新型系列化不对称芳香二胺及其可溶性聚酰亚胺的设计,合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳香聚酰亚胺具有优异的热和化学稳定性、机械性能和电学性能。因此,被广泛应用于诸如电子、封装材料、复合材料和膜材料等领域。为了满足应用的需求,旨在改善聚酰亚胺材料加工性能所进行的可溶性聚酰亚胺的开发和研究已成为目前聚酰亚胺功能化研究中最引人注目的热点之一。
     本论文简述了聚酰亚胺的发展过程,并在分子水平上探讨了可溶性聚酰亚胺分子所具有的结构特点以及各种改性方法对聚酰亚胺溶解性的贡献,结合各种有利的因素,设计合成了一系列不对称芳香二胺,通过元素分析、红外光谱、核磁共振和质谱等现代分析表征手段对单体结构进行了分析和鉴定。基于新单体与四种芳香二酐—3,3′,4,4′-二苯醚四羧酸二酐(ODPA),3,3',4,4'-二苯甲酮四羧酸二酐(BTDA),4,4′-(六氟异丙基)双邻苯二甲酸酐(6FDA)和均苯四酸二酐(PMDA)的聚合反应,制备了四个系列可溶性聚酰亚胺,利用元素分析、红外光谱等表征手段对所得聚酰亚胺的结构进行了全面的表征确认,并利用紫外及可见光谱、TGA、DSC、广角X射线衍射、溶解性能、机械性能和介电性能等测试对相应聚酰亚胺树脂或薄膜的各种性能进行了全面讨论。本论文的主要研究工作如下:
     1.以2-氯-5-硝基吡啶为起始原料,经两步反应成功制备了含氟不对称二胺单体5-氨基-2-(4-氨基苯氧基)-吡啶(AAP),并与一系列芳香二酐,通过“二步法”制备了一系列新型可溶性聚酰亚胺。这些聚酰亚胺在极性有机溶剂中都有比较好的溶解性能,同时具有优异的热性能和机械性能;从溶解性的测试结果可以得知,所合成的聚酰亚胺在普通溶剂中具有优异的溶解性能。
     2.以对硝基苯甲酰氯为原料,成功合成了两种新的芳香二胺单体:4-氨基-4′(4-氨基-2-三氟甲基苯氧基)-苯甲酮,并与一系列芳香二酐通过“二步法”聚合制备了两个系列新型可溶性聚酰亚胺。由二胺p-AAFP制备的系列聚酰亚胺薄膜具有优异的热性能,机械性能和较低的吸水率。
     3.以间硝基苯甲酰氯为起始原料,经三步反应成功合成了两种新型含三氟甲基不对称二胺单体3-氨基-4′(4-氨基-2-三氟甲基苯氧基)-苯甲酮和3-氨基-4′(4-氨基苯氧基)-苯甲酮,与一系列芳香二酐通过“二步法”聚合制备了一个系列新型含氟聚酰亚胺。这个系列的聚酰亚胺有较高的分子量、优异的溶解性能和热性能以及较低的介电性能。其热分解温度达到550℃,表明得到的该类聚酰亚胺具有很高的热稳定性。含三氟甲基的聚酰亚胺较不含三氟甲基的聚酰亚胺具有更好的溶解性和更低的吸水率。该类聚酰亚胺不但在非质子极性溶剂中,如DMF, DMAc及NMP中表现出优异的溶解性能,而且在低沸点的普通溶剂中也具有比较好的溶解性能。
     4.以3,3′-二羟基苯醚为起始原料,经两步反应成功制备了含氟不对称二胺单体3,3′-(4-氨基-2-三氟甲基苯)二苯醚,并与一系列芳香二酐,通过“二步法”制备了一系列新型可溶性聚酰亚胺。这些聚酰亚胺在极性有机溶剂中都有比较好的溶解性能,同时具有优异的热性能和机械性能,从溶解性的测试结果可以得知,所合成的聚酰亚胺在普通溶剂中具有优异的溶解性能。
Aromatic polyimides possess excellent thermal and mechanical, electrical, and chemical properties. Therefore, they are being used in many applications such as electrics, coatings, composite material, and membranes. However, the commercial use of these materials is often limited because of their poor solubility, and high softening or melting temperatures. To overcome these problems, more and more attempts have been focused on the preparation of novel polyimides with improved properties.
     This paper summarizes the structural characteristics of polyimides with excellent properties, and analyzed the contributions of several structural modification methods to each aspect of polyimide properties. Four novel aromatic diamines were designed and prepared based on the viewpoint of molecular design, which structures were confirmed by elementary analysis, FT-IR, NMR and MS. Derived from the resulted diamines and dianhydrides such as 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA),4,4'-Oxydiphthalic anhydride (ODPA),3,3',4,4'-benzophenonete-Tracarboxylic dianhydride (BTDA) and Pyromellitic dianhydride (PMDA), four series of novel polyimides were successfully synthesized. The polymer constructions were confirmed by elementary analysis, FT-IR and 1H-NMR. Their solubility, thermal property, mechanical property, aggregate structures, and dielectric property were investigated and discussed.
