窄带隙共轭聚合物的制备与光伏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,聚合物太阳能电池由于能够采用低成本的溶液加工方法制备大面积柔性器件等优点而引起了人们的普遍关注。目前,聚合物太阳能电池的能量转换效率已达到7.73%,但离实际应用还有一定的距离。制约电池性能的重要因素是共轭聚合物的吸收光谱与太阳光谱不相匹配以及其载流子迁移率低。合成新的窄带隙聚合物材料对于改善聚合物太阳能电池对近红外区太阳光的吸收,从而提高聚合物太阳能电池的能量转换效率有重要意义。无机纳米半导体材料具有迁移率高、化学稳定性好等优点,如果在聚合物太阳能电池中引入无机半导体纳米晶(如ZnO, CdS, CdSe, TiO2等),将会有利于电荷的分离和传输,从而提高器件的性能。本论文着重为解决上述两个问题而展开研究工作。
     论文的第一章综述了聚合物光伏材料及其在光电器件应用方面的研究进展。
     论文第二章采用Stille偶联的方法,以4H-环戊[2,1-b:3,4-b']双噻吩为给电子单元,将其与四种吸电子单元——4,7-二溴-2,1,3-苯并噻二唑、4,7-二溴-2,1,3-苯并噁二唑、4,7-二溴-2,1,3-苯并硒二唑和1,7-二溴-N,N’-双(2-乙基已基)-3,4,9,10-花酰亚胺共聚,合成出3种窄带隙聚合物光伏材料(P1,P3和P4)。三种聚合物的最大吸收峰位于680-750 nm,光学带隙在1.3-1.5 eV之间,热分解温度大于200℃,有潜力成为聚合物太阳能电池的光活性层材料。
     基于环戊双噻吩的窄带隙聚合物合成较为困难,论文第三章以双噻吩吡咯为给电子单元,以3,6-二溴-苯酰亚胺、二苯基吡咯并吡咯二酮和2,5-二溴噻吩-3-甲酸已酯为吸电子单元,采用Stille偶联反应,合成了基于双噻吩吡咯的三种新型共轭聚合物(P6,P7和P8)。这三种聚合物的光学带隙在1.6-2.0 eV之间,HOMO(最高占据轨道)能级位于-5.4--5.1 eV,热重分析显示三种聚合物也具有良好的热稳定性,表明三种聚合物都可作为光伏材料应用于聚合物太阳能电池的研究。
     论文第四章,我们对基于以上六种聚合物的光伏器件进行了研究,其中将5种聚合物(P3-P8)与1-(3-甲氧基羰基)丙基-1-苯基[6,6]C61 (PCBM)共混,制备了5种本体异质结光伏器件,其中基于P7/PCBM的器件效率最高,达到了1.22%。
     论文第五章将Zn0和CdS纳米晶分别与聚合物复合,制备了PCPDTBT/ZnO纳米晶和MEH-PPV/CdS纳米晶两种复合材料。通过研究复合前后的荧光变化,确认了给体-受体两相界面间发生了由分子能级差引发的光致电荷转移,并进一步研究了两种复合材料的光伏性能。这些研究结果为探索性能更佳的共轭聚合物/无机纳米晶太阳能电池材料体系提供了重要的参考依据。
In recent years, polymer solar cells (PSCs) have attracted great attention due to their unique advantages, such as low-cost manufacture process, light weight, and the capability to fabricate flexible large-area devices. Although the best power conversion efficiency (PCE) of PSCs reached 7.73%, it needs to be further improved for commercial applications. The PCE of polymer solar cells is limited by two main factors from a view of materials:one is the mismatching between the spectral response of the photoactive layer and the solar-terrestrial radiation, the other is low mobility of polymers. In order to match solar-terrestrial radiation, the synthesis of novel low band-gap conjugated polymers, which can extend their absorptions to near-infrared region, is crucial for the PCE improvement of PSCs. In addition, the introduction of inorganic semiconductor nanocrystals with high carrier mobility and good chemical stability (such as ZnO, CdS, CdSe, TiO2) may enhance the charge separation and transport within PSCs, thus lead to the improvement of device performance.
