叶酸受体靶向对比剂磁共振显像实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Folate-BSA-Gd-DTPA的制备
     目的:制备BSA-Gd-DTPA和folate-BSA-Gd-DTPA,测定成分并作叶酸受体磁共振显像和化学荧光显像。方法:DTPA与乙酸酐形成的DTPA双酸酐,以摩尔比50∶1与BSA合成BSA-DTPA,后者再与GdCl_3螯合,透析分离游离的Gd~(3+),得到BSA-Gd-DTPA。叶酸与EDC反应,再以摩尔比10∶1共价耦联上BSA-Gd-DTPA。采用电感耦合等离子体原子发射光谱仪测量BSA-Gd-DTPA中Gd~(3+)的含量。采用紫外可见光分光光度仪测量folate-BSA-Gd-DTPA中叶酸的含量。人肝癌细胞SMMC-7721与folate-BSA-Gd-DTPA、BSA-Gd-DTPA和Gd-DTPA结合后行磁共振T1加权扫描,对其信号作定性分析。将BSA和folate-BSA标记上FITC,与SMMC-7721结合后作荧光显像。结果:成功制备了BSA-Gd-DTPA和folate-BSA-Gd-DTPA。BSA-Gd-DTPA中Gd~(3+)的含量为11.01mg,Gd~(3+)的联接率为70%,装载量为8.47%。Folate-BSA-Gd-DTPA中叶酸的含量为63.27mg。T1加权图像示SMMC-7721结合folate-BSA-Gd-DTPA产生的信号高于BSA-Gd-DTPA和Gd-DTPA,并且,结合folate-BSA-Gd-DTPA产生的信号随SMMC-7721浓度的减小而减小。FITC-folate-BSA可使SMMC-7721细胞膜荧光染色,而FITC-BSA则无明显荧光染色。结论:Folate-BSA-Gd-DTPA可作为叶酸受体靶向磁共振对比剂应用。
     第二部分Folate-BSA-Gd-DTPA对正常小鼠的磁共振显像
     目的:研究folate-BSA-Gd-DTPA对正常小鼠的磁共振显像表现、体内分布及代谢特点。方法:将30只小鼠随机分为三组,分别给予Gd-DTPA、BSA-Gd-DTPA和folate-BSA-Gd-DTPA。采用1.5T MRI行T2加权和T1加权平扫,以及注射这三种对比剂后15min、30min、1h、2h、4h、6h、8h、12h、18h和24h的T1加权增强扫描,测量平扫与增强后各个时间点下腔静脉、肝脏、肌肉和肾脏皮质的T1加权信号,比较上述部位的相对强化率,并观察胆囊腔内对比剂的显示情况。结果:三组下腔静脉的相对强化率在增强后15min、30min、1h、2h、4h、6h、8h和12h差异有统计学意义。三组肝脏的相对强化率在增强后15min、30min、1h、2h、4h、6h、8h、12h、18h和24h差异有统计学意义。三组肌肉的相对强化率在增强后30min和1h差异有统计学意义。三组肾脏皮质的相对强化率在增强后15min、30min、1h、2h、4h、6h、8h、12h、18h和24h差异有统计学意义。Folate-BSA-Gd-DTPA组肾脏皮质的相对强化率在增强后4h、6h、8h、12h、18h和24h高于BSA-Gd-DTPA组。BSA-Gd-DTPA组和folate-BSA-Gd-DTPA组在增强后18h和24h,分别有80%和90%在胆囊腔内显示高信号对比剂。结论:BSA-Gd-DTPA和folate-BSA-Gd-DTPA可使血管、肝脏和肾脏皮质明显持续地强化,部分可经肝胆途径排泄。Folate-BSA-Gd-DTPA可实现肾脏皮质的磁共振靶向显像。
     第三部分Folate-BSA-Gd-DTPA对肝癌原位移植裸鼠的磁共振显像
     目的:研究folate-BSA-Gd-DTPA对肝癌原位移植裸鼠的磁共振显像表现,探讨其对肝癌靶向诊断的价值。方法:人肝癌细胞SMMC-7721培养扩增,将含有1.0×10~7个活细胞的悬液0.2ml接种于裸鼠腋部背侧皮下。当皮下肿瘤形成后行手术切除,剪成0.5mm~3大小瘤块,接种于裸鼠肝脏。将肝癌原位移植术后3-4周的20只裸鼠随机分为两组,分别给予BSA-Gd-DTPA和folate-BSA-Gd-DTPA。采用1.5T MRI行T2加权和T1加权平扫,以及注射这两种对比剂后15min、30min、1h、2h、4h、6h、8h、12h、18h和24h的T1加权增强扫描,测量平扫与增强后各个时间点肿瘤、肝脏和肾脏皮质的T1加权信号,比较肿瘤的相对强化率,并观察肿瘤—肝脏对比噪声比的变化规律。分析肿瘤在注射这两种对比剂后的强化表现,与病理结果作对照。结果:裸鼠肝癌原位移植均获得成功。所有20个肿瘤均被MRI检出,大小7.4mm×6.8mm-14.8mm×12.1mm。增强后2h、4h、6h、8h、12h、18h和24h,folate-BSA-Gd-DTPA组肿瘤的相对强化率高于BSA-Gd-DTPA组。Folate-BSA-Gd-DTPA组的肿瘤—肝脏对比噪声比在增强后8h达到高峰。Folate-BSA-Gd-DTPA组肿瘤内部强化超过肝脏实质,而BSA-Gd-DTPA组则始终低于肝脏实质。肿瘤的强化方式与其大小和病理有关。结论:Folate-BSA-Gd-DTPA可实现肝癌的磁共振靶向显像,具有定性诊断的价值。
PartⅠPreparation and evaluation of BSA-Gd-DTPA and folate-BSA-Gd-DTPAPurpose: To synthesize BSA-Gd-DTPA and folate-BSA-Gd-DTPA, determine the pharmaceutical properties and study in vitro magnetic resonance imaging and cytochemical fluorescence imaging of folate receptor. Methods: DTPA was transformed to cDTPAa and conjugated to bovine serum albumin (BSA) at the molar ratio of 50:1.GdCl was reacted with BSA-DTPA and the unreacted Gd ion was dialyzed and separated from BSA-Gd-DTPA. Using EDC as linker, folate was covalently coupled to BSA-Gd-DTPA at the molar ratio of 10:1.The Gd ion