     A series of new polyimides were synthesized from an unsymmetrical aromatic diamine, 5-amino-2-(4-aminophenoxy)-pyridine with various commercially available aromatic dianhydrides. The resulting polyimides exhibited excellent solubility in polar solvents, such as N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidinone. Meanwhile, we detected the influence of resonance structure of hydroxypyridine to lactam to the synthesis of pyridyl ether linkage monomer.
     A kinds of aromatic, unsymmetrical diamines with ether-ketone group, 4-amino-4'-(4-amino-2-trifluoromethylphenoxy)-benzophenone, were successfully synthesized with two different synthetic routes. Then, they were polymerized with 4,4'-oxydiphthalic anhydride,3,3',4,4'-benzophenone tetracarboxylic dianhydride, and 2,2'-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride to form a series of fluorinated polyimides via a conventional two-step thermal or chemical imidization method. The resulting polyimides were characterized by measuring their solubility, viscosity, mechanical properties, IR-FT, and thermal analysis. The results showed that the polyimides had inherent viscosities of 0.48-0.68 dL/g and were easily dissolved in bipolarity solvents and common, low-boiling point solvents. Meanwhile, the resulting strong and flexible polyimide films exhibited excellent thermal stability, e.g. decomposition temperatures (at 10%weight loss) are above 575℃and glass-transition temperatures in the range of 218-242℃. The polymer films also showed outstanding mechanical properties, such as tensile strengths of 86.5-132.8 MPa, elongations at break of 8-14%, and initial moduli of 1.32-1.97 GPa. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced applications.
     Two kinds of novel aromatic, unsymmetrical diamines with ether-ketone group, 3-amino-4'-(4-amino-2-trifluoromethylphenoxy)-benzophenone and 3-amino-4'-(4-aminophenoxy)-benzophenone, was successfully synthesized by two different synthetical routes and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4'-oxydiphthalic anhydride,3,3',4,4'-benzophenone tetracarboxylic dianhydride, and 2,2'-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride, via a conventional two-step thermal or chemical imidization method to produce a series of fluorinated polyimides. The polyimides were characterized with solubility tests, viscosity measurements, mechanical properties tests, IR-FT, and thermogravimetric analysis. The polyimides had inherent viscosities of 0.54-0.77 dL/g and were easily dissolved in both polar, aprotic solvents and common, low-boilingpoint solvents. The resulting strong and flexible polyimide films exhibited excellent thermal stability, with decomposition temperatures (at 10%weight loss) above 573℃and glass-transition temperatures in the range of 222-251℃. Moreover, the polymer films showed outstanding mechanical properties, with tensile strengths of 86.5-121.6 MPa, elongations at break of 9-16%, and initial moduli of 1.26-1.97 GPa. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced applications.
     A new aromatic ether diamine, bis[3-(4-amino-2-trifluoromethylphenoxy) phenyl] ether, was successfully synthesized via nucleophilic substitution reaction of 3,3'-oxydiphenol and 2-chloro-5-nitrotrifluoromethylbenzene, followed by a catalytic reduction. A series of new polyimides were synthesized from the diamine with various commercially available aromatic dianhydrides via a conventional two-stage process, i.e. ring-opening polyaddition forming the poly(amic acid)s and further thermal or chemical imidization forming polyimides. The resulting polyimides exhibited good solubility in polar solvents, such as N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidinone, and common solvents such as chloroform, tetrahydrofuran upon heating, and possessed the inherent viscosities of 0.51-0.68 dL/g. The resulting strong and flexible films exhibited excellent thermal stability with the temperature at 10%weight loss is above 502℃and the glass transition temperature in the range of 191-232℃. The polyimides also were found to possess high optical transparency.
引文
1. 丁孟贤主编,聚酰亚胺-化学、结构与性能地关系及材料,北京,科学出版社,2006
    2. 何天白,胡汉杰主编,功能高分子与新技术,北京,化学工业出版社,2001,第18章,293
    3. 何天白,胡汉杰主编,海外高分子科学的进展,北京,化学工业出版社,1997,第3章,19
    4. Bogert M T, Renshaw R R. Journal of the Chemical Society,1908,30:1140.
    5. Edwards M W, Robison I M. US 2,710,853,1955.
    6. Hergenrother P M. Angew Chemistry 1990,102(11):1302-1309.
    7. Echigo Y, Miki N, Tomokia I. Proc. Of 4th European Technical Symp. On Polyimide and High Performance Polymers, France,1996,57.