     In Chapter 1, the progresses of polymer photovoltaic materials and their applications in photovoltaic devices are reviewed.
     In Chapter 2, three low band-gap polymers (PI, P3 and P4) are designed and successfully synthesized via Stille cross-coupling polymerization by choosing 4H-cyclopenta[2,1-b:3,4-b']dithiophene as electron-donating unit and four compounds,4,7-dibromo-2,1,3-benzothiadiazole,4,7-dibromo-2,1,3-benzoxadiazole, 4,7-dibromo-2,1,3-benzoselenadiazole and N,N'-bis(2-ethylhexyl)-3,4,9,10-perylene diimide, as electron-withdrawing units. These copolymers exhibit broad absorption extending into the near-infrared region with the absorption maxima at 680-750 nm and the optical band gaps ranging from 1.3 to 1.5 eV. HOMO(Highest Occupied Molecular Orbital)energy levels of the copolymers vary between-5.0 and -5.3 eV whereas the LUMO(Lower Unoccupied Molecular Orbital) energy levels are pinned between -3.7 and -3.4 eV. The combination of extending absorption into the near-infrared region, optimal energy levels, and excellent thermal properties makes this class of low band-gap copolymers promising for photovoltaic applications.
     Due to the difficulties in synthesizing low band-gap polymers based on 4H-cyclopenta[2,1-b:3,4-b']dithiophene, in Chapter 3, dithieno[3,2-b:2',3'-d]pyrrole is used as electron-donating unit to synthesize conjugated polymers alternating dithieno[3,2-b:2',3'-d]pyrrole and three electron-accepting units, 3,6-dibromophthalimide, 1,4-diketo-3,6-diphenyl pyrrolo[3,4-c]pyrrole and 2,5-dibromothiophene-3- hexyl formate. Optical characterizations reveal that the band-gaps of the obtained three polymers (P6, P7 and P8) are between 1.6 and 2.0 eV. Electrochemical characterizations show that the HOMO energy levels of P6, P7 and P8 are between -5.4 and -5.1 eV. These results indicate that this type of polymer is promising candidate for efficient polymer solar cells, too.
     The above six polymers, blended with 1-(3-methoxycarbonyl)propyl-l-phenyl-[6,6]-C-61 (PCBM), are used as active layers to prepare bulk heteroj unction polymer solar cells. Their photovoltaic properties are studied, and it is found that the PSC based on P7:PCBM blend exhibits the highest PCE of 1.22%.
     In Chapter 5, the composites based on poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cy clopenta[2,1-b:3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)](PCPDTBT)/ZnO nanocrystals and poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylene)](ME H-PPV)/CdS nanocrystals have been prepared. Both composites show fluorescence quenching, indicating that the photo-induced charge transfer occurrs due to the energy level offset between the donor and the acceptor. Moreover, the photovoltaic property of the composite based on MEH-PPV/CdS is discussed as well.
引文
1 Kallmann, H.; Pope, M.; Photovoltaic effect in organic crystals. J. Chem. Phys.,1959,30, 585-586.
    2 Tang, C. W.; Two-layer organic photovoltaic cell. Appl. Phys. Lett.,1986,48,183-185.
    3 Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Photoinduced Electron-Transfer from a Conducting Polymer to Buckminsterfullerene. Science,1992,258(5087),1474-1476.
    4 Sariciftci, N. S.; Zhang, C., Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Appl. Phys. Lett.,1993,62(6),585-587.
    5 Yu, G.; Gao, J.; Heeger, A. J., Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science,1995,270,1789-1791.
    6 Chen, H. Y.; Hou, J. H.;Yang, Y.; Yu, L. P., Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics,2009,3,649-653.
    7密保秀,高志强,邓先宇,黄维,基于有机薄膜的太阳能电池材料与器件研究进展,中国科学(B),2008,38(11),957-975.
