorganic hybrid systems to instead of single polymer systems in this work,and make much reseach on hybrid systems.The main investigating contents included:
     1 In order to increase dissociation interface of excitons and enhance transport of carriers,we introduce TiO_2-nanotubes to PV device and use the structure of ITO/ poly(3,4- ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS)/polymer:TiO_2/Al for fabricating bulk heterojunction devices.The obtained results are:
     PV device with the structure of ITO/PEDOT:PSS/poly[2-methoxy-5-(2'-ethylhexoxy-1,4-phenylenevinylene)MEH-PPV:TiO_2-nanotubes/Al.The experimental results show that photovoltaic characteristics of the device are improved with increasing concentration of TiO_2-nanotubes.
     PV device with the structure of ITO/PEDOT:PSS/MEH-PPV:C_(60) (+TiO_2-nanotubes)/Al.The performance of device is dependent on the concentration of TiO_2-nanotubes,appropriate concentration of TiO_2-nanotubes can connect moles of C_(60) which afford more direct band pathway for carrier transport especially electron transport.
     PV device with the structure of ITO/PEDOT:PSS/Poly(3-hexylthiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester(PCBM)(+TiO_2-nanotubes)/Al.SEM images show that TiO_2-nanotubes arrangement in the film is disordered;vertical arrangement and sideling arrangement of TiO_2-nanotubes afford direct pathways for carrier transport and reduce the numbers of carrier hopping,thus increase the conversion efficiency(η) of the device.Howevr,transverse arrangement of TiO_2 nanotubes afford recombination center for carriers and block the paveways for carrier transport resulting to lowerdηof the device.
     2 In order to optimize the route of photogenerated carriers,reduce carrier recombination and enhance collection of electrons at the cathode,we use polymer: fullerence and inorganic materials-TiO_2 or cadmium sulfide(CdS) to fabricate polymer-inorganic hybrid PV device,and investigate the photovoltaic properties of this kind of PV devices.
     We design the devices with the structure of ITO/PEDOT:PSS/MEH-PPV:C_(60)/ TiO_2/LiF/Al.These devices show promising photovoltaic characteristics with higher I_(sc) and FF for introducing TiO_2 layer.I_(sc) reached to 2.35mA/cm~2,FF reached to 0.284 andηincreased by 20%under the illumination of 500nm light with the intensity of 16.7mW/cm~2.Besides,both the thickness of TiO_2 layer and the weight ratios of MEH-PPV:C_(60) can influence the photovoltaic properties of the device. When the thickness of TiO_2 film is 20nm and weight ratios of MEH-PPV:C_(60) is 2:1, we can obtain the optimumη.For further clarifying that the increasedηcomes from TiO_2 layer,we also fabricate device with the structure of ITO/PEDOT:PSS/MEH-PPV/ TiO_2/LiF/Al.The results show that the introduction of TiO_2 increases I_(sc) and FF obviously.
     ITO/PEDOT:PSS/MEH-PPV:C_(60)/CdS/Al.The device shows a promising I_(sc) which reached to 4.67mA/cm~2 andηreached to 5.3%under the illumination of 500nm light with the intensity of 16.7mW/cm~2.So high I_(sc) not only come from the change of zone and amount of photogenerated carriers,but also the absorption of CdS in the visible light.The thickness of CdS layer also affectηof the device:the thiner the thickness is,the higher theηis in the range we are interested in.
     ITO/PEDOT:PSS/ P3HT:PCBM /CdS/Al.The device not only shows higher I_(sc) andη,but also improved FF because of the change of shunt resistance and series resistance.
     3 In order to investigating the effect of annealing on photovoltaic properties of solar cells and morphology of polymer.We investigate the influence of annealing on interfacial morphology.Besides,PV device with the structure of ITO/PEDOT:PSS/MEH-PPV:C_(60)/Al is annealed under presence of reverse bias.
     SEM image of P3HT:PCBM film show that roughness of the film increased by annealing,and the post-annealed device indicated the rougher interface than pre-annealed device.The increased interfacial roughness can enhance photocurrent and efficiency of the device.
     Under the presence of a reverse bias,the device with the structure of ITO/PEDOT:PSS/MEH-PPV:C_(60)/Al is treated at 120℃.After thermal treatment, I_(sc) andηof PV devices are improved more than 5 times.Attributing to the polarization in MEH-PPV layer,the resulting devices show improved photovoltaic properties.Additionally,the bias value and time also affect the photovoltaic properties of the device,the highestηcan be obtain when the bias is -6V and the time is 10min.
     4 We introduce Ag/Al hybrid electrode to the PV device for effective collection of electrons at the cathode.Ag/Al hybrid electrode prevents the interaction happening between Al and the polymer active layer,and play an active role in balancing carrier transport.Thus Ag/Al hybride electrode enhanced the FF of PV device.
引文
[1]K.Yoshino,K.Tada,A.Fujii,E.M.Conwell,An organic in frarede electroluminescent diode utilizing a phthalocyanine film,IEEE.T.Electron.Dev.,1997,8:1204-1206
    [2]G.A.Chamberlain,Organic Solar-Cells-A Review,Solar Cells,1983,8:47-83.
    [3]M.S.Lee and K.C.Huang,Photovoltaic Properties of Electrochemically Doped Polyacetylene and Its Stability,Solid-State Electronics,1994,37:1899-1901.
    [4]G.D.Sharma,M.S.Roy And Sangodkar et al,Electrical and Photovoltaic Effects in Organic p-n Junction Solar Cell Using Furfual Resin(FR)And Thiazole Yellow(TY),Synth.Met.,1996,83:1-6.
    [5]B.R.Saunders,M.L.Turner,Nanoparticle-polymer photovoltaic cells,Adv.Colloid.Interfac.2008,1383:1-23.
    [6]T.Kume,S.Hayashi,H.Ohkuma and K.Ramamoto,Enhancement of photo electric conversion efficiency in copper phalocyanine solar cell:white light excitation of sulface plasmon polaritions,J.Appl.Phys.1995,34:6448-6451
    [7]S.Berthoa,G.Janssen,Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells,Sol.Energy Mater.Sol.Cells,2008,92:753-760.
    [8]T.A.Skotheim,Handbook of Conducting Polymers,Marcel Dekker Inc,1986,1:614-648.
    [9]J.Simon:in Molecular Semiconductors(Ed.J.Andre),Springer Verlag,Berlin,1985.
    [10]Angelopoulos,Marie;Liao,Yun-Hsin;Furman,Bruce;Graham Teresita,Solvent and Salt Effects on the Morphological Structure of Polyaniline,Synth.Met,1999,98:201-209.
    [11]S.Bekir,T.Muzaffer,Electrochemical copolymerization of pyrrole and aniline,Synth.Met,1998,94:221-227.
    [12]S.Srinivasan,P.Pramanik,Ultraviolet-visible-near infrared spectral analysis of a chemically prepared W03-polyaniline composite,J.Mater.Sci.Lett.,1994,13:365-368.
    [13]W.S.Huang,A.G.MacDiarmid,Optical properties of polyaniline,Polymer,1993,34:1833-1845.
    [14]R.M.Kumar,Mascetti,Giancarlo,Padden,Sergio,Optical,structural and fluorescence microscopic studies on reduced form of polyaniline:The leucoemeraldine base,Synth.Met,1993,89:63-69.
    [15]A.E.Becquerel,Compt.Rend.Acad.Sci.,1839,9:145.
    [16]A.E.Becquerel,Compt.Rend.Acad.Sci.,1839,9:561.
    [17]W.G.Adams,R.E.Day,Proc.R.Soc.London,1876,25:113.
    [18]D.M.Chapin,C.S.Fuller,and G.L.Pearson,A new silicon p-n junction photoclell for converting solar radiation into electrical power,J.Appl.Phys.,1954,25:676-677.
    [19]张正华,李陵岚,叶楚瓶,杨平华,有机太阳电池与塑料太阳能电池,2006年出版.
    [20]B.O'Regan,M.Gratzel,A low-cost,high-efficiency solar cells based on dye-sensitized colloidal TiO2 film,Nature,1991,335,737-739.
    [21]M.Gratzel,Dye-sensitized solar cells,J.Photochem.Photobiol.C:Photochem.R.,2003,4,145-153.