    8. 大西优.工业材料,1990,38(2):46.
    9. 李生柱,吴建华等,高性能聚酰亚胺的发展,化工新型材料,2002,30(6):19-24.
    10. Kalinina IG, Gumargalieva KZ, Shlyapnikov YA. Polymer,1999,40:411-416.
    11.刘金刚,何民辉,王丽芳,杨海霞,李彦峰,范琳,杨士勇.高分子通报,2003,(3):1-14,(4):10-24.
    12.刘金刚,杨海霞,王丽芳,李彦峰,范琳,杨士勇.高分子通报,2003,(5):17-27.
    13. Yang CP, Su YY, Chen YC. European Polymer Journal,2006,42:721-732.
    14. Tsai MH, Whang WT. Polymer,2001,42:4197-4207.
    15. Nobuyuki F, Masatoshi Y, Yoshiharu K. Polymer,1999,40:1853-1862.
    16. Mivhael EW, Brian JP, Andrew JG, Stephen F, Gregory RY, Sandra JT, Timothy KM, Amy B. Macromolecules,2006,39:4710-4718.
    17. T Takekoshi, JE Kochanowski, JS Manello, MJ Webber. Polym Prepr (Am Chem Soc Div Polym Chem).,1983,24:312
    18. TL Evans, FJ Williams, PE Donahue, MM Grade. Polym Prepr (Am Chem Soc Div Polym Chem),1984,25:268.
    19. Gerber MK, Pratt JR, Clear TL. Proc Third Int Conf Polyimides,1988; 32:3.87.
    20. Masatoshi Hasegawa, Nobuyuki Sensui, Yoichi Shindo, Rikio Yokota. Macromolecules,1999, 32:387.
    21. IS Chung, SY Kim. Macromolecules,2000,33:3190.
    22. CP Yang, YYSu. Polymer,2003,44:6311.
    23. SH Hsiao, KH Lin. J. Polym. Sci:Part A:Polym. Chem.,2005,43:2700.
    24. Suzuki S, Kaneda I, Takehashi M, Nagai H. Polyimide solution. Ger. Offen.1,904,857,1969, (Kureha Chem. Ind. Co. Ltd.).
    25. Zhao KP, Han S. Petrochem Technol 2000,29:214-6 (in Chinese).
    26. Adrova NA, Koton MM, Moskvina EM. Dokl Nauka Acad SSSR 1965,165:1069-70.
    27. Tong YJ, Huang WX, Luo J, Ding MX. J Polym Sci A Polym Chem,1999; 37:1425-33.
    28. Itatani H, Yoshimoto H. J Org Chem 1973,38:76;
    29. Ding MX, Wang XQ, Yang ZH, Zhang J. Chinese patent 88107107; 1988 (Changchun Institute of Applied Chemistry); US Patent 5081281; 1990 (Changchun Institute of Applied Chemistry).
    30. Rozhanskii I, Okuyama K, Goto K. Polymer,2000,41:7057-65.
    31. Wang Z, Wu XE, Gao CL, Ding MX, Gao LX. Chinese patent 03105025.5; 2003 (Changchun Institute of Applied Chemistry).
    32. Wu XE.2005, Changchun Institute of Applied Chemistry.
    33. Fang XZ, Wang Z, Yang ZH, Gao LX, Li QX, Ding MX. Polymer,2003,44:2641-6.
    34. Polyimides for films and coatings. Brit. Patent 903,272; 1963 (Du Pont), Chem Abst 1963; 58:9256b; Aromatic polyimides, Brit. Patent 941,158; 1964 (Du Pont), Chem Abst 1964; 60: 8159a.
    35. Takekoshi T, Hillig WB, Mellinger GA, Kochanowski JE, Manello JS, Webber MJ, Bulson RW, Nehrich JW. NASA CR 145007; 1975.
    36. Takekoshi T, Kochanowski JE, Manello JS, Webber MJ. Polym Prepr,1983; 24(2):312-3.
    37. Schwarts WT. U.S., Patent 4,837,404; 1989, Occidental Chemical Corporation; Molinaro JR, Pawlak JA, Schwarts WT. US Patent 4,870,194; 1989 (Occidental Chemical Corporation); Molinaro JR, Pawlak JA, Schwarts WT. US Patent 5,021,168. KK:Occidental Chemical Corporation; 1991.
    38. Brunelle DJ, Ye Q. US Patent 6,727,370; 2004 (General Electric Company); Brunelle DJ, Ye, Q. US Patent 6,706,897,2004 (General Electric Company).