conjugation rate of BSA-Gd-DTPA was measured using ICP-AES and the folate in folate-BSA-Gd-DTPA was detected by spectrophotometer. MR T1W scan was performed to qualitatively determine the uptake of folate-BSA-Gd-DTPA, BSA-Gd-DTPA and Gd-DTPA by the human hepatocelluar carcinoma cell line SMMC-7721 at different concentration. BSA and folate-BSA were labeled with fluorescein isothiocyanate (FITC) and fluorescent staining was performed to determine the uptake of FITC-BSA and FITC-folate-BSA by SMMC-7721.Results: BSA-Gd-DTPA and folate-BSA-Gd-DTPA was successfully synthesized. The Gd ion in BSA-Gd-DTPA was 11.01mg, the conjugation rate was 70% and the loading capacity was 8.47%. The folate in folate-BSA-Gd-DTPA was 63.27mg. The T1W signal of folate-BSA-Gd-DTPA binding to SMMC-7721 was higher than that of BSA-Gd-DTPA binding and Gd-DTPA binding, and the T1W signal of folate-BSA-Gd-DTPA binding decreased with the concentration of SMMC-7721.FITC-folate-BSA was observed to bind to the cell surface of SMMC-7721, while little fluorescent binding was found with FITC-BSA. Conclusions: Folate-BSA-Gd-DTPA could be used as the potential MR contrast agent targeted to the folate receptor.PartⅡMagnetic resonance imaging of folate-BSA-Gd-DTPA in normal micePurpose: To study in vivo MR imaging, distribution and excretion of folate-BSA-Gd-DTPA in normal mice. Methods: 30 Balb/c mice were radomly divided into three groups and administered with three contrast agents: Gd-DTPA, BSA-Gd-DTPA and folate-BSA-Gd-DTPA. A 1.5 Tesla Siemens MR scanner and the head coil were used. The plain T2W FSE and T1W SE sequences were performed. The repeated T1W SE sequences were then performed 15min, 30min, 1h, 2h, 4h, 6h, 8h, 12h, 18h and 24h after the intravenous injection of Gd-DTPA, BSA-Gd-DTPA and folate-BSA-Gd-DTPA. The signal intensity (SI) of the inferior vena cana, liver, muscle and renal cortex in the pre-and post-contrast T1WI was measured using a circular region of interesting with 5 pixels and the relative enhancement (RE) was calculated as (SI-SI) / SI×100%. The appearance of the contrast agent in the gallbladder was observed. Results: The RE of the inferior vena cana was statistically different at the time point of 15min, 30min, 1h, 2h, 4h, 6h, 8h and 12h among three groups, the RE of the liver at the time point of 15min, 30min, 1h, 2h, 4h, 6h, 8h, 12h, 18h and 24h, the RE of the muscle at the time point of 30min and 1h, and the RE of the renal cortex at the time point of 15min, 30min, 1h, 2h, 4h, 6h, 8h, 12h, 18h and 24h. The RE of the renal cortex after folate-BSA-Gd-DTPA enhancement was higher than the RE after BSA-Gd-DTPA enhancement at the time point of 4h, 6h, 8h, 12h, 18h and 24h. 8 mice administered with BSA-Gd-DTPA and 9 mice with folate-BSA-Gd-DTPA had high signal intensity caused by contrast agent in the gallbladder at the