    [22]U.Bach,D.Lupo,P.Comte,Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies,Nature,1998,395:583-586.
    [23]M.J.Cohen,J.S.Harris,(SN)x-GaAs Polymer Semicondutor Solar Cell,Appl.Phys.Lett.,1978,33:812-814.
    [24]B.R.Weinberger,S.C.Gau,Z.Kiss,A polyacetylene:aluminum photodiode,Appl.Phys.Lett.,1981,38:555-557.
    [25]C.W.Tang,Two-layer organic photovoltaic cells,Appl.Phys.Lett.,1986,48:183-185.
    [26]D.Wohrle and D.Meissner,Organic Solar Cells,Adv.Mater.,1991,3:129-138.
    [27]N.S.Sariciftci,L.Smilowitz,A.J.Heeger,and F.Wudl,Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene,Science,1992,258:1474-1476.
    [28]S.Morita,A.A.Zakhidov,K.Yoshino,Doping polythiophenes with fulerences,Solid State Commun.,1992,82:249-252.
    [29]N.S.Sariciftci,D.Braun,C.Zhang,V.I.Srdanov,A.J.Heeger,G.Stucky,and F.Wudl.Semiconducting polymerbuckminsterfullerene heterojunctions:Diodes,photo-diodes,and photovoltaic cells.Appl.Phys.Let.1993,62:585-58
    [30]G.Yu,J.Gao,J.C.Hummelen,F.Wudl,A.J.Heeger,Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions,Science,1995,270:1981-1983.
    [31]K.H.Bhuiyan,and T.Mieno,Effect of oxygen on electric conductivities Of C-60 and higher fullerene thin films,Thin Solid Films,2003,441:187-191.
    [32]C.J.Brabec,A.Cravino,D.Meissner,N.S.Sariciftci,M.T.Rispens,L.Sanchez,J.C.Hummelen,and T.M.Fromherz,The influence of materials work function on the open circuit voltage of plastic solar cells,Thin Solid Films,2002,403:368-372.
    [33]J.J.M.Halls,C.A.Walsh,N.C.Greenham,E.A.Marseglia,R.H.Friend,S.C.Moratti,A.B.Holmes,Efficient photodiodes from interpenetrating polymer networks,Nature,1995,376:498-500.
    [34]M.Granstrom,K.Petritsch,A.C.Arias,A.Lux,M.R.Andersson,R.H.Friend,Laminated fabrication of polymeric photovoltaic diodes,Nature,1998,395:257-260.
    [35]P.Peumans,V.Bulovic,and S.R.Forrest,Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes.,Appl.Phys.Lett.,2000,76:2650-2652
    [36]S.E.Shaheen,C.J.Brabec,N.S.Sariciftci,F.Padinger,T.Fromherz,J.C.Hummelen,2.5% efficient organic plastic solar cells,Appl.Phys.Lett.,2001,78:841-843.
    [37]C.J.Brabec,S.E.Shaheen,C.Winder,and N.S.Sariciftci,Effect of LiF/metal electrodes on the performance of plastic solar cells,Appl.Phys.Lett.,2002 80,1288-1290;
    [38]J.G.Xue,S.Uchida,B.P.Rand,and S.R.Forrest,Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,Appl.Phys.Lett.,2004,85,5757-5759.
    [39]G.Li,V.Shrotriya,J.S.Huang,Y.Yao,T.Moriarty,K.Emery,Y.Yang,High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,Adv.Funct.Mater,2005,4,864-868.
    [40]J.Y.Kim(Ed),New Architeure for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer,Adv.Mater.,2006,18:572-576.
    [41]J.Y.Kim,K.Lee,N.E.Coates,D.Moses,T.-Q.Nguyen,M.D.,and A.J.Heeger,Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,Science,2007,317:222-225.
    [42]G.G.Wallace,P.C.Dastoor,D.L.Officer,C.O.Too,Conjugated polymers:new materials for photovoltaic,Chem.Innov.,2000,1:15-22.
    [43]S.Sikorski,T.Piotrowski,Photovoltaic phenomena in inhomogeneous semiconductors,Prog.Quantum Electron.2003,27:295-365.
    [44]K.Yoshino,Novel electrical and optical properties of liquid conducting polymers and oligomers,IEEE.T.Dielect.El.In.,1994,1:353-364.
    [45]K.Takahashi,H.Nanbu and T.Komuta,Enhanced quantum yield in porphyin hetyerodimer solar cell,Chem.Lett.,1993,613-616.
    [46]L.Yan,H.Y.Bing,J.Hui,S.Q.Min,W.Yan,F.Z.Hui,Photovoltaic properties of MEH-PPV/TiO2 nanocomposites,Chinese.Sci.Bull.,2008,53:2743-2747.
    [47]M.Al-Ibrahima and O.Ambacher Effects of solvent and annealing on the improved performance of solar cells based on poly.3-hexylthiophene.:Fullerene,Appl.Phys.Lett.,2005,86:201120.
    [48]L.Yan,H.Y.Bing,W.Yan,F.Z.Hui,F.Bin,Q.L.Fang,T.Feng,Thermal treatment under reverse bias:Effective tool for polymer/fullerene bulk heterojunction solar cells,Syn.Metal.2008,158:190-193.
    [49]D.Chirvase,Z.Chiguvare,M.Knipper,J.Parisi,V.Dyakonov,J.C.Hummelen,Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells,J.Appl.Phys.,2003,93:3376-3383.
    [50]H.Z.Yu,J.B.Peng,Charge Transport and the Relationship Between Performance and Light Intensity of the Solar Cell Based on the Blend of MEH-PPV and PCBM,Chem.J.Chinese Universities.,2007,28:2359-2363(in Chinese).
    [51]M.Grandstrom,K.Petritsch,A.C.Arias et al,Laminated fabrication of polymeric photovoltaic diodes.Nature.1998,395:257-260.
    [52]A.Ruseckas,E.B.Namdas,T.Ganguly et al,Intra-and Interchain Luminescence in Amorphous and Semicrystalline Films of Phenyl-Substituted Polythiophene.J.Phys.Chem.B,2001,105:7624-7631.
    [53]Y.Hayashi,H.Sakuragi,T.Soga,I.Alexandrou,G.A.J.Amaratunga,Bulk heterojunction solar cells based on two kinds of organic polymers and fullerene derivative Colloids and Surfaces A:Physicochem.Eng.Aspects,2008,313-314:422-425.
    [54]H.Jin,Y.B.Hou,X.G.Meng,F.Ten,Concentration Dependence of Photovoltaic Properties of Photodiodes Based on Polymer-Fullerene Blends,Materials Science and Engineering B,2007,137:5-9.
    [55]H.Frohne,S.E.Shaheen,C.J.Brabec,D.C.Miiller,N.S.Sariciftci,K.Meerholz,Influence of the Anodic Work Function on the Performance of Organic Solar Cells,Chem.Phys.Chem,2002,3:795-799.
    [56]Z.R.Hong,Z.H.Huang,X.T.Zheng,Utilization of copper phthalocyanine and bathocuproine as an electron transfort layer in ohotovoltaic cells with copper phthalocyanine/buckminsterfullerence heterojunction:Thickness effects on photovoltaic performances,Thin Solid Films,2007,515:3019-3023.
    [57]W.L.Wang,H.B.Wu,C.Y.Yang,C.Luo,Y.Zhang,J.W.Chen,and Y.Cao,High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl)and[6,6]-phenyl-C61-butyric acid methyl ester processed with oleic acid surfactant,Appl.Phys.Lett.,2007,90:183512.
    [58]Y.Cao,G.Yu,C.Zhang,R.Menon and A.J.Heeger,Polymer light-emitting diodes with polyethylene dioxythicphene-polystyrene sulfonate as the transparent anode,Synth.Met.1997,87:171-174
    [59]T.M.Brown,R.H.Friend,LiF/AI cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light—emitting diodes,Appl.Phys.Lett.,2000,77:3096-3098.
    [60]C.Winder,J.C Hummelen,C.J.Brabec,et al.Sensitization of low bandgap polymer bulk heterojunction solar cells.Thin Solid Films,2002,403-404:373-379.