    8 Sariciftci, N. C., Conjugated Polymer-Based Organic Solar Cells. Chem. Rev,2007,107(4), 1324-1338.
    9 Yang, F.; Shtein, M.; Forrest, S. R., Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nat. Mater.,2005,4,37-41.
    10 Eckert, J. F.; Nicoud, J. F.; Nierengarten, J. F., Fullerene-Oligophenylenevinylene Hybrids: Synthesis, Electronic Properties and Incorporation in Photovoltaic Devices. J. Am. Chem. Soc, 2000,122,7467-7479.
    11 Gu, T.; Tsamouras, D.; Melzer, C., Photovoltaic Devices from Fullerene-Oligophen yleneethyn ylene Conjugates, Chem. Phys. Chem.,2002,3,124-126.
    12 Winder, C.; Hummelen, J. C.; Brabec, C. J., Sensitization of low bandgap polymer bulk heterojunction solar cells. Thin Solid Films,2002,403-404,373-379.
    13 Meskers, S. C. J.; Hubner, J.; Bassler, H., Dispersive relaxation dynamics of photoexcitations in a polyfluorene film involving energy transfer:experiment and Monte Carlo simulations. J. Phys. Chem. B,2001,105(38),9139-9149.
    14张正华,李陵岚,叶楚平,杨平华,有机太阳电池与塑料太阳电池,化学工业出版社,2005
    15 Xue, J. G.; Uchida, S.; Rand, B. P.; Forrest, S. R.,4.2% Efficient organic photovoltaic cells with low series resistances. Appl. Phys. Lett.,2004,84(16),3013-3015.
    16 Chan, M. Y; Lai, S. L.; Lee, S. T., Doping-induced efficiency enhancement in organic photovoltaic devices. Appl. Phys. Lett.,2007,90,023504-1-0235504-3.
    17 Friend, R. H.; MacKenzie, J. D., Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. Science,2001,293,1119.
    18 Zerza, G.; Brabec, C. J.; Sariciftci, N. S., Ultrafast charge transfer in conjugated polymer-fullerene composites. Synthetic Metals,2001,119(1-3),637-638.
    19. Wang, E. G.; Wang, L.; Lan, L. F.; High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl. Phys. Lett.2008,92,33307.
    20 Blouin, N.; Michaud, A.; Leclerc, M. A., Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells. Adv. Mater.,2007,19,2295-2300.
    21 Wong, W. Y.; Wang, X. Z.; He, Z., Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nat. Mater.,2007,6,521-527.
    22 Troshin, P. A.; Hoppe, H., Material Solubility-Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells. Adv. Funct. Mater.,2009,19,779-788.
    23何有军,李永舫,聚合物太阳电池光伏材料.化学进展,2009,21(1.1),2304-2318
    24邹应萍,霍利军,李永舫,共轭聚合物发光和光伏材料研究进展.高分子通报,2008,8,146-173.
    25 Karg, S.; Riess, W,; Dyakonov, V., Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes. Synth. Met,1993,54(1-3),427-433.
    26 Brabec, C. J.; Shaheen, S. E.; Winder, C., Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett.,2002,80,1288-1290.
    27 Yu, G.; Heeger, A. J., Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J. Appl. Phys.,1995,78 (7),4510-4515.
    28 Granstrom, M.; Petritsch, K.; Arias, A. C., Laminated fabrication of polymeric photovoltaic diodes. Nature,1998,395(6699),257-260
    29 Braun, D. E.; Staring, G. J., Photo and electroluminescence efficiency in poly(dialkoxy-p-phenylenevinylene). Synth. Met.,1994,66(1),75-79.
    30 Burn, P. L.; Holmes, A. B.; Kraft, A., Chemical tuning of electroluminescent copolymers to improve emission efficiencies and allow patterning. Nature,1992,356,47-49.
    31 Ravirajan, P.; Harue, S. H., Durrant, J. R., The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells. Adv. Funct. Mater,2005,15(4),609-618.
    32佟拉嘎,蹇锡高,藤井彰彦,烷基和烷氧基取代聚噻吩的合成、表征与光电性能.高分子学报,2004,(5),628-633.