    39. Li QX, Fang XZ, Wang Z, Gao LX, Ding MX. J Polym Sci A:Polym Chem,2003,41: 3249-60.
    40. Evans TL, Williams FJ, Donahue PE, Grade MM. Polym Prepr,1984,25(1):268-9.
    41. Ding MX, Li HY, Yang ZH, Li YS, Zhang J, Wang XQ. J Appl Polym Sci 1996; 59:923-30;
    42. Yan JL, Wang Z, Gao LX, Ding MX. Polymer,2005,46:7678-83.
    43. Krutko ET, Volozhin AI, Paushikin YaM. Vestsi AkadNavuk BSSR, Ser. KhimNavuk 1975; (3):53-56; Chem Abstr 1975,83:131981 g.
    44. Diels O, Alder K. Liebig Ann Chem 1931; 490:257-276; Alder K, Molla HH, Reeber R. Liebig Ann Chem,1958,611:8-32.
    45. Fang XZ, Yang ZH, Zhang SB, Gao LX, Ding MX. Polymer,2004,45:2539-49.
    46. Longone DT. J Org Chem,1963,28:1770-3.
    47. Ober C K., Jin J.L., Lenz R.W. Advanced Polymer science,1984,59:103-146.
    48. Jadhav JY, Preston J. Krigbaum W.R., Journal of Polymer Science:Part A:Polymer Chemistry,1989,27:1175-1195.
    49. Harris FW, Lanier LH. New York:Academic Press,1977,183-190.
    50. Harris FW, Hus SLC. Polymer Material science Eng.,1989,60,206-210.
    51. Harris FW, Hus SLC. High perform polymer,1989,1:3-16.
    52. Wang Y, Qi Y. Poly(aryl prehnitimide)s, Macromolecules,1994,27:625-628.
    53. Jeong HJ, Oishi Y., Kakimoto M, Imai Y. Journal of Polymer Science:Part A:polymer chemistry,90,28(12):3293-3301.
    54. Oishi Y, Kakimoto M, Imai Y. Macromolecules,1991,24(12):3475-3480.
    55. Spiliopoulos IK, Mikroyannidis JA. Macromolecules,1996,29:5313-5319.
    56. Jeong HJ, Kakimoto M, Imai Y. J Journal of Polymer Science:poly. chem. Ed.91,29: 1691-1695.
    57. Ayala D, Lozano JE, Abajo JD, Campa JG. Journal of Polymer Science:Part A:Polymer Chemistry,1999,37:805-814.
    58. Mikroyannidis JA. Polymer,1999,40:3107-3117.
    59. Wang ZY. Chinese Journal of Polymer Science,1999,17 (6):511-528.
    60. Rgee SB, Park JW, Moon BS, et al. Macromolecules,1993,26:404.
    61. Park JW, Lee M., Lee MH, et al. Macromolecules,1994,27:3459.
    62. Xu HW, He CB, Chung TS. Journal of Polymer Science:Part A:Polymer Chemistry,2001, 39:2998-3007.
    63. Chung IS, Park CE, Moonhor R, and Kim SY. Chemistry Material,2001,13:2801-2806.
    64. Yang CP, Hsiao SH, Yang CC. Journal of Polymer Science:Part A:Polymer Chemistry, 1998,36:919-927.
    65. Yang CP, Yang CC, Chen RS. Journal of Polymer Science:Part A:Polymer Chemistry,2001, 39:2591-2601.
    66. Liaw DJ, Liaw BY. Journal of Polymer Science:Part A:Polymer Chemistry,1998,36: 2301-2307.
    67. Yang CP, Hsiao SH, Hsiao HC. Journal of Polymer Science:Part A:Polymer Chemistry, 1999,37:67-76.
    68. Yang CP, Chen RS, Chen CD. Journal of Polymer Science:Part A:Polymer Chemistry,2001, 39:775-787.
    69. Liaw DJ, Hsu PN, Liaw BY. Journal of Polymer Science:Part A:Polymer Chemistry,2001, 39:63-70.
    70. Zhou HW, Liu JG, Qian ZG, Zhang SY, Yang SY. Journal of Polymer Science:Part A: Polymer Chemistry,2001,39:2404-2413.
    71. Jeong KU, Kim JJ,Yoon TH. Polymer,2001,42:6019-6030.
    72. KU Jeong, JJ Kim, THYoon. Polymer,2001,42:6019-6030.
    73. Liu YL, Jeng RJ, Chiu YS. Journal of Polymer Science:Part A:Polymer Chemistry,2001, 39:1716-1725.
    74. British Patent,1098556,1968.
    75. Echigo Y, Mihi N, Tomokia I, Proc. of 4th European Technical Symp. on Polyimide and High Performance Polymers, France,1996, p.57.
    76.大西优,工业材料,1990,38(2):46.
    77. Itatani, US Patent,4568715,1986; Sasaki, US Patent,4247442,1981; Japan Patatent, 59-232455.
    78.陈平,廖明义,高分子合成材料学(上),化学工业出版社,2005,p.212-213.