    [61]S.C.J.Meskers,J.Hubner,H.Bassler,et al.Dispersive relaxationdynamics of photoexcitations in a polyfluorene film involving energytransfer:experiment and Monte Carlo simulations.J Phys Chem B,2001,105:9139-9149.
    [62]H.S.Gaard,F.C.Krebs,A brief history of the development of organic and polymer photovoltaic.Sol.Energy Mater.Sol.Cell.,2004,83:125-146.
    [63]J.Gilot,M.M.Wienk,and R.A.J.Janssen,Double and triple junction polymer solar cells processed from solution,Appl.Phys.Lett.,2007,90:143512
    [64]J.Poortmans,T.Aernouts,D.Cheyns,H.Gommans,P.Vanlaeke,S.Verlaak,P.Heremans,D.Vanderzande,L.Lutsen,J.Manca,P.Adriaensens,M.Burgelman,B.Minnaert,E.Goovaerts,G.Janssen,A.Aguirre,S.Van Doorslaer,Organic solar cell strategy and developments in flanders,21st European Photovoltaic Solar Energy Conference,2006,4-8 September,Dresden,Germany.
    [65]C.Xirouch aki,G.Kiriakidis,T.F.Pedersen,and H.Fritzsche,Photore duction and oxidation of as-deposited microcrystalline,J.Appl.Phys.,1996,79:9349-9352.
    [66]应根裕,胡文波,邱勇,平板显示技术,2002,354-355.
    [67]S.Mailis,L.Boutsikaris,N.A.Vainos,C.Xirouchaki,G.Vasiliou,N.Garawal,G.Kiriakidis,and H.Fritzsche,Holographic recording in indium-oxide(In203)and indium-tin-oxide(In203:Sn)thin films,Appl.Phys.Lett.,1996,69:2459-2461.
    [68]C.Xirouchaki,K.Moschovis,E.Chatzitheodoridis,G.Kiriakidis,P.Morgen,Chemical characterization of as-deposited microcrystalline indium oxide films prepared by reactive dc magnetron sputtering,Appl.Phys.A,1998,67:295-301.
    [69]S.Pissadakis,S.Mailis,L.Reekie,J.S.Wilkinson,R.W.Eason,N.A.Vainos,K.Moschovis,G.Kiriakdikis,Permanent holographic recording in indium oxide thin films using 193 nm excimer laser radiation,Appl.Phys.A,1999,69:333-336.
    [70]J.S.Kim,M.Granstrom,R.H.Friend,N.Johansson,W.R.Salaneck,R.Daik,W.J.Feast,and F.Cacialli,Indium-tin oxide treatments for single-and double-layer polymeric light-emitting diodes:The relation between the anode physical,chemical,and morphological properties and the device performance,J.Appl.Phys.,1998,84:6859-6870.
    [71]S.A.Carter,M.Angelopoulos,S.Karg,P.J.Brock,and J.C.Scott,Polymeric anodes for improved polymer light-emitting diode performance,Appl.Phys.Lett.,1997,70:2067-2069.
    [72]J.C.Bern(?)de,H.Derouiche,V.Djara,Organic photovoltaic devices:influence of the cell configuration on its performences,Sol.Energy Mater.Sol.Cell.,2005,87:261-270.
    [73]J.C.Carter,I.Grizzi,S.K.Heeks,D.J.Lacey,S.G.Latham,P.G.May,O.R.d.1.Panos,K.Pichler,C.R.Towns,and H.F.Wittman,Operating stability of light-emitting polymer diodes based on poly(p-phenylene vinylene),Appl.Phys.Lett.,1997,71:34-36.
    [74]R.N.Marks,J.J.M.Halls,D.D.C.Bradley,R.H.Friend and A.B.Holmes,The photovoltaic response in poly(p-phenylene vinylene)thin-film devices,J.Phys.Conden.Matter,1994,6:1379-1384.
    [75]H.Antoniadis,B.R.Hsieh,M.A.Abkowitz,S.A.Jenekhe and M.Stolka,Photovoltaic and photoconductive properties of aluminum/poly(p-phenylene vinylene)interfaces,Synth.Met.,1994,62:265-271
    [76]C.J.Brabec,F.Padingger,N.S.Sariciftci,Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix,J.Appl.Phys.1999,85:6866-6871
    [77]B.Kraabel,J.C.Hummelen,N.S.Sariciftci,Subpicosecond photoinduced electron transfer from conjugated polymers to functionalized fullerenes,J.Chem.Phys 1996,104:4267-4269.
    [78]F.Papadimitrakopoulos,X.M.Zhang,and K.A.Higginson,Chemical and morphological stability of aluminum tris(8-hydroxyquinoline)(Alq(3)):Effects in light-emitting devices,IEEE J.Selected Topics in Quantum Electronices,1998,4(1):49-57.
    [79]K.R.Choudhury,J.G.Winiarz,M.Samoc,and P.N.Prasad,Charge carrier mobility in an organic-inorganic hybrid nanocomposite,Appl.Phys.Lett.,2003,82:406-408.
    [80]Quanmin Shi,Yanbing Hou,Hui Jin,and Yunbai Li,Ambipolar charge transport in bulk heterojunction of poly(2-methoxy-5-(2-ethylhexyloxy)-l,4-phenylenevinylene)/C6o composite J.Appl.Phys.2007,102:073108
    [81]M.Granstrom,K.Petritsch,A.C.Arias,A.Lux,M.R.Andersson,and R.H.Friend,Laminated fabrication of polymeric photovoltaic diodes,Nature,1998,395:257-260.
    [82]P.Schilinsky,C.Waldauf,and C.J.Brabec,Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,Appl.Phys.Lett.,2002,81:3885-3887.
    [83]S.A.Choulis,J.Nelson,Y.Kim,D.Poplavskyy,T.Kreouzis,J.R.Durrant,and D.D.C.Bradley,Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements,Appl.Phys.Lett.,2003,83:3812-3814.
    [84]R.Pacios,J.Nelson,D.D.C.Bradley,and C.J.Brabec,Composition dependence of electron and hole transport in polyfluorene:[6,6]-phenyl C61-butyric acid methyl ester blend films,Appl.Phys.Lett.,2003,83:4764-4766.
    [85]K.R.Choudhury,J.G.Winiarz,M.Samoc,and P.N.Prasad,Charge carrier mobility in an organic-inorganic hybrid nanocomposite,Appl.Phys.Lett.,2003,82:406-408.
    [86]A.Watt,T.Eichmann,H.R.-Dunlop,and P.Meredith,Carrier transport in PbS nanocrystal conducting polymer composites,Appl.Phys.Lett.,2005,87:253109.
    [87]T.F.Guo,T.C.Wen,G.L.Pakhomov,X.G.Chin,S.H.Liou,P.H.Yeh,C.H.Yang,Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,Thin Solid Films,2008,516:3138-3142.
    [88]R.D.Bettignies,J.Leroy,M.Firon,C.Sentein,Accelerated lifetime measurements of P3HT:PCBM solar cells,Synth.Met,2006,156:510-513.
    [89]S.H.Jina,B.V.K.Naidua,H.S.Jeona,S.M.Parka,J.S.Parka,S.C.Kima,J.W.Leeb,Y.S.Gal,Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT:PCBM system,Sol.Energy Mater.Sol.Cells,2007 91:1187-1193.
    [90]G.Li,V.Shrotriya,Y.Yao,and Y.Yang,Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),J.Appl.Phys.,2005,98:043704.
    [91]M.A.Ibrahim,and O.Ambacher,Effects of solvent and annealing on the improved performance of solar cells based on poly.3-hexylthiophene.:Fullerene,Appl.Phys.Lett.,2005,86:201120.
    [92]O.Douhereta and L.Lutsen,Nanoscale electrical characterization of organic photovoltaic blends by conductive atomic force microscopy,Appl.Phys.Lett.,2006,89:032107.
    [93]E.Hauff and J.Parisi,Investigations of the effects of tempering and composition dependence on charge carrier field effect mobilities in polymer and fullerence films and blends,J.Appl.Phys.,2006,100:043702.
    [94]F.Padinger,R.S.Rittberger,and N.S.Sariciftci,Effects of postproduction treatment on plastic solar cells,Adv.Funct.Mater.2003,13:85-88.