    33 Nguyen, L. H.; Hoppe, H.; Gunes, T. E. S., Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk-Heterojunction Solar Cells. Adv. Funct. Mater,2007,17,1071-1078
    34 Gerhard, G.; Steffi, S., Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene,Solar Energy Materials and Solar cells.2005,85(1),13-20.
    35 Shi, C.; Yao, Y.; Yang, Y.; Pei, Q. B., Regioregular Copolymers of 3-Alkoxythiophene and Their Photovoltaic Application. J. Am. Chem. Soc.,2006,128,8980-8986.
    36 Reference Solar Spectral Irradiance:Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/aml.5
    37 Peet, J; Kim, J. Y.; Coates, N. E., Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater.,2007,6(7),497-500
    38 Yue, W; Zhao, Y; Shao, S. Y.,_Novel NIR-absorbing conjugated polymers for efficient polymer solar cells:effect of alkyl chain length on device performance. J. Mater. Chem.,19(15), 2199-2206.
    39 Hou, J. H.; Zhang, S. Q.; Li, G.; Yang, Y., Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. J. Am. Chem. Soc.,2008,130,16144-16145.
    40 Chen, C. H.; Cheng, Y. J.; Hsu, C. S., Synthesis and Characterization of Bridged Bithiophene-Based Conjugated Polymers for Photovoltaic Applications:Acceptor Strength and Ternary Blends. Macromolecules,2010,43(2),697-708.
    41 Wang, E. G.; Wang, M.; Wang, L.; Wu, H. B.; Cao, Y., Donor Polymers Containing Benzothiadiazole and Four Thiophene Rings in Their Repeating Units with Improved Photovoltaic Performance. Macromolecules,2009,42,4410-4415.
    42 Zhou, E. J.; Yang, C. H.; Hashimoto Kazuhito, Synthesis and Photovoltaic Properties of Diketopyrrolopyrrole-Based Donor-Acceptor Copolymers. Chem. Mater.2009,21, 4055-4061.
    43 Zou, Y. P.; Berrouard. P.; Leclerc, M., A Thieno[3,4-c]pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells. J. Am. Chem. Soc.,2010,132(15),5330-5331
    44 Muhlbacher, D.; Scharber, M.; Morana, M., High Photovoltaic Performance of a Low-Bandgap Polymer. Adv. Mater.,2006,18(22),2931-2931.
    45 Kim, J. Y.; Heeger, A. J., Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science,2007,317,222-225.
    46 Svensson, M.; Veenstra, S. C.,, High-Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative. Adv. Mater.,2003,15(12),988-991.
    47 Liang, Y. Y.; Wu, Y.; Li, G.;Yu, L. P., Development of New Semiconducting Polymers for High Performance Solar Cells. J. Am.Chem. Soc.2009,131,56-57.
    48 Dhanabalan, A.; Van Duren, J. K. J., Synthesis and Characterization of a Low Bandgap Conjugated Polymer for Bulk Heterojunction Photovoltaic Cells. Adv. Funct. Mater.,2001,11, 255-262.
    49 Greenham, N. C.; Peng, X.; Alivisatos, A. P., Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B.,1996,54(24),17628-176371.
    50 Huynh, W.; Dittmer, J. J.; Alivisatos, A. P., Hybrid nanorod-polymer solar cells. Science,2002, 295(5564),2425-242.
    51 Gratzel, M.; Photoelectrochemical cells. Nature,2001,414,338-344.
    52 Waldo, J. E. B.; Martijin, M. W.; Rene, A. J. J., Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer. Adv. Mater.,2004,16,1009-1013.
    53覃东欢,陶洪,赵云,周健伟,罗潺,纳米氧化锌的制备及其MEH-PPV共混光电池器件性能研究.应用化工,2008,37(6),596-601.
    54 Kang, Y.; Kim, D., Well-aligned CdS nanorod/conjugated polymer solar cells. Solar Energy Materials & Solar Cells.2006,90,166-174.