    79. Vespel Product Bulletin E-61447.
    80. Takekoshi T, Kochanowski J E, Manello J S, Webber M J, Journal of Polymer Science, Polymer Symposia,1986,74:93-108.
    81. Torlon Product Bulletin TAT-35A.
    82.伊东克彦,合成树脂,1995,41(8):36.
    83.张知先,合成树脂和塑料牌号手册(下册),化学工业出版社,1996,p.1168.
    84.王正远,工程塑料实用手册,中国物资出版社,1994,p.573.
    85. Irwin R S, US Patent,3415782,1968.
    86. Irwin R S, US Patent,4640972,1987.
    87. Kaneda T, Katsura T, Nakaqawa K, Makino H, Hiroshi M. Journal of Applied Polymer Science,1986,32:3151-3176.
    88. Jinda T, Sen i gakkaishi,1984,40(12):42.
    89. Jinda T, Matsuda T, Sen i gakkaishi,1986,42(10):T554.
    90.颜红侠,梁国正,马晓燕,黄英,聚酰亚胺无机纳米杂化材料,高分子通报,2003,6:28-33.
    91. Li Y F, Yang H X, Zhou L C, Yang S Y, Liu J G, Hu A Jn, Fan L. High Performance Polymers,2004,16:55-6.
    92.王凯,高生强,詹茂盛,范琳,杨士勇,热塑性聚酰亚胺研究进展,2005,3:25-32.
    93. Serafini T T, Delvigs P, Lightsey G, J Appl Polym Sci,1972,16:905.
    94. Pater R H, Thermosetting polyimides:A review, SAMPE J,1994,30(5):29.
    95.王东,吴瑶曼,李家泽,张崇立,喻商英,黄志镗,双环[2.1.1]庚-5-2,3-二羧酸酐封端的聚酰亚胺树脂及其复合材料,高分子通讯,1980,(3):152.
    96. Ivoku Y, Kakimoto M, Imai Y, High Performance Polymer,1994,6(1):53.
    97. Chen X H, Gonsalves K E, Journal of Materials Research,1997,12:1274-1286.
    98. Mohamed O A, Derrick D, Sandi C, Polymer,2002,43:5887-5893.
    99. Xua Z K, Xiao L, Wang J L, Springer J, Journal of Membrane Science,2002,202:27-34.
    100. Liu L, Lu Q H, Yin J, Qian X F, Wang W K, Zhu Z K, Wang Z G, Material Chemistry and Physics,2002,74:210-213.
    101. Fusaro R L, ASLE TRANS,1982,25(4):456-477.
    102. Tong Y J, Li Y S, Xie F C, Ding M Q, Polymer International,2000,49(11):1543-1547.
    103. Tong Y J, Li Y S, Liu J P, Ding M Q, Journal of Applied Polymer Science,2002, 83:1810-1816.
    104. YodaN, Polymers for Advanced Technologies,1997, (8):215-226.
    105. Jiang L Y, Lei C M, Wei K H, Advanced Materials,2002,14(6):426-429.
    106. Tsai M H, Whang W T, Polymer,2001,42:4197-4207.
    107. hh
    108. Harris F W, Norris S O, Lanier L H, et al., in Polyimides:Synthesis, Characterization and Applications, Vol I, Ed. Mittal K L, New York:Plenum,1984, p.3-14.
    109. Kekoshi T, Kochanowski J E, US Pat,3905942,1975.
    110. WF Gresham, MANaylor, US Pat.,2731447,1956.
    111. TT Seafini, P.Delvigs, GR Lightsey, J. Appl. Polym. Sci.,1972,16,905-916.
    112. Y F Li, A J Hu, X C Wang, S Q Gao, S Y Yang, Synthesis and Properties of PMR Type Poly(benzimidazopyrrolone-imide)s, Journal of Applied Polymer Science,2001,82: 1600-1608.
    113. James K, J Jobe M, and Crane E A. Statistical Design in Isothermal Aging of Polyimide Resins, Journal of Applied Polymer Science,1995,57:1491-1499.
    114. Chuang KC, Vannucci RD, Ansari I, Cerny LL. High Flow Addition Curing Polyimides, Journal of Polymer Science:Part A:Polymer Chemistry,1994,32:1341-1350.
    115.杨士勇,高生强,胡爱军,李家泽,耐高温聚酰亚胺树脂及其复合材料的研究进展,宇航材料工艺,2000,1:1-6.
    116. WartzA. AnnChemPhys; 1954,42:54.
    117. Peter S C, Williams J, Farrissey J, James S R. The Formation of Polyimides from Anhydrides and Isocyanates, Journal of Applied Polymer Science,1972,16:2983-2989.