    [95]L.Gang,S.Vishal,H.J.Song,Y.Yao,T.Moriarty,K.Emery,Y.Yang,High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,Nat.Mater.,2005,4:864-868.
    [96]L.L.Han,D.H.Qin,X.Jiang,Y.S.Liu,L.Wang,J.W Chen and Y.Cao,Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells,Nanotechnology,2006,17:4736-4742.
    [97]G.D.Sharma,M.S.Roy,Charge conduction and photogeneration process in hybrid materials of conjugated polymer and dye-sensitized Ti02 thin-film device,J.Mater.Science:Materials in Electronics,2004,15:69-74.
    [98]J.X.Cheng,S.H.Wang,and X.Y.Li,Fast interfacial charge separation in chemically hybridized CdS-PVK nanocomposites studied by photoluminescence and photoconductivity measurements.Chem.Phys.Lett.,2001,333:375-380.
    [99]Z.B.He,G.L.Zhao,G.R.Han,X.W.Zhang,P.Y.Du,W.J.Weng,G.Shen,A study of photoconductive properties of vacuum-sublimated copper-phthalocyanine/zinc sulphide multilayer films,Thin Solid Film,2003,424:157-160.
    [100]H.Jin,Y.B.Hou,and A.W.Tang,Photoconductive properties of MEH-PPV/CuSnanoparticle composites.Chin.Phys.Lett.,2006,23(3):693-696.
    [101]A.C.Arango,S.A.Carter,and P.J.Brock,Charge transfer in photovoltaics consisting of interpenetration networks of conjugated polymer and Ti02 nanoparticles.Appl.Phys.Lett.,1999,74(12):1698-1700.
    [102]W.J.E.Beek,M.M.Wienk,R.A.J.Janssen,Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer,Adv.Mater.,2004,16:1009-1012.
    [103]S.A.McDonald,G.Konstantatos,S.Zhang,P.W.Cyr,E.J.D.Klem,L.Levina,E.H.Sargent,Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,Nat.Mater.,2005,4:138-142.
    [104]K.Kaneto,D.Tanimura and W.Takashima,Electrical properties of nanointerface at poly(3-hexylthiophehe)and metal junctions probed directly with potential tip,Curr.Appl.Phys.,2005,4:320-322.
    [105]A.Pivrikas,N.S.Sariciftci,R.Osterbacka,et al.Bimolecular recombinationcoefficient as a sensitive testing parameter for low-mobility solar-cell materials.Phys Rev Lett,2005,94:176806.
    [106]W.U.Huynh,J.J.Dittmer,A.P.Alivisatos,et al.Charge transport in hybrid nanorod-polymer composite photovoltaic cells.Phys Rev B,2003,67:115326.
    [107]W.U.Huynh,J.J.Dittmer and A.P.Alivisatos,Hybrid Nanorod-Polymer Solar Cells,Science 2002,295:2425-2427.
    [108]Y.Tachibana,J.E.Moser,J.R.Durrant,et al.Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films.J Phys Chem,1996,100:20056-20062.
    [109]J.M.Rehm,G.L.McLendon,Gratzel M,et al.Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor(Ti02)interface,J Phys Chem,1996,100:9577-9578.
    [110]H.N.Ghosh,J.B.Asbury,T.Q.Lian.Direct observation of ultrafast electron injection from coumarin 343 to TiO2 nanoparticles by femtosecond infrared spectroscopy.J Phys Chem B,1998,102(34):6482—6486.
    [111]Y.Kang,D.Kim,Well-aligned CdS nanorod/conjugated polymer solar cells.Sol.Energy Mater.Sol.Cell.,2006,90:166-174.
    [112]D.C.Olson,J.Pins,R.T.Collins,S.E.Shaheen,D.S.Ginley,Hybrid photovoltaic devices of polymer and ZnO nanofiber composites.Thin.Solid.Film.,2006,496:26-29.
    [113]J.H.Burroughes,D.D.C Bradley,A.B.Brown,R.N.Marks,K.Mackay,R.H.Friend,P.L.Burn and A.B.Holmes,Light-emitting diodes based on conjugated polymers,Nature,1990,347:539-541.
    [114]G.Grem,G.Leditzky,B.Ulrich and G.Leising,Realization of a blue-light-emitting device using poly(p-phenylene),Adv.Mater.1992,4:36-41.
    [115]F.Garnier,R.Hailaoui,A.Yassar and P.Srivastava,All-Polymer Field-Effect Transistor Realized by Printing Techniques,1994,Science,265:1684-1686
    [116]T.Afisher,D.G.Lidzey,M.A.Pate,M.S.Weaver,D.M.Whittaker,M.S.Skolnick,D.D.C.Bradley,Electroluminescence from a conjugated polymer microcavity structure,Appl.Phys.Lett.1995,67:1355-1357.
    [117]J.J.M.Halls,K,Pichler,R.H.Friend,S.C.Moratti and A.B.Holmes,Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C_(60)heterojunction' photovoltaic cell,Appl.Phys.Lett.1996,68:3120-3122.
    [118]C.J.Brabec,N.S.Sariciftci and J.C.Hummelen,Plastic Solar Cells,Adv.Funct.Mater.2001,11:15-26.
    [119]S.Alem,R.de Bettignies,J.-M.Nunzi,M.Cariou,Efficient polymer-based interpenetrated network photovoltaic cells,Appl.Phys.Lett.2004,84:2178-2180.
    [120]M.M.Koetse,J.Sweelssen,K.T.Hoekerd,H.F.M.Schoo,S.C.Veenstra,J.M.Kroon,X.Yang,J.Loos,Efficient polymenpolymer bulk heterojunction solar cells,Appl.Phys.Lett.2006,88:083504.
    [121]C.J.Brabec,C.Winder,N.S.Sariciftci,J.C.Hummelen,A.Dhanabalan,P.A.van Hal,R.A.J.Janssen,A Low-Bandgap Semiconducting Polymer for Photovoltaic Devices and Infrared Emitting Diodes,Adv.Funct Maters,2002,12:709-712.
    [122]M.Svensson,F.Zhang,S.C.Veenstra,W.J.H.Verhees,J.C.Hummelen,J.M.Kroon,O.Inganas,M.R.Andersson,High-Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative,Adv.Mater.,2003,15:988-991.
    [123]P.Schilinsky,C.Waldauf,C.J.Brabec,Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,Appl.Phys.Lett.,2002,81:3885-3887.
    [124]S.Alem,R.de Bettignies,and J.M.Nunzi,Efficient polymer-based interpenetrated network photovoltaic cells,Appl.Phys.Lett.,2004,84:2178-2180.
    [125]J.Nelson,S.A.Choulis,D.D.C.Bradley,and J.R.Durrant,2003 3re World Conference on Photovoltaic Energy Conversion,May 11-18,Osaka,Japan 2686-2688.
    [126]W.J.E.Beeka(EcL),Hybrid Bulk Heterojunction Solar Cells:Blends of ZnO Semiconducting Nanoparticles and Conjugated Polymers.Organic Photovoltaics VI,Proc.of SPIE Vol.5938.
    [127]W.J.E.Beeka(Ed.),Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells J.Phys.Chem.B,2005,109:9505-9516
    [128]X.G.Peng,L.Manna,W.D.Yang,J.Wickham,E.Scher,A.Kadavanich,A.P.Alivisatos,Shape control of CdSe nanocrystals,Nature,2000,404:59-61.
    [129]Z.A.Peng and X.G.Peng,Formation of High-Quality CdTe,CdSe,and CdS Nanocrystals Using CdO as Precursor,J.Am.Chem.Soc,2001,123:183-184.
    [130]K.S.Leschkies,R.Divakar,J.Basu,E.Enache-Pommer,J.E.Boercker,C.B.Carter,U.R.Kortshagen,D.J.Norris,and E.S.Aydil,Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices,Nano.Lett,2007,7:1530-6984.
    [131]D.Gebeyehu,C.J.Brabec,and N.S.Sariciftci,Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials.Synth.Met.,2002,125:279-287.
    [132]W.Ma,C.Yang,X Gong,K.Lee and A.J.Heeger,Thermally Stable,Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology,Adv.Funct.Mater,2005 15:1617-1622.