    55 Wang, L.; Liu, Y. S.; Jiang, X.; Qin, D. H.; Cao, Y., Enhancement of photovoltaic characteristics using a suitable solvent in hybrid polymer/multiarmed CdS nanorods solar cells. J. Phys. Chem. C.,2007,111(26),9538-9542.
    56 Smita Dayal; Nikos Kopidakis; Garry Rumbles, Photovoltaic Devices with a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3% Efficiency. Nano. Lett.,2010,10,239-242.
    57於黄忠,彭俊彪,共混型聚合物太阳电池原理及研究进展.化学进展,2007,19(11)1690-1694.
    58 Cao, Y.; Yu, G.; Heeger, A. J., Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode. Synth. Met.,1997,87,171-174.
    59赵云,郭晓阳,谢志元,塑料太阳能电池的研究进展.分子科学学报,2007,23(]),1-8.
    60 Van Duren, J. K. J.; Yang, X. N.; Janssen, R. A. J., Relating the Morphology of Poly(p-phenylene vinylene)/Methanofullerene Blends to Solar-Cell Performance. Adv. Funct. Mater.,2004,14(5),425-434.
    61黎立桂,鲁广昊,杨小牛,周恩乐,聚合物太阳能电池研究进展.科学通报,2006,51(21),2457-2468.
    62 Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgen, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S., Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv. Funct. Mater.,2004,14(10),1005-1011.
    63 Chirvase, D.; Parisi, J.; Dyakonov, V.; Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology,2004,15,1317-1323.
    64於黄忠,彭俊彪,影响共混结构聚合物光电池性能的因素.高分子材料科学与工程,2009,24(9),24-26.
    65 Sean, E.; Sariciftci, N. S.,2.5% efficient organic plastic solar cells, Appl. Phys. Lett.,2001, 78(6),841-843.
    66 Maher, A. I.; Oliver, A., Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene):Fullerene. Appl. Phys. Lett.,2005,86,201120-201123.
    67 Li, G.; Vishal, S.; Jinsong, H.; Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater.,2005,4,864-868.
    68 Kim, Y.; Choulis, S. A.; Nelson, J.; Bradley, D. D. C., Device annealing effect in organic solar cells with blends of regioregular poly (3-hexylthiophene) and soluble fullerene. Appl. Phys. Lett.,2005,86,063502(1-3).
    69 Yang, X. N.; Van Duren, J. K. J.; Loos, J., Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules, 2004,37(6),2151-2158.
    70 Padinger, F.; Rittberger, R. S.; Sariciftci, N. S., Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater.,2003,13(1),85-88.
    71 Yang, X.; Heeger,A. J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Adv. Funct. Mater.,2005,15, 1617-1622.
    72 Spanggaard, H.;Krebs, F. C., A brief history of the development of organic and polymericphotovoltaics. Solar Energy Materials&Solar Cells,2004,83,125-146.
    73 Olga Franco; Ingo Orgzall; Gunter Reck; Sabine Stockhause; Burkhard Schulz, Structure and high-pressure behavior of 2,5-di-(4-aminophenyl)-1,3,4-oxadiazole. J. Phys. Chem Solids, 2005,66(6),994-1003.
    74 Philippe Lucas; Daniel Belanger; Livain Breau, Expedient Synthesis of Symmetric Aryl Ketones and of Ambient-Temperature Molten Salts of Imidazole. Synthesis,2000,9, 1253-1258.
    75 Reynolds, J. R., A New, Improved and Convenient Synthesis of 4H-Cyclopenta[2,1-b:3,4-b]-dithiophen-4-one. Synthesis,2002,8,1053-1056.
    76 Jordens, P.; Rawson, G., Synthesis of Cyclopentadithiophenones. J. Chem. Soc,1970,273-277.
    77 Paolo Coppo; Turner, M. L., Synthetic Routes to Solution-Processable Polycyclopentadithiophenes. Macromolecules,2003,36,2705-2711.
    78 Zhu, Z. G.; David Waller; Christoph Brabec, Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications. Macromolecules,2007,40, 1981-1986.