time point of 18h and 24h, while all 10 mice with Gd-DTPA did not have the contrast agent in the gallbladder. Conclusions: BSA-Gd-DTPA and folate-BSA-Gd-DTPA could result in more and persistent enhancement of the blood, liver and renal cortex and excreted partially through the biliary route. Folate-BSA-Gd-DTPA could target to the renal cortex and be imaged by MR.PartⅢMagnetic resonance imaging of folate-BSA-Gd-DTPA with orthotopic transplantation of human hepatocellular carcinoma in nude micePurpose: To study in vivo MR imaging of folate-BSA-Gd-DTPA with orthotopic transplantation of human hepatocellular carcinoma in nude mice. Methods: The human hepatocellular carcinoma cell line SMMC-7721 was cultured and 0.2 ml suspended cells with the concentration of 1.0×10 /ml were inoculated into the subcutaneous tissue of the dorsal subscapular region of 4 athymic nude mice. After the subcutaneous tumor developed into the bulky mass, the tumor was excised and cut into the fragments with the diameter of 0.5 mm. The fragments were then implanted through the envelope into the liver parenchyma of 20 nude mice. Three to four weeks after the liver transplantation, 20 nude mice were randomly divided into two groups and administered with BSA-Gd-DTPA and folate-BSA-Gd-DTPA. MR T2W FSE sequence and T1 W SE sequences before and after the intravenous injection of two contrast agents were performed. The scan parameters and the time points were the same as partⅡ. The T1 W SI of the tumor, liver and renal cortex was measured and the RE was calculated. The value of tumor-to-liver contrast to noise ratio (CNR), which corresponds to the conspicuity score, was obtained with the fomular of (SI-SI) / background noise and the relation of CNR to the time point was observed. The MR imaging features of the tumor after BSA-Gd-DTPA and folate-BSA-Gd-DTPA enhancement were analyzed and compared with the pathologic results. Results: The orthotopic transplantation model of the human hepatocellular carcinoma was successfully obtained in 20 nude mice. All the hepatocellular carcinoma were detected by MR and the range of the tumor size was from 7.4mm×6.8mm to 14.8mm×12.1mm. The RE of the tumor after folate-BSA-Gd-DTPA enhancement was higher than the RE after BSA-Gd-DTPA enhancement at the time point of 2h, 4h, 6h, 8h, 12h, 18h and 24h. The CNR of tumor-to-liver reached peak at the time point of 8h. The tumor is exhibited as hyper-intensity compared with the liver parenchyma after folate-BSA-Gd-DTPA enhancement, while exhibited as hypo-intensity after BSA-Gd-DTPA enhancement. The enhancement mode of the tumor correlated with the size and pathological structure. Conclusions: Folate-BSA-Gd-DTPA could target to the hepatocellular carcinoma and be imaged by MR. Folate-BSA-Gd-DTPA could be of qualitative value in the diagnosis of hepatocellular carcinoma.