    [133]Y.K.Kim,K.Y.Lee,O.K.Kwon,D.M.Shin,B.C.Sohn,and J.H.Choi,Size Dependence of Electroluminescence of Nanoparticles(rutiIe-Ti02)Dispersed MEH-PPV Films.Synth.Met.,2000,111:207-211.
    [134]M.Gratzel,Dye-sensitized Solar Cells.Journal of Photobiology C:Photochemistry Reviews,2003,4:145-147
    [135]R.D.McConnell,Assessment of The Dye-sensitized Solar Cell,Renewable and Sustainable Energy Review,2002,5:273-292
    [136]A.C.Arango,S.A.Carter,and P.J.Brock,Charge transfer in photovoltaics consisting of interpenetration networks of conjugated polymer and Ti02 nanoparticles.Appl.Phys.Lett.,1999,74(12):1698-1700.
    [137]J.Nelson,A.M.Eppler and I.M.Ballard,Photoconductivity and charge trapping in porous nanocrystalline titanium dioxide,J.Photochemistry and Photobiology A:Chemistry,2002,148:25-31.
    [138]N.C.Greenham,X.G.Peng,and A.P.Alivisatos,Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity,Phys.Rev.B,1996,54:17628-17637.
    [139]W.U.Huynh,X.G.Peng,and A.P.Alivisatos,CdSe nanocrystal rods/poly(3-hexylthiophene)composite photovoltaic devices,Adv.Mater.,1999,11:923-927.
    [140]Z.L.Yun(Ed),Broadband Optical Limiting Performance of Polymer-wrapped Carbon Nanotubes in The Orange-NIR Region.Optics Communications,2006,265:354-358.
    [141]W.Z.Wei(Ed),π-π Interaction Enhancement on the Ultrafast Third-order Optical Nonlinearity of Carbon Nanotubes/Polymer Composites.Chem.Phys.Lett.,2005,407:35-39.
    [142]C.Yang,M.Wohlgenannt,Z.V.Vardeny,W.J.Blau,A.B.Dalton,R.Baughman A.A.Zakhidov,Photoinduced Charge Transfer in Poly(p-phenylene vinylene)Derivatives and Carbon Nanotube/C60 Composites.Physica B,2003,338:366-369.
    [143]Ning Wang,Hong Lin,Jianbao Li,Xiaozhan Yang,Luozheng Zhang,Photoluminescence of TiO_2:Eu nanotubes prepared by a two-step approach,Journal of Luminescence,2007,122:889-891.C.C.Oey(Ed.),Polymer-Ti02 Solar Cells:Ti02 Interconnected Network for Improved Cell Performance.Nanotechnology,2006,17:706-713
    [144]C.Y.Kwong,A.B.Djurisic,P.C.Chui and W.K.Chan,Nanocomposite solar cells:influence of particle concentration,size,and shape on the device performance,Proc.SPIE,2004,5520:176-179.
    [145]T.F.Guo,G.L.Pakhomov,T.C.Wen,Effect of TiO2 nanoparticles on polymer-based bulk heterojunction solar cells,J.Appl.Phys,2006,45:1314-1316.
    [146]Quanmin Shi,Yanbing Hou,Yan Li,Zhihui Feng,Role of TiO_2 nanotube playing in improving performance of hybrid photovoltaic devices,Chin.Phys.Lett.Vol.,2009,26:017202.
    [147]L.Y.Ting,Z.T.Wei,L.W.Zong,C.C.Wei,L.Y.Yue,C.Y.Sheng and S.W.Fang,Efficient photoinduced charge transfer in Ti02 nanorod/conjugated polymer hybrid material,Nanotechnology,2006,17:5781-5785.
    [148]B Schweitzer,H Bassler,Excitons in conjugated polymers,Synth.Met,2000,109:1-6.
    [149]K.C.Shu,K.Jayant,T.Sukant,Synthesis and properties of[60]fullerene-polyvinyl pyridine conjugates for photovoltaic devices,J.Macro.Scie-Pure.Appl.Chem.,2001,38:1481-1498.
    [150]M.V.Korobov,A.L.Mirakyan,A.N.V.Vramenko,Solubility of C60 fulleren,J.Phys.Chem B,2001,105:2499-2506.
    [151]V.Dyakonov,I.Riedel,C.Deibel,Electronic properties of polymer-fullerene solar cells,J.Mater.Res.Soci.Symp-Proc,2001,665:17-20.
    [152]K.D.Ausman,R.B.Weisman,Kineties of fullerene triplet states,J.Res.Chem.Inter.,1997,23:431-451.
    [153]H.Spanggaard,and F.C.Krebs,A brief history of the development of organic and polymeric photovoltaics,Sol.Energ.Mat.Sol.C,2004,82:125-146.
    [154]P.Schilinsky,C.Waldauf,J.Hauch,and C.J.Brabec,Polymer photovoltaic detectors:progress and recent developments,Thin Solid Films,2004,451—452:105-108.
    [155]S.Alem,R.D.Bettignies,J.M.Nunzi,and M.Cariou,Efficient polymer-based interpenetrated network photovoltaic cells,Appl.Phys.Lett.,2004,84:2178-2180.
    [156]T.A.Fisher,D.G.Lidzey,M.A.Pate,M.S.Weaver,D.M.Whittaker,M.S.Skolnick and D.D.C.Bradley,Electroluminescence from a conjugated polymer microcavity structure,Appl.Phys.Lett.,1995,67:1355-1357.
    [157]H.Neugebauer,C.J.Brabec,et al,Stability and photodegradation mechanism of conjugated polymer/fullerene plastic solar cells,Sol.Energ.Mat.Sol.C,2000,61:35-42.
    [158]R.A.Marcos,M.T.Rispens,J.C.Hummelen,A poly(p-phenylene ethynylene vinylene)with pendant fullerenes,Synth.Met,2001,119:171-172.
    [159]K.G.Chittibabu,L.Li,S.Balasubramanian,Methodology and preparation of novel polymers for nonlinear optics,J.Mater.Res.Soci.Symp-Proc,1997,488:795-800.
    [160]B.J.Landia,S.L.Castrob,H.J.Rufa,CM.Evansa,S.G.Baileyc,R.P.Raffaellea,CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells,Sol.Energ.Mat.Sol.C,2005,87:733-746.
    [161]M.G.Harrison and J.Gruner,Analysis of the photocurrent action spectra of MEH-PPV polymer photodiodes,Phys.Rev.B,1997,55:7831-7844.
    [162]V.I.Arkhipov,P.Heremans,H.Bassler,Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor,Appl.Phys.Lett.,2003,82:4605-4607.
    [163]J.Pascual,J.Camassel,and H.Mathieu,Resolved Quadrupolar Transition in TiO2,Physical Review Letters,1997,39:1490-1493.
    [164]Z.Bao,A.Dodabalapur,A.L.Lovinger,Soluble and processable regioregular poly(3-hexylthiophene)for thin film field-effect transistor applications with high mobility,Appl.Phys.Lett.1996,69:4108.
    [165]P.Vanlaeke,A.Swinnen,I.Haeldermans,G.Vanhoyland,T.Aernouts,D.Cheyns,C.Deibel J.D'Haen,P.Heremans,J.Poortmans and J.V.Manca,P3HT/PCBM bulk heterojunction solar cells:Relation between morphology and electro-optical characteristics,Sol.Energy Mater.Sol.Cells,2006,90:2150-2158
    [166]W.Ma,C.Yang,X.Gong,K.Lee,A.J.Heeger,Thermally Stable,Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology,Adv.Funct.Mater.2005,15:1617-1622.
    [167]M.Reyes-Reyes,K.Kim,D.L.Carroll,High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene)and l-(3-methoxycarbonyl)-propyl-l-phenyl-(6,6)C_(61)blends,Appl.Phys.Lett.,2005,87:83506
    [168]M.C.Scharber,D.Muhlbacher,M.Koppe,P.Denk,C.Waldauf,A.J.Heeger,C.J.Brabec,Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency,Adv.Mater.2006,189:789-794.
    [169]G.Jarosz,Electric properties of an Au-CuPc-Au sandwich system:Direct current and low signal admittance studies,Journal of Non-Crystalline Solids,2006,352:4264-4268.