    118. Merten R. Synthesis of heterocyclic ring systems for heat-resistant plastics from polyisocyanates, Angew Chem Int Engl Ed,1971,10:294.
    119. Perry R J, Tunner S R. Preparation of polyimides via the palladium-catalyzed carbonylation and condensation of tetraiodoaromatics and diamines, Macromol. Sci. Chem.,1991, A8 (11/12):1213.
    120. Perry RJ, Wilson BD, Turner SR, Blevins RW. Synthesis of Polyimides via the Palladium-Catalyzed Carbonylation of Bis(o-iodo Esters) and Diamines, Macromolecules, 1995,28(10):3509-3515.
    121. Turner RS, Perry RJ, Blevins RW. High molecular weight aromatic polyamides from aromatic diiodides and diamines, Macromolecules,1992,25(18):4819-4820.
    122. Perry RJ, Wilson DB. Palladium-catalyzed syntheses of poly (amide-ols)-poly (benzoxazole) precursors, Macromolecules,1994,27(1):40-44.
    123. Kricheldorf H R, Domschke A. Layer Structure 1 Poly(phenylene-terephthalamide)s Derived from Mono-, Di-, and Tetrakis(alkylthio)terephthalic Acids, Macromolecules,1994,27(6): 1509-1516.
    124. Chern YT, Chen LW, J Appl Polym. Sci.1991,42:2543.
    125. Kim JH, Moore JA. A low-temperature route to polyimides, Macromolecules,1993,26(14): 3510-3513.
    126. Cotter R J, Sauers C K, Whelan J M. J. Org. Chem.1961,26:10.
    127. Oishi Y, Kakimoto MA, Imai Y. J Poly Sci Part:A:Polymer Chemistry,1991,29: 1925-1931.
    128. Oishi Y, Kakimoto MA, Imai Y. Synthesis of aromatic polyamides from N, N'-bis(trimethylsilyl)-substituted aromatic diamines and aromatic diacid chlorides, Macromolecules,1988,21:547-550.
    129. Boldebuck E M, Klebe J F. US 1967,3303157
    130.Korshak V V, Vinogradova S V, Vygodskii Ya S. Macromol. Chem.1984,184:255.
    131 Oishi Y, Shirasaki M, Kakimoto MA. J Poly Sci Part:A:Polymer Chemistry,1993,31:293.
    132 大石好行.高分子论文集(日),1992,49:235.