    79 Brooks, A. J.; Michael, J. A., Wasielewski, M. R., High-Mobility Air-Stable n-Type Semiconductors with Processing Versatility:Dicyano Perylene-3,4:9,10-bis(dicarboximides). Angew. Chem. Int. Ed,2004,43(46),6363-6366.
    80邱勇,李建仁,李银奎,高裕,第一种有机电致发光材料及其应用CN1840525A
    81 Kondyukov, I. Z.; Khisamutdinov, S. I.; Valeshnii, S. P., Sulfur as a New Low-Cost and Selective Reducing Agent for the Transformation of Benzofuroxans into Benzofurazans. Russ. J. Org. Chem,2007,43(4),635-636.
    82 Nicolas Blouin; Leclerc, M., Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells.J. Am. Chem. Soc.,2008,130(2),732-742.
    83曹镛,阳仁强,杨伟,含硒杂环化合物的聚合物及其在制备发光材料中的应用.CN1389488A
    84 Hou, J. H.; Zhang, S. Q.; Yang; Y., A new n-type low bandgap conjugated polymer P-co-CDT: synthesis and excellent reversible electrochemical and electrochromic properties. Chem. Commun.,2008,6034-6036.
    85 Hou, J. H.; Zhang, S. Q.; Yang; Y., Poly[4,4-b is(2-ethylhe xyl)cyclope nta[2,1-b;3,4-b']dith iophene-2,6-diyl-alt-2,1,3-Benzoselenadiazole-4,7-diyl], a New Low Band Gap Polymer in Polymer Solar Cells. J. Phys. Chem. C.,2009,113(4),1601-1605.
    86 Hoven, C. V.; Coffin, R. C.; Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives.Adv.Mater.,2010,22, E63-E66
    87 Wang, G.; Yang, L.; Wang, G., Spectroscopic investigations of a novel push-pull azo compound embedded in rigid polymer. J. Phys.Chem. Solids,2002,63(3),501-506.
    88约翰.埃姆斯雷,元素手册[M].李永舫译,北京,人民教育出版社,1994.
    89 Jian, P.; Heeger, A. J., Thiophene-Based Conjugated Polymers for Light-Emitting Diodes:Effect of Aryl Groups on Photoluminescence Efficiency and Redox Behavior. Macromolecules,2001,34(21),7241-7248.
    90 Chen, M.; Andersson, M. R., Infrared Photocurrent spectral response From Plastic solar cell with low-band-gap Polyfluorene and fullerene derivative. A. P. L.,2004,85(21),5081-5083.
    91 Zhou, E. J.; Yang, C. H.; Kazuhito Hashimoto, Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3,2-b:2',3'-d]pyrrole. Macromolecules,2008,41,8302-8305
    92 Guo, X. G.; Watson, M. D., Phthalimide-Based Polymers for High Performance Organic Thin-FilmTransistors. J. Am. Chem. Soc.2009,131,7206-7207.
    93 Zou, Y. P.; Leclerc. M., Synthesis and Characterization of New Low-Bandgap Diketopyrrolopyrrole-Based Copolymers. Macromolecules,2009,42,6361-6365.
    94 Lu, G.; Marks, T. J.; Dithienosilole-and Dibenzosilole-Thiophene Copolymers as Semiconductors for Organic Thin-Film Transistors. J. Am. Chem. Soc.,2006,128,9034-9035.
    95 Guy Koeckelberghs; Celest Samyna, Improved synthesis of N-alkyl substituted dithieno[3,2-b:2',3'-d]pyrroles. Tetrahedron,2005,61,687-691.
    96 Katsu Ogawa; Rasmussen, S. C., N-Functionalized Poly(dithieno[3,2-b:2',3'-d]pyrrole)s: Highly Fluorescent Materials with Reduced Band Gaps. Macromolecules,2006,39, 1771-1778.
    97 Liu, J. Y.; Richard D. Highly Disordered Polymer Field Effect Transistors:N-Alky1 Dithieno[3,2-6:2',3'-d]pyrrole-Based Copolymers with Surprisingly High Charge Carrier Mobilities. J. Am. Chem. Soc.,2008,130,13167-13176.