    [170]J.-M.Nunzi,Organic photovoltaic materials and devices,Comptes Rendus Physique,2002,3:523-542.
    [171]Y.Kang,N.Park,and D.Kim,Hybrid solar cells with vertically aligned CdTe nanorod and a conjugated polymer,Appl.Phys.Lett.,2005,86:113101.
    [172]B.M.Kayes and H.A.Atwatera,Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells.J.Appl.Phys.2005,97:114302.
    [173]Hui Jin,Yanbing Hou,Xianguo Meng,Feng Teng High open-circuit voltage in UV photovoltaic cell based on polymer/inorganic bilayer structure,Chem.Phys.,2006,330:501-505
    [174]S.T.Lee,X.Y.Hou,M.G.Mason,et al.Energy level alignment at Alq/metal interfaces,Appl.Phys.Lett.,1998,72:1593-1595.
    [175]Y.Hirose,A.K.ahn,Y.Atistov,et al.Chemistry and electronic properties of metal-organic semiconductor interfaces:Al,Ti,In,Sn,Ag,and Au on PTCDA,Phys.Rev.B,1996,54:13748-13758.
    [176]Z.B.He,G.L.Zhao,G.R.Han,X.W.Zhang,P.Y.Du,W.J.Weng,G.Shen,A study of photoconductive properties of vacuum-sublimated copper-phthalocyanine/zinc sulphide multilayer films,Thin Solid Films,2003,424:157-160.
    [177]C.J.Brabec,Organic photovoltaics:technology and market,Sol.Energy Mater.Sol.Cell.,2004,83:273-292.
    [178]Q.Wang,S.E.Shaheen,E.L.Williams,G.E.Jabbour,Hybrid organic-inorganic photoconductive diode,Appl.Phys.Lett.,2003,83:3404-3407.
    [179]T.Stubinger,W.Brutting,Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells,J.Appl.Phys.,2001,90:3632-3635.
    [180]H.Hansel,H.Zettl,G.Krausch,R.Kisselev,M.Thelakkat,H.-W.Schmidt,Optical and Electronic Contributions in Double-Heterojunction Organic Thin-Film Solar Cells,Adv.Mater.,2003,15:2056-2060.
    [181]J.Ferber,R.Stangl,and J.Luther,An Electrical Model of The Dye-sensitized Solar Cell. Sol.Energ.Mat.Sol.C,1998,53:29-31
    [182]S.Ngamsinlapasathian,S.Sakulkhaemaruethai,S.Pavasupree,A.Kitiyanan,T.Sreethawong,Y.Suzuki,and S.Yoshikawa,Highly Efficient Dye-sensitized Solar Cell Using Nanocrystalline Titania Containing Nanotube Structure.Journal of Photochemistry and Photobiology A:Chemistry,2004,164:145-151.
    [183]A.C.Arango,L.R.Johnson,V.N.Bliznyuk,Z.Schlesinger,S.A.Carter,H.-H.Horhold,Efficient Titanium Oxide/Conjugated Polymer Photovoltaics for Solar Energy Conversion,Adv.Mater.,2000,12:1689-1692.
    [184]A.J.Breeze,Z.Schlesinger,and S.A.Carter,Charge transport in Ti02-MEH-PPV polymer photovoltaics,Phys.Res.B:Condents Matter Mater.Phys.,2001,64:125205.
    [185]P.A.van Hal,M.M.Wienk,J.M.Kroon,W.J.H.Verhees,L.H.Slooff,W.J.H.van Gennip,P.Jonkheijm,R.A.J.Janssen,Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV:TiO2 Bulk-Heterojunction,Adv.Mater.,2003,15:118-121.
    [186]M.Thelakkat,C.Schmitz,H.-W.Schmidt,Fully Vapor-Deposited Thin-Layer Titanium Dioxide Solar Cells,Adv.Mater.,2002,14:577-581.
    [187]K.Yoshino,K.Tada,A.Fujii,E.M.Conwell,and A.A.Zakhidov,Novel Photovoltaic Devices Based on Donor-Acceptor Molecular and Conducting Polymer Systems,IEEE T Electron Dev,1997,44:1315-1323.
    [188]A.Hayakawa,O.Yoshikawa,T.Fujieda,K.Uehara,and S.Yoshikawa,High Performance Polythiophene/Fullerene Bulk-Heterojunction Solar Cell with a TiOx Hole Blocking Layer,Appl.Phys.Lett.,2007,90:163517-1-3.
    [189]L.Smilowitz,N.S.Sariciftci,R.Wu,C.Gettinger,A.J.Heeger,and F.Wudl,Photoexcitation Spectroscopy of Conductingpolymer-C60 Composites:Photoinduced Electron Transfer,Phys.Rev.B,1993,47:13835.
    [190]B.Kraabel,C.H.Lee,D.Mcbranch,D.Moses,N.S.Sariciftci,and A.J.Heeger,Ultrafast Photoinduced Electron Transfer in Conducting Polymer-Buckminsterfullerene Composites,Chem.Phys.Lett.,1993,213:389.
    [191]S.E.Shaheen,G.E.Jabbour,M.M.Morrell,Y.Kawabe,B.Kippelen,and N.Peyghambarian,Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode,J.Appl.Phys.,1998,84:2324-2327.
    [192]J.Y.Kim,Y.C.Shin,K.M.Park and C.H.Lee,Enhanced Efficiency of Polymer:Fullerene Bulk Heterojunction Solar Cells with The Insertion of Thin Pyronin B Layer Near The Electrode.Organic Photovoltaics VI.Proc.SPIE,2005,5938:1-7.
    [193]M.Jorgensen,K.Norrman,F.C.Krebs,Stability/degradation of polymer solar cells,Sol. Energ.Mat.Sol.C,2008,92:686-714.
    [194]F.C.Krebs,K.Norrman,Analysis of the failure mechanism for a stable organic photovoltaic during 10000 h of Testing.Prog.Photovolt.Res.Appl.2007,15:697-702.
    [195]X.Wei,M.Raikh,and Z.V.Vardeny,Photoresponse of poly(para-phenylenevinylene)light-emitting diodes,Phy.Rev.B,1994,49:17480-17483.
    [196]D.Gupta,S.Mukhopadhyay,K.S.Narayan,Fill factor in organic solar cells.Sol.Energ.Mat.Sol.C,2009(in press).
    [197]M.Glatthaar,M.Riede,N.Keegan,K.Sylvester-Hvid,B.Zimmermann,M.Niggemann,A.Hinsch,A.Gombert,Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy,Sol.Energ.Mat.Sol.C,2007,91:390-393.
    [198]W.A.Daoud,and M.L.Turner,Effect of Interfacial Properties and Film Thickness on Device Performance of Bilayer Ti02-Poly(l,4-phenylenevinylene)Solar Cells Prepared by Spin Coating,Reactive and Functional Polymers,2006,66:13-20.
    [199]H.Jin,Y.B.Hou,X.G.Meng,F.Ten,Concentration Dependence of Photovoltaic Properties of Photodiodes Based on Polymer-Fullerene Blends,Materials Science and Engineering B,2007,137:5-9.
    [200]A.Ltaief,J.Davenas,A.Bouazizi,R.B.Chaabane,P.Alcouffe,and H.B.Ouada,Film morphology effects on the electrical and optical properties of bulk heterojunction organic solar cells based on MEH-PPV/C-60 composite,Materials Science and Engineering C,2005,25:67-75.
    [201]C.H.Lee,G.Yu,D.Moses,K.Pakbaz,C.Zhang,N.S.Sariciftci,A.J.Heeger,and F.Wudl,Sensitization of the photoconductivity of conducting polymers by C-60-photoinduced elecctron-transfer,Phys.Rev.B,1993,48:15425-15433.
    [202]J.Gilot,M.M.Wienk,and R.A.J.Janssen,Double and Triple Junction Polymer Solar Cells Processed from Solution,Appl.Phys.Lett.,2007,90:143512-1-3.
    [203]H.Hoppe and N.S.Sariciftci,Morphology of Polymer/Fullerene Bulk Heterojunction Solar Cells,J.Mater.Chem.,2006,16:45-61.