    133 Manske R. J Am. Chem. Soc.1929,51:1202
    134 Jung J C, Park S B. Polym. Bull.1995,35:423.
    135 Jung J C, Park S B. J Poly Sci Part:A:Polymer Chemistry,1996,34:357.
    136 Von Deibig H, Plachky M, Sander M. Angew. Makromol. Chem.1973,32:131.
    137 Dine-Hart RA, Wight WW. Reaction of hydrazine hydrate with polyimides, Chem. Ind.,1967, 1965.
    138 Iijima M, Takahashi Y, Oishi Y. J Poly Sci Part:A:Polymer Chemistry,1991,29:1717.
    1. Ghosh, M.K.; Mittal, K.L. Polyimides:fundamentals and applications. New York:Marcel Dekker; 1996. p. 7-48.
    2. Wilson, D.; Stenzenberger, H.D.; Hergenrother, P.M. Polyimides. New York:Chapman and Hall; 1990. p.58
    3. Boise, A.I. J Appl Polym Sci 1986,32,4043.
    4. Jang, W.B.; Shin, D.Y.; Choi, S,; Park, S.G.; Han, H.S. Polymer 2007,48,2130.
    5. Zheng, H.B.; Wang, Z.Y. Macromolecules 2000,33,4310.
    6. Yang, C.P.; Su YY. Polymer 2005,46,6311.
    7. Reddy, D.S.; Chou, C.H.; Shu, C.F.; Lee, G.H. Polymer 2003,44,557.
    8. Song, N.H.; Gao, L.X.; Ding, M.X. J Polym Sci Part A:Polym Chem 1999,37,3147.
    9. Chung, I.S. and Kim, S.Y. Macromolecules 2000,33,3190.
    10. Xie, K.; Zhang, S.Y.; Liu, J.G.; He, M.H.; Yang, S.Y. J Polym Sci Part A:Polym Chem 2001,39,2581.
    11. Wang, X.L.; Li, Y.F.; Gong, C.L.; Ma, T.; Yang, F.C. Journal of Fluorine Chemistry 2008,129,56.
    12. Shao, Y.; Li, Y.F.; Zhao, X.; Ma, T.; Gong, C.L.; Yang, F.C. J Polym Sci Part A:Polym Chem 2007,43, 4389.
    13. In, I.; Kim, S.Y. Polymer 2006,47,547.
    14. Zhao, X.; Li, Y.F.; Zhang, S.J.; Shao, Y.; Wang, X.L. Polymer 2007,48,5241.
    15. Yang, C.P.; Su, Y.Y.; Wu, K.L. J Polym Sci Part A:Polym Chem 2004,42,5424.
    16. Zhang, M.; Wang, Z.; Gao, L.X.; Ding, M.X. J Polym Sci Part A:Polym Chem 2006,44,959.
    17. Wang, X.L.; Li, Y.F.; Ma, T.; Zhang, S.J.; Gong, C.L. Polymer 2006,47,3774
    18. Zhang, S.J.; Li, Y,F.; Wang, X.L.; Zhao, X.; Shao, Y.; Yin, D.X. Yang, S.Y. Polymer 2005,46,11986
    19. Zhang, S.J.; Li, Y.F.; Yin, D.X.; Wang, X.L.; Zhao, X.; Shao, Y. Eur Polym J 2005,41,1097.
    20. Eastmond, G. C.; Paprotny, J.; Irwin, R. S. Macromolecules 1996,29,1382.
    21. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman J. R, ect. Gaussian 98, Revision A.9.Gaussian, Inc., Pittsburgh, PA 1998.
    [1]. M. K Ghosh, K. L. Mittal, Polyimides:fundamentals and applications. New York:Marcel Dekker,1996, pp.7.
    [2]. D Wilson, H. D. Stenzenberger, P. M. Hergenrother, Polyimides. New York:Chapman and Hall,1990 pp.58.
    [3]. W.B. Jang, D.Y. Shin, S. Choi, S.G. Park, H.S. Han, Polymer 48 (2007) 2130.
    [4]. S. Banerjee, M.K. Madhra, A.K. Salunke, D.K. Jaiswal, Polymer 44 (2003) 613.
    [5]. D.X. Yin, Y.F. Li, H.X. Yang, S.Y. Yang, Polymer 46 (2005) 3119.
    [6]. D.X. Yin, Y.F. Li, Y. Shao, X. Zhao, S.Y. Yang, L. Fan, J. Fluorine Chem.126 (2005) 819.
    [7]. S.H. Hsiao, K.H. Lin, J Polym Sci Part A:Polym Chem 43 (2005) 331.
    [8]. N.H. Song, L.X. Gao, M.X. Ding, J Polym Sci Part A:Polym Chem 37 (1999) 3147.
    [9]. I.S. Chung, S.Y. Kim, Macromolecules 33 (2000) 3190.
    [10]. J.W. Xu, M.L. Chng, T.S. Chung, C.B. He, R. Wang Polymer 44 (2003) 4715.
    [11]. X.Z. Fang, Z.H. Yang, S.B. Zhang, L.X. Gao, M.X. Ding Polymer 45 (2004) 2539.
    [12]. M. Al-Masari, H.R. Kricheldorf, D. Fritisch, Macromolecules 32 (1999) 7853.
    [13]. S.J. Zhang, Y.F. Li, D.X. Yin, X.L. Wang, X. Zhao, Y. Shao, Eur Polym J 41 (2005)1097.
    [14]. C.P. Yang, Y.Y. Su, J Polym Sci Part A:Polym Chem 42 (2004) 222.
    [15]. Y. Shao, Y.F. Li, X. Zhao, T. Ma, C.L. Gong, F.C. Yang, J Polym Sci Part A:Polym Chem, 44 (2006) 6836.
    [16]. X. Zhao, Y.F. Li, S.J. Zhang, Y. Shao, X.L. Wang, Polymer 48 (2007) 5241.
    [17]. M. Zhang, Z. Wang, L.X. Gao, M.X. Ding, J Polym Sci Part A:Polym Chem 44 (2006) 959.
    [18]. C.P. Yang, Y.Y.Su, K.L. Wu, J Polym Sci Part A:Polym Chem 42 (2004)5424..
    [19]. K. Xie, S.Y. Zhang, J.G. Liu, M.H. He, S.Y. Yang, J Polym Sci Part A:Polym Chem 39 (2001)2581.
    [20]. D.X. Yin, Y.F. Li, Y. Shao, X. Zhao, S.Y. Yang, L. Fan, J Fluorine Chem 126 (2005) 819.
    [21]. T. D. Dang, P. T. Mather, M. D. Alexander, C. J. Grayson, M. D. Houtz, R. J. Spry, F. E. Arnold, J Polym Sci Part A:Polym Chem 38 (2000) 1991.
    [22]. X.L. Wang, Y.F. Li, T. Ma S.J. Zhang, C.L. Gong, Polymer 47 (2006) 3774.
    [1]. Ghosh MK,. Mittal KL. New York:Marcel Dekker,1996, pp.7.