引文
1 高元桂,蔡幼铨,蔡祖龙,主编.磁共振成像诊断学.北京.人民军医出版社.2002,67.
    2 周康荣,陈祖望,主编.体部磁共振成像.上海.上海医科大学出版社.2002,33.
    3 崔福德,主编.药剂学(第五版).北京.人民卫生出版社.2004,415.
    4 贾伟,高文元,主编.药物控释新剂型.北京.化学工业出版社.2005,303.
    5 Antony AC, Utley C, Van Horne KC, et al. Isolation and characterization of a folate receptor from human placenta. J Biol Chem. 1981, 256(18): 9684-9692.
    6 Lacey SW, Sanders JM, Rothberg KG, et al. Complementary DNA for the folate binding protein correctly predicts anchoring to the membrane by glycosyl-phosphatidylinositol. J Clin Invest. 1989, 84(2): 715-720.
    7 Antony AC. The biological chemistry of folate receptors. Blood. 1992, 79(11): 2807-2820.
    8 Coney LR, Tomassetti A, Carayannopoulos L, et al. Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Res. 1991, 51(22): 6125-6132.
    9 Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines: physiologic and clinical implications. Cancer. 1994, 73(9): 2432-2443.
    10 Toffoli G, Cernigoi C, Russo A, et al. Overexpression of folate binding protein in ovarian cancers. Int J Cancer. 1997, 74(2): 193-198.
    11 Toffoli G, Russo A, Gallo C, et al. Expression of folate binding protein as a prognostic factor for response to platinum-containing chemotherapy and survival in human ovarian cancer. Int J Cancer. 1998, 79(2): 121-126.
    12 Kennedy MD, Jallad KN, Lu J, et al. Evaluation of folate conjugate uptake and transport by the choroid plexus of mice. Pharm Res. 2003, 20(5): 714-719.
    13 Wang S, Low PS. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release. 1998, 53(1-3): 39-48.
    14 Konda SD, Aref M, Brechbiel M, et al. Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress. Invest Radiol. 2000, 35(1): 50-57.
    15 万丹晶,钟高仁,朱建华.~(125)I-γ-Ty-Folate的制备及其体外结合特性.复旦学报(医学版).2004,31(6):625-628.
    16 万丹晶,钟高仁,徐培康,等.~(99)Tc~m-DTPA-Folate的制备及其荷瘤裸鼠体内分布.核技术.2004,27(4):293-296.
    17 韩慧兰,李萌,张静,等.人胃腺癌SGC-7901细胞与~(125)I-叶酸体外结合特性研究.中华核医学杂志,2004,24(6):366-368.
    18 张良珂,侯世祥,毛声俊,等.叶酸偶联白蛋白纳米粒肿瘤细胞靶向性研究.四川大学学报(医学版).2004,35(2):165-168.
    19 张良珂,侯世祥,毛声俊,等.受体介导米托蒽醌白蛋白纳米粒肿瘤细胞靶向性研究.四川大学学报(医学版).2006,37(1):77-79.
    20 陆伟跃,刘敏,潘俊,等.叶酸-脂质体制备及对HeLa细胞靶向作用.上海医科大学学报.2000,27(1):4-8.
    21 韩慧兰.叶酸高分子复合物靶向抗肿瘤药效及机理的探讨.博士论文.上海.复旦大学医学院.2004,30.