    [204]V.Shrotriya,E.H.Wu,G.Li,Y.Yao,and Y.Yang,Efficient light harvesting in multiple-device stacked structure for polymer solar cells,Appl.Phys.Lett.,2006,88:064104-1.
    [205]K.Matsune,H.Oda,T.Toyama,H.Okamoto,Y.Kudriavysevand,R.Asomoza,15% Efficiency CdS/CdTe thin film solar cells using CdS layers doped with metal organic compounds,Sol.Energy Mater.Sol.Cell.,2006,90:3108-3114..
    [206]H.N.Cong,M.Dieng,C.Sene,P.Chartier,Hybrid organic-inorganic solar cells:Case of the all thin film PMeT(Y)/CdS(X)junction,Sol.Energy Mater.Sol.Cell.,2000,63:23-35.
    [207]X.Wu,J.Zhou,A.Duda,Y.Yan,G.Teeter,S.Asher,W.K.Mezger,S.Demtsub,S.H.Wei,R.Noufi,,Phase control of CdxTe film and its effects on CdS/CdTe solar cell,Thin Solid Film,2007,515:5798-5803.
    [208]S.Vatavu,P.Gasin,The analysis of current flow mechanism in CdS/CdTe heterojunction,Thin Solid Film,2007,515:6179-6183.
    [209].H.Kim,W.W.So and S.J.Moon,Effect of Thermal Annealing on the Performance of P3HT/PCBM Polymer Photovoltaic Cells,Journal of the Korean Physical Society,2006,48:441-445.
    [210]F.C.Krebs,H.Spanggaard,Significant Improvement of Polymer Solar Cell Stability,Chem.Mater.2005,17:5235-5237.
    [211]K.Norrman,F.C.Krebs,Lifetimes of organic photovoltaics:Using TOF-SIMS and ~(18)O_2 isotopic labelling to characterise chemical degradation mechanisms,Sol.Energy.Mater.Sol.Cell,2006,90:213-227.
    [212]K.Norrman,N.B.Larsen,F.C.Krebs,Precursor route poly(thienylene vinylene)for organic solar cells:Photophysics and photovoltaic performance,Sol.Energy Mater.Sol.Cells 2006,90:2793-2828.
    [213]K.Norrman,F.C.Krebs,Organic Photovoltaics,Proc.SPIE,2005,5938:59380D-1.
    [214]R.Pacios,A.J.Chatten,K.Kawano,J.R.Durrant,D.D.C.Bradley,J.Nelson,Effects of Photo-oxidation on the Performance of Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-l,4-phenylene vinylene]:[6,6]-Phenyl C61-Butyric Acid Methyl Ester Solar Cells,Adv.Funct.Mater.,2006,16:2117-2126.
    [215]K.Kawano,R.Pacios,D.Poplavskyy,J.Nelson,D.D.C.Bradley,J.R.Durrant,Degradation of organic solar cells due to air exposure,Sol.Energy Mater.Sol.Cells,2006,90:3520-3530.
    [216]H.Neugebauer,C.J.Brabec,J.C.Hummelen,R.A.J.Janssen,N.S.Sariciftci,Stability studies and degradation analysis of plastic solar cell materials by FTIR spectroscopy,Synth.Met.,1999,10:1002-1003.
    [217]S.A.Choulis,J.Nelson,Y.Kim,D.Poplavskyy,T.Kreouzis,J.R.Durrant,and D.D.C.Bradley,Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements,Appl.Phys.Lett.,2003,83:3812-3814.
    [218]R.Pacios,J.Nelson,D.D.C.Bradley,and C.J.Brabec,Composition dependence of electron and hole transport in polyfluorene:[6,6]-phenyl C61-butyric acid methyl ester blend films,Appl.Phys.Lett.,2003,83:4764-4766.
    [219]K.R.Choudhury,J.G.Winiarz,M.Samoc,and P.N.Prasad,Charge carrier mobility in an organic-inorganic hybrid nanocomposite,Appl.Phys.Lett.,2003,82:406-408.
    [220]N.Drolet,J.F.Morin,M.Leclerc,et al.2,7-carbazolenevinylenebased oligomer thin-film transistors:High mobility through structural ordering.Adv Mater,2005,15:1671-1682.
    [221]J.J.Dittmer,E.A.Marseglia,R.H.Friend,Electron trapping in dye/ polymer blend photovoltaic cells.Adv.Mater,2000,12:1270-1274.
    [222]X.N.Yang,J.Loos,R.A.J.Janssen,et al.,Nanoscale morphology of high-performance polymer solar cells.Nano.Lett,2005,5:579-583.
    [223]X.N.Yang,J.K.J.Duren,J.Loos,et al.Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices.Macromolecules,2004,37:2151-2158.
    [224]G.M.Wang,J.Swensen,D.Moses,and A.J.Heeger,Increased mobility from regioregular poly(3-hexylthiophene)field-effect transistors,J.Appl.Phys.,2003,93:6137-6141.
    [225]J.A.DeAro,D.Moses,S.K.Buratto,Near-field photoconductivity of stretch-oriented poly(para-phenylenevinylene),Appl.Phys.Lett.,1999,75:3814-3816.
    [226]T.W.Lee,O O.Park,L.-M.Do,and T.Zyung,Luminescent spectral changes in polymer light-emitting diodes after heat treatments,Mol.Cryst.And Liq.Cryst.,2000,349:451-454.
    [227]T.J.Savenije,J.E.Kroeze,X.N.Yang,and J.Loos,The formation of crystalline P3HT fibrils upon annealing of a PCBM:P3HT bulk heterojunction,Thin Solid Films,2006,511-512:2-6.
    [228]E.Kymakis,E.Koudoumas,I.Franghiadakis and G.A.J.Amaratung,Post-Fabrication Annealing Effects in Polymer-Nanotube Photovoltaic Cells,J.Phys.D:Appl.Phys.,2006,39:1058-1062.
    [229]E.A.Katz,D.Faiman,and S.M.Tuladhar,Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions.J.Appl.Phys.,2001,90:5343-5350.
    [230]Hui Jin,Yanbing Hou,Xianguo Meng,Yan Li,Quanmin Shi,Feng Teng,Enhanced Photovoltaic Properties of Polymer-Fullerene Bulk Heterojunction Solar Cells by Thermal Annealing,Solid State Communications,2007,142:181-184.
    [231]H.Jin,Y.B.Hou,Q.M.Shi,X.G.Meng,F.Teng,Improving Photovoltaic Properties via Electric-Field-Induced Orientation of Conjugated Polymer,Solid State Communications,2006,140:555-558.
    [232]M.T.Rispens,A.Meetsma,R.Rittberger,C.J.Brabec,N.S.Sariciftci and J.C.Hummelen,Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM 'plastic' solar cells,Chem.Commun.,2003,17:2116-2119
    [233]T.Martens,J.D'Haen,T.Munters,Z.Beelen,L.Goris,J.Manca,M..D'Olieslaeger,D. Vanderzande,L.De Schepper,R.Andriessen,Disclosure of the nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM,Synth.Met.,2003,138:243-247.
    [234]H.Hoppe,M.Niggemann,C.Winder,J.Kraut,R.Hiesgen,A.Hinsch,D.Meissner,N.S.Sariciftci,Nanoscale Morphology of Conjugated Polymer/Fullerene-Based Bulk-Heterojunction Solar Cells,Adv.Funct.Mater.2004,14:1005-1011.
    [235]M.Kalbac,L.Kavan,M.Zukalova,L.Dunsch,In-Situ Vis-Near-Infrared and Raman Spectroelectrochemistry of Double-Walled Carbon Nanotubes,Adv.Funct.Mater.2005,15:418-426.
    [236]H.Kim,W.W.So,S.J.Moon,The importance of post-annealing process in the device performance of poly(3-hexylthiophene):Methanofullerene polymer-solar cell,Sol.-Energy Mater.Sol.Cells,2007,91:581-587.
    [237]J.Huang,G.Li,Y.Yang,Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene)and[6,6]-phenyl C6i-butyric acid methyl ester blends,Appl.Phys.Lett.,2005,87:112105.