    [2]. Wilson D, Stenzenberger HD. New York:Chapman and Hall,1990 pp.58.
    [3]. Jang WB, Shin DY, Choi S, Park SG, Han HS. Polymer 48 (2007) 2130.
    [4]. Banerjee S, Madhra MK, Salunke AK, Jaiswal DK.. Polymer 44 (2003) 613.
    [5]. Yin DX, Li YF, Yang HX, Yang SY. Polymer 46 (2005) 3119.
    [6]. Yin DX, Li YF, Shao Y, Zhao X, Yang SY, Fan L. J. Fluorine Chem.126 (2005) 819.
    [7]. Hsiao SH, Lin KH. J Polym Sci Part A:Polym Chem 43 (2005) 331.
    [8]. Chung IS, Kim SY. Macromolecules 33 (2000) 3190.
    [9]. Banerjee S, Madhra MK, Salunke AK, Jaiswal DK. Polymer 44 (2003) 613.
    [10]. Fang XZ, Yang ZH, Zhang SB, Gao LX, Ding MX. Polymer 45 (2004) 2539.
    [11]. Al-Masari M, Kricheldorf HR, Fritisch D. Macromolecules 32 (1999) 7853.
    [12]. Zhang SJ, Li YF, Yin DX, Wang XL, Zhao X, Shao Y. Eur Polym J 41 (2005)1097.
    [13]. Yang CP, Su YY. J Polym Sci Part A:Polym Chem 42 (2004) 222.
    [14]. Shao Y, Li YF, Zhao X, Ma T, Gong CL, Yang FC. J Polym Sci Part A:Polym Chem,44 (2006) 6836.
    [15]. Zhao X, Li YF, Zhang SJ, Shao Y, Wang XL. Polymer 48 (2007) 5241.
    [16]. Zhang M, Wang Z, Gao LX, Ding MX. J Polym Sci Part A:Polym Chem 44 (2006) 959.
    [17]. Shang YM, Fan L, Yang SY, Xie XF. Eur. Polym. J.42 (2006) 981.
    [18]. Xie K, Zhang SY, Liu JG, He MH, Yang SY. J Polym Sci Part A:Polym Chem 39 (2001) 2581.
    [19]. Chen H, Yin J. J Polym. Sci., Part A:Polym. Chem.41 (2003) 2026.
    [20]. Wang XL, Li YF, Ma T, Zhang SJ, Gong CL. Polymer 47 (2006) 3774.
    1. Ghosh MK, Mittal KL. Polyimides:Fundamentals and Applications; Marcel Dekker:New York,1996; 348.
    2. Wilson D, Stenzenberger HD, Hergenrother PM. Polyimides; Chapman & Hall:New York, 1990;227.
    3. Yin DX, Li YF, Yang HX, Yang SY. Polymer 2005; 46:3119.
    4. Yang CP, Chen RS. J Polym Sci Part A:Polym Chem 2002; 40:429.
    5. Madhra MK, Salunke AK, Banerjee S, Prabha S. Macromol Chem Phys 2002; 9:203
    6. Liu JG, He MH, Qian ZG, Yang SY. J Polym Sci Part A:Polym Chem 2002; 40:1572
    7. Shahram MA, Naeemeh BL, Ahmad A. Polym Degrad Stabil 2006; 91:2622
    8. Shao Y, Li YF, Zhao X, Wang XL, Ma T, Yang FC. J Polym Sci Part A:Polym Chem 2006; 44:6836.
    9. Zhao X, Li YF, Zhang SJ, Shao Y, Wang XL. Polymer 2007; 48:5241
    10. Theo JD, Eduardo M, Jeffrey JH, Erik SW, Terry LS. Macromolecules 2008; 41:2474
    11. Reddy DS, Chou CH, Shu CF, Lee GH. Polymer 2003; 44:557
    12. Yang CP, Yang HW, J Appl Polym Sci 2000; 75:87
    13. Hsiao SH, Chen YJ. Eur PolymJ 2002; 38:815.
    14. Yang CP, Chen WT. Macromolecules 1993; 26:4865.
    15. Hsiao SH, Dai LR. J Polym Sci Part A:Polym Chem 1999; 37:665.
    16. Jang W, Lee HS, Lee S, Choi S, Shin D, Han H. Materials Chemistry and Physics 2007; 104:342
    17. Xie K, Zhang SY, Liu JG, He MH, Yang SY. J Polym Sci Part A:Polym Chem 2001; 39: 2581.
    18. Chung IS, Kim SY. Macromolecules 2000; 33:3190
    19. Zhang SJ, Li YF, Yin DX, Wang XL, Zhao X, Shao Y. Eur Polym J 2005; 41:1097.
    20. Wang CP, Chen RS, Chen KH. J Appl Polym Sci 2005;95:922
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.