    98 Lieven, D. C.; Thierry, V., Influence of the Substituent and Polymerization Methodology on the Properties of Chiral Poly(dithieno[3,2-6:2',3'-d]pyrrole)s. Macromolecules,2007,40, 4173-4181.
    99 Allen, C. F. H.; Frame, G. F.; Wilson, C. V., The Structure of the so-called toluidine blue. J. Org.Chem.,1941,6,732-749.
    100 Zhang, G. Q., Yang, M. J., Novel poly(phenylene ethynylene)-type conjugated polymers containing diketopyrrolopyrrole or triphenylpyrazoline units in the main chain:synthesis, characterization and photophysical properties. Polym. Int.,2009,58,665-673.
    101 Huo, L. J.; Hou, J. H.; Yang, Y., Improvement of Photoluminescent and Photovoltaic Properties of Poly(thienylene vinylene) by Carboxylate Substitution. Macromolecules,2009, 42,4377-4380.
    102 Lieven, D. C.; Thierry Verbiest, Influence of the Substituent and Polymerization Methodology on the Properties of Chiral Poly(dithieno[3,2-b:2',3'-d]pyrrole)s. Macromolecules,2007,40,4173-4181.
    103 Zhan, X. W.; Marder, S. R., A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in field-effect Transistors and All-Polymer Solar Cells. J. Am. Chem. Soc.,2007,129,7246-7247.
    104 Ballav, N.; Biswas, M. A., Conducting nanocomposite via intercalative polymerisation of thiophene in montmorillonite clay. Synth. Met.,2004,142,309-315.
    105 Beek, W. J. E.; Wienk, M. M.; Janssen, R. A. J., Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles. Adv. Funct. Mater.,2006,16,1112-1116.
    106 Roest, A. L.; Kelly, J. J., Staircase in the Electron Mobility of a ZnO Quantum Dot Assembly due to Shell Filling. Phys. Rev. Lett.,2002,89,036801(1-4).
    107 Beek, W. J. E.; Wienk, M. M.; Janssen, R. A. J., Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells. J. Phys. Chem. B.,2005,109,9505-9516.
    108吴世康,超分子光化学导论:基础与应用,科学出版社,2005.
    109刘波,施敏敏,杨立功,陈红征,汪茫,一种新型花酞亚胺的合成及其与之间的电荷转移作用,中国科学(B),2008,51:152-157.
    110刘立维,施敏敏,邓丹,汪茫,陈红征,萘酞菁锌复合体系的光致电荷转移,化学学报,2008,66:2163-2169.
    111 Koeppe, R.; Sariciftci, N. S., Photoinduced charge and energy transfer involving fullerene derivatives. Phytochem. Photobiol. Sci.,2006,5,1122-1131.
    112 Moazzami, K.; Murphy, T. E.; Phillips, J. D., Sub-bandgap photoconductivity in ZnO epilayers and extraction of trap density spectra. Semicond. Sci. Technol.,2006,21,717-723
    113 Sun, B. Q.; Marx, E.; Greenham, N. C., Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano. Lett.,2003,3,961-963.
    114 Gur, L.; Fromer, N. A.; Chen, C. P.; Kanaras, A.G.; Alivisators, A.P., Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano. Lett.,2007,7,409-414.
    115 Chen, F.; Chen, H. Z., Large-Scale and Shape-Controlled Syntheses of Three-Dimensional CdS Nanocrystals with Flowerlike Structure. J. Phys. Chem. C.,2008,112,1001-1007.
    116 Liu, N.; Shi, M. M.; Chen, H.Z., Photoinduced electron transfer and enhancement of photoconductivity in silicon nanoparticles/perylene diimide composites in a polymer matrix. J. Phys. Chem. C.,2008,112,15865-15869.
    117 Colvin, M. C.; Alivisatos, A. P., Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature,1994,370,354.
    118 Kumar, N.D.; Burzynski, R., Organic-inorganic heterojunction light emitting diodes based on poly(p-phenylenevinylene). Appl. Phys. Lett.1997,71,1388-1390.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.