    22 Choi H, Choi SR, Zhou R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol. 2004, 11(9): 996-1004.
    23 Konda SD, Wang S, Brechbiel M, et al. Biodistribution of a ~(153)Gd-folate dendrimer, generation=4, in mice with folate-receptor positive and negative ovarian tumor xenografts. Invest Radiol. 2002, 37(4): 199-204.
    24 丁建辉,曾蒙苏,薛琼,等.叶酸受体型MR对比剂对荷人胃癌裸鼠诊断价值的实验研究.中华放射学杂志.2005,39(8):882-886.
    25 曾蒙苏,汪登斌,周康荣,等.单克隆抗体磁共振造影剂在荷人肝癌裸鼠动物模型的初步研究.上海医学.2001,24(8):467-468.
    26 丁建辉,曾蒙苏,顾海雁,等.叶酸受体型MR对比剂对荷人肝癌裸鼠诊断意义的初步研究.放射学实践.2004,19(11):779-782.
    27 Weitman SD, Lark RH, Coney LR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 1992, 52(12): 3396-3401.
    28 周爱儒,主编.生物化学(第五版).北京.人民卫生出版社.2001,293.
    29 Shen D, Pastan I, Gottesman MM. Cross-resistance to methotrexate and metals in human cisplatin-resistant cell lines results from a pleiotropic defect in accumulation of these compounds associated with reduced plasma membrane binding proteins. Cancer Res. 1998, 58(2): 268-275.
    30 张志荣,主编.靶向治疗分子基础与靶向药物设计.北京.科学出版社.2005,188.
    31 Shin SU, Friden P, Moran M, et al. Transferrin-antibody fusion proteins are effective in brain targeting. Proc Natl Acad Sci U S A. 1995, 92(7): 2820-2824.
    32 Sun MY, Wang ZH, Carpenter PM, et al. Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents. J Magn Reson Imag. 1999, 9(2): 177-186.
    33 Aime S, Botta M, Crich SG, et al. Towards MRI contrast agent of improved efficacy NMR relaxo-metric investigations of the binding interaction HAS of a novel heptadentate macrocyclic triphosphonate Gd~(3+) complex. J Biol Inorg Chem. 1997, 2(4): 470-474.
    34 Stehle G, Wunder A, Schrenk HH, et al. The loading rate determines tumor targeting properties of methotrexate-albumin conjugates in rats. Anticancer Drugs. 1997, 8(7): 677-685.
    35 Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000, 65(1-2): 271-284.
    1 Kutsky RJ. Handbook of vitamins, minerals, and hormones. Van Nostrand Reinhold. 1981, 283.
    2 邓家栋,杨崇礼,杨天楹,等.主编.邓家栋临床血液学.上海.上海科学技术出版社.2001,446-449.
    3 Brown DM. Drug delivery systems in cancer therapy. Humana Press. 2004, 62.
    4 Stehle G, Wunder A, Sinn H, et al. Pharmacokinetics of metrexate-albumin conjugates in tumor-bearing rats. Anticancer drugs. 1997, 8(9): 835-844.
    5 Stehle G, Wunder A, Schrenk HH, et al. Albumin-based drug carriers: comparison between serum albumins of different species on Pharmacokinetics and tumor uptake of the conjugate. Anticancer drugs. 1999, 10(8): 785-790.
    6 Kiessling F, Fink C, Hansen M, et al. Magnetic resonance imaging of nude mice with heterotransplanted high-grade squamous cell carcinomas: use of a low-loaded, covalently bound Gd-Hsa conjugate as contrast agent with high tumor affinity. Invest Radio. 2002, 37(4): 193-198.
    7 李云春,王仲琼,蔡美英,等.抗肝癌米托蒽醌免疫毫微粒的体外抗癌活性研究.同位素.2001,14(2):71-75.
    8 张良珂,侯世祥,毛声俊,等.叶酸偶联白蛋白纳米粒的制备工艺研究.生物医学工程学杂志.2004,21(2):225-228.
    9 张良珂,侯世祥,毛声俊,等.受体介导米托蒽醌白蛋白纳米粒肿瘤细胞靶向性研究.四川大学学报医学版.2006,37(1):77-79.