    [238]T.Erb,U.Zhokhavets,G.Gobsch,S.Raleva,B.Stu” hn,P.Schilinsky,C.Waldauf,C.J.Brabec,Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells,Adv.Funct.Mater,2005,15:1193-1196.
    [239]V.D.Mihailetchi,H.Xie,B.de Boer,L.J.A.Koster,P.W.M.Blom,Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene):Methanofullerene Bulk-Heterojunction Solar Cells,Adv.Funct.Mater.2006,16:699-708.
    [240]M.Dreesa,R.M.Davis and J.R.Heflin,Improved morphology of polymer-fullerene photovoltaic devices with thermally induced concentration gradients,J.Appl.Phys,2005,97:036103
    [241]H.Kim,W.W.So,S.J.Moon,Effect of Thermal Annealing on the Performance of P3HT/PCBM Polymer Photovoltaic Cells,Journal of the Korean Physical Society,2006,48:441-445.
    [242]X.Yang,J.Loos,S.C.Veenstra,W.J.H.Verhees,M.M.Wienk,J.M.Kroon,M.A.J.Michels,R.A.J.Janssen,Nanoscale Morphology of High-Performance Polymer Solar Cells,Nano Lett.,2005,5:579-583.
    [243]T.Ann and H.Lee,Effect of annealing of polythiophene derivative for polymer light-emitting diodes,Appl.Phys.Lett.,2002,80:392-395.
    [244]P.J.Brown,D.S.Thomas,A.K'ohler,J.Wilson,J.S.Kim,C.Ramsdale,H.Sirringhaus and R.H.Friend,Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),Phys.Rev.B,2003,67:064203
    [245]J.Birgerson,M.Fahlman,P.Broms,W.R.Salaneck,Conjugated polymer surfaces and interfaces:a mini-review and some new results,Synth.Met,1996,80,125-130.
    [246]M.Logdlund,J-L.Bredas,Theoretical studies of the interaction between aluminum and poly(p-phenylenevinylene)and derivatives,J.Chem.Phys,1994,101,4357.
    [247]H.J.Snaith,N.C.Greenham,R.H.Friend,The Origin of Collected Charge and Open-Circuit Voltage in Blended Polyfluorene Photovoltaic Devices,Adv.Mater.2004,16:1640-1645.
    [248]B.Sun,H.J.Snaith,A.S.Dhoot,S.Westenhoff,N.C.Greenham,Vertically segregated hybrid blends for photovoltaic devices with improved efficiency,J.Appl.Phys.,2005,97:14914.
    [249]P.Peumans,S.Uchida,S.R.Forrest,Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,Nature,2003,425:158-162.
    [250]H.Z.Yu,J.B.Peng,X.M.Zhou,The performance of solar cell based on blends of MEH-PPV and PCBM of various compositions,Acta Phys.Sin.2008,57:3898-3903.(in Chinese)
    [251]G.D.Sharma and M.S.Roy,Charge conduction and photogeneration process in hybrid materials of conjugated polymer and dye-sensitized TiO_2 thin-film device,J Mater Sci-Mater EL,2004,15:69-74.
    [252]G.D.Sharma,V.S.Choudhary,M.S.Roy,Effect of Annealing on the Optical,Electrical,and Photovoltaic Properties of Bulk Hetero-Junction Device Based on PPAT:TY Blend,Sol.Energy Mater.Sol.Cell.,2007,91:275-284.
    [253]Y.Zhao,G.X.Yuan,M.Leclerc,et al.A calorimetric study of the phasetransitions in poly(3-hexyl thiophene).Polymer,1995,36(11):2211-2214.
    [254]T.J.Savenije,J.E.Kroeze,X.N.Yang,et al.The effect of thermal treament on the morphology and charge carrier dynamics in a polythiophene-fullerene bulk heterojunction.Adv.Funct.Mater,2005,15:1260-1266.
    [255]J.J.Dittmer,E.A.Marseglia,R.H.Friend,Electron Trapping in Dye/Polymer Blend Photovoltaic Cells,Adv.Mater.,2000,12:1270-1274.
    [256]H.Aziz and G.Xu,Electric-Field-Induced Degradation of Poly(p-phenylenevinylene)Electroluminescent Devices,J.Phys.Chem.B.,1997,101:4009-4012.
    [257]Hiroyuki Suzuki,Self-enhancement in the electroluminescence of a near-infrared ionic dye,Appl.Phys.Lett.,2000,76:1543-1546.
    [258]J.C.deMello,N.Tessler,S.C.Graham,and R.H.Friend,Ionic space-charge effects in polymer light-emitting diodes Phys.Rev.B.,1998,57:12951-12963.
    [259]T.W.Lee,and O.O.Park,The effect of different heat treatments on the luminescence efficiency of polymer light-emitting diodes,Adv.Mater.,2000,12:801-804.
    [260]A.R.Inigo,C.C.Chang,W.S.Fann,J.D.White,Y.S.Huang,U.-S.Jeng,H.S.Sheu,K.-Y.Peng,and S.-A.Chen,Enhanced Hole Mobility in Poly(2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylenevinylene)by Elimination of Nanometer-Sized Domains,Adv.Mater.,2005,17:1835-1838.
    [261]T.W.Lee,O.O.Park,Effect of electrical annealing on the luminous efficiency of thermally annealed polymer light-emitting diodes,Appl.Phys.Lett.,2000,77:3334-3336.
    [262]H.Bassler,Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study,Phys.Status Solidi B.,1993,175:15-56.
    [263]A.R.Inigo,C.H.Tan,W.S.Fann,Y.S.Huang,G.Y.Perng,A.A.Chen,Non-dispersive Hole Transport in a Soluble Poly(p-phenylene vinylene),Adv.Mater.,2001,13:504-508
    [264]Q.M.Shi,Y.B.Hou,J.Lu,H.Jin,Y.B.Li,Y.Li,X.Sun,J.Liu,Enhancement of Carrier Mobility in MEH-PPV Film Prepared under Presence of Electric Field,Chem.Phys.Lett.,2006,425:353-355.
    [265]M.Granstrom,K.Petritsch,A.C.Arias,A.Lux,M.R.Andersson,and R.H.Friend,Laminated fabrication of polymeric photovoltaic diodes,Nature,1998,395:257-260.
    [266]B.Masenelli,D.Berner,M.N.Bussac,F.Nuesh,and L.Zuppiroli,Simulation of charge injection enhancements in organic light-emitting diodes,Appl.Phys.Lett.,2001,79:4438-4440.
    [267]V.P.Singh,B.Parsaraythy,R.S.Singh,A.A.guilera,J.Anthony,and M.Payne,Characterization of high-photovoltage CuPc-based solar cell structure,Sol.Energy Mater.Sol.Cell,2006,90:798-812.
    [268]J.H.Yang,A.Garcia and T.Q.Nguyen,Organic solar cells from water-soluble poly(thiophene)/fullerene heterojunction,Appl.Phys.Lett.2007,90:103514
    [269]H.Mu,W.Li,R.Jones,A.Steckl and D.Klotzkin,A comparative study of electrode effects on the electrical and luminescent characteristics of Alq3/TPD OLED:Improvements due to conductive polymer(PEDOT)anode,Journal of Luminescence,2007,126:225-229.
    [270]V.Tripathi,D.Datta,G.S.Samal,A.Awasthi,S.Kumar,Role of exciton blocking layers in improving efficiency of copper phthalocyanine based organic solar cells,Jnoncrysol,2008,354:2901-2904.
    [271]J.Gilot,M.M.Wienk,and R.A.J.Janssen,Double and triple junction polymer solar cells processed from solution,Appl.Phys.Lett.,2007,90:143512
    [272]V.D.Mihailetchi,L.J.A.Koster,and P.W.M.Blom,Effect of metal electrodes on the performance of polymer:fullerene bulk heterojunction solar cells,Appl.Phys.Lett.,2004,85:970-972.
    [273]H.Hoppe,N.Arnold,N.S.Sariciftci and D.Meissner,Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells,Sol.Energy Mater.Sol.Cell.,2003,80:105-113.
    [274]A.J.Mozer and N.S.Sariciftci,Conjugated Polymer-Based Photovoltaic Devices,Conjugated Polymers:Processing and Applications,10-24.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.