    10 Reddy JA, Xu LC, Parker N, et al. Preclinical evaluation of ~(99m)Tc-EC20 for imaging folate receptor-positive tumors. J Nucl Med. 2004, 45(5): 857-866.
    11 张奇,项光亚,龙娜,等.叶酸靶向的PGA联合N-苯乙酰化阿霉素的抗肿瘤活性.药学学报.2005,40(11):1046-1050.
    12 肖苏尧,童春义,刘选明,等.肿瘤靶向性药物载体叶酸-淀粉纳米颗粒的研制与应用.科学通报.2006,51(10):1151-1155.
    1 丁建辉,曾蒙苏,薛琼,等.叶酸受体型MR对比剂对荷人胃癌裸鼠诊断价值的实验研究.中华放射学杂志.2005,39(8):882-886.
    2 许乙凯,主编.磁共振造影剂及临床应用.北京.人民卫生出版社.2003,37.
    3 Schmiedl U, Ogan M, Paajanen H, et al. Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: biodistribution and imaging studies. Radiology. 1987, 162(1): 205-210.
    4 Schmiedl U, Ogan MD, Mosele ME, et al. Comparison of the contrast-enhancing properties of albumin-(Gd-DTPA) and Gd-DTPA at 2.0 T: an experimental study in rats. AJR. 1986, 147(6): 1263-1270.
    5 Christensen EI, Birn H, Verroust P, et al. Membrane receptors for endocytosis in the renal proximal tubule. Int Rev Cytol. 1998, 180: 237-284.
    6 Morshed KM, Ross DM, McMartin KE. Folate transport proteins mediate the bidirectional transport of 5-methyltetrahydrofolate in cultured human proximal tubule cells. J Nutr. 1997, 127(6): 1137-1147.
    7 Schrier RW,主编.胡维诚,主译.肾脏与电解质紊乱.济南.山东科学技术出版社.2004,478.
    8 Choyke PL, Kobayashi H. Functional magnetic resonance imaging of the kidney using macromolecular contrast agents. Abdom Imaging. 2006, 31(2): 224-231.
    9 万丹晶,钟高仁,徐培康,等.~(99)Tc~m-DTPA-Folate的制备及其荷瘤裸鼠体内分布.核技术.2004,27(4):293-296.
    10 Mathias CJ, Wang S, Waters DJ, et al. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med. 1998, 39(9): 579-585.
    11 Konda SD, Wang S, Brechbiel M, et al. Biodistribution of a ~(153)Gd-folate dendrimer, generation=4, in mice with folate-receptor positive and negative ovarian tumor xenografts. Invest Radiol. 2002, 37(4): 199-204.
    1 董荣春,周荣华,吕发度,等.SMMC-7721人体肝癌细胞株的建立及其生物学特性的初步观察.第二军医大学学报.1980,1(1):5-9
    2 陶文照,郑唯强,龚志锦.人肝癌组织裸鼠腹腔内和肝正位移植显示的肿瘤侵袭与转移.第二军医大学学报.1998,19(1):54-56.
    3 Wiener EC, Konda S, Shadron A, et al. Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest Radiol. 1997, 32(12): 748-754.
    4 Konda SD, Aref M, ANG S, et al. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. MAGMA. 2001, 12(2-3): 104-13.
    5 Ke CY, Mathias CJ, Green MA. Folate-receptor-targeted radionuclide imaging agents. Adv Drag Deliv Rev. 2004, 56(8): 1143-1160.
    6 Mathias CJ, Wang S, Low PS, et al. Receptor-mediated targeting of ~(67)Ga-deferoxamine-folate to folate-receptor-positive human KB tumor xenografts. Nucl Med Biol. 1999, 26(1): 3-25.
    7 Mathias CJ, Wang S, Waters DJ, et al. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med. 1998, 39(9): 579-585.
    8 Coney LR, Tomassetti A, Carayannopoulos L, et al. Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Res. 1991, 51(22): 6125-6132.
    1 周爱儒,主编.生物化学(第五版).北京.人民卫生出版社,2001,293.
    2 贾弘裼,主编.生物化学(第三版).北京.北京大学医学出版社,2005,117.
    3 李端,主编.药理学(第五版).北京.人民卫生出版社,2003.336.445.
    4 Leamon CP, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci U S A. 1991, 88(13): 5572-5576.
    5 Antony AC. Folate receptors. Annu Rev Nutr. 1996, 16: 501-521.
    6 Kamen BA, Smith AK, Anderson RG. The folate receptor works in tandem with a probenecid-sensitive carrier in MA104 cells in vitro. J Clin Invest. 1991, 87(4): 1442-1449.
    7 Antony AC. The biological chemistry of folate receptors. Blood. 1992, 79(11): 2807-2820.
    8 Shen F, Wu M, Ross JF, et al. Folate receptor type gamma is primarily a secretory protein due to lack of an efficient signal for glycosylphosphatidylinositol modification: protein characterization and cell type specificity. Biochemistry. 1995, 34(16): 5660-5665.
    9 Miotti S, Canevari S, Menard S, et al. Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int J Cancer. 1987, 39(3): 297-303.
    10 Coney LR, Tomassetti A, Carayannopoulos L, et al. Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Res. 1991, 51(22): 6125-6132.
    11 Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 1994, 73(9): 2432-2443.
    12 Ross JF, Wang H, Behm FG, et al. Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer. 1999, 85(2): 348-357.
    13 Crippa F, Buraggi GL, Di Re E, et al. Radioimmunoscintigraphy of ovarian cancer with the M0vl8 monoclonal antibody. Eur J Cancer. 1991, 27(6): 724-729.
    14 Molthoff CF, Buist MR, Kenemans P, et al. Experimental and clinical analysis of the characteristics of a chimeric monoclonal antibody, MOv18, reactive with an ovarian cancer-associated antigen. J Nucl Med. 1992, 33(11): 2000-2005.
    15 Kalofonos HP, Karamouzis MV, Epenetos AA. Radioimmunoscintigraphy in patients with ovarian cancer. Acta Oncol. 2001,40(5): 549-557.
    16 Liu J, Kolar C, Lawson TA, et al. Targeted drug delivery to chemoresistant cells: folic acid derivatization of FdUMP[10] enhances cytotoxicity toward 5-FU-resistant human colorectal tumor cells. Org Chem. 2001, 66(17): 5655-5563.
    17 Ladino CA, Chan RV, Bourret LA, et al. Folate-maytansinoids: target-selective drugs of low molecular weight. Int J Cancer. 1997, 73(6): 859-864.
    18 Lee JW, Lu JY, Low PS, et al. Synthesis and evaluation of taxol-folic acid conjugates as targeted antineoplastics. Bioorg Med Chem. 2002,10(7): 2397-2414.
    19 Ward CM, Acheson N, Seymour LW. 2000. Folic acid targeting of protein conjugates into ascites tumour cells from ovarian cancer patients. J Drug Target. 2000, 8(2): 119-123.
    20 Wang S, Luo J, Lantrip DA, et al. Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjug Chem. 1997, 8(5): 673-679.
    21 Mathias CJ, Wang S, Lee RJ, et al. Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J Nucl Med. 1996, 37(6): 1003-1008.
    22 Mathias CJ, Wang S, Low PS, et al. Receptor-mediated targeting of ~(67)Ga-deferoxamine-folate to folate-receptor-positive human KB tumor xenografts. Nucl Med Biol. 1999,26(1): 3-25.
    23 Mathias CJ, Wang S, Waters DJ, et al. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med. 1998, 39(9): 579-585.
    24 Mathias CJ, Green MA. A kit formulation for preparation of [(111)In] In-DTPA-folate, a folate-receptor-targeted radiopharmaceutical. Nucl Med Biol. 1998, 25(6): 585-587.
    25 Siegel BA, Dehdashti, F, Mutch, DG; et al. Evaluation of ~(111)In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J Nucl Med. 2003, 44(5): 700-7.
    26 Mathias CJ, Hubers D, Low PS, et al. Synthesis of [(99m)Tc]DTPA-folate and its evaluation as a folate-receptor-targeted radiopharmaceutical. Bioconjug Chem. 2000, 11(2): 253-257.
    27 Trump DP, Mathias CJ, Yang Z, et al. Synthesis and evaluation of ~(99m)Tc(CO)_3-DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nucl Med Biol. 2002, 29(5): 569-573.
    28 Leamon CP, Parker MA, Vlahov IR, et al. Synthesis and biological evaluation of EC20: a new folate-derived, (99m)Tc-based radiopharmaceutical. Bioconjug Chem. 2002, 13(6): 1200-1210.
    29 Guo W, Hinkle GH, Lee RJ. ~(99m)Tc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med. 1999, 40(9): 1563-1569.
    30 Mathias CJ, Lewis MR, Reichert, DE, et al. Preparation of ~(66)Ga and ~(68)Ga-labelled Ga(Ⅲ)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals, Nucl Med Biol. 2003, 30(7): 725-731.
    31 Wang, S; Low, PS. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release. 1998, 53(1-3): 39-48.
    32 Wiener EC, Konda S, Wang S, et al. Imaging folate binding protein expression with MRI. Acad Radiol. 2002, 9(Suppl 2): S316-S319.
    33 Wiener EC, Konda S, Shadron A, et al. Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest Radiol. 1997, 32(12): 748-754.
    34 Konda SD, Aref M, ANG S, et al. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. MAGMA. 2001,12(2-3): 104-13.
    35 Choi H, Choi SR, Zhou R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol. 2004, 11(9): 996-1004.
    36 Tung CH, Lin Y, Moon WK, et al. A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging. Chembiochem. 2002, 3(8): 784-786.
    37 Kennedy MD, Jallad KN, Thompson DH, et al. Optical imaging of metastatic tumors using a folate-targeted fluorescent probe. J Biomed Opt 2003, 8(4): 636-641.
    38 Moon WK, Lin Y, O'Loughlin T, et al. Enhanced tumor detection using a folate receptor-targeted nearinfrared fluorochrome conjugate. Bioconjug Chem 2003, 14(3): 539-545.
    39 Leamon CP, Low PS. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today. 2001, 6(1): 44-51.
    40 Zhao XB, Lee RJ. Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv Drug Deliv Rev. 2004, 56(8): 1193-204.
    41 Lu Y, Sega E, Leamon CP, et al. Folate receptor-targeted immunotherapy of cancer: Mechanism and therapeutic potential. Adv Drug Deliv Rev. 2004, 56(8): 1161-1176.
    42 Ke CY, Mathias CJ, Yang ZF, et al. Synthesis and evaluation of folate-bis(thiosemicarbazone) and folate-CYCLAM conjugates for possible use as folate-receptor-targeted copper radiopharmaceuticals. J Labelled Compd Radiopharm. 1999,42:S821-S823.
    43 Gabizon A, Horowitz AT, Goren D, et al. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res. 2003, 9(17): 6551-6559.
    44 Goren D, Horowitz AT, Tzemach M, et al. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res. 2000, 6(5): 1949-1957.
    45 Stephenson SM, Yang W, Stevens PJ, et al. Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy. Anticancer Res. 2003, 23(4): 3341-3345.
    46 Yoo HS, Park TG. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release. 2004, 100(2): 247-256.
    47 张良珂,侯世祥,毛声俊,等.受体介导米托蒽醌白蛋白纳米粒肿瘤细胞靶向性研究.四川大学学报医学版.2006,37(1):77-79.
    48 肖苏尧,童春义,刘选明,等.肿瘤靶向性药物载体叶酸-淀粉纳米颗粒的研制与应用.科学通报.2006,51(10):1151-1155.
    49 梁治平,曾旭文.Gd(Ⅲ)类分子探针在MRI分子影像学中的研究进展.临床放射学杂志.2006,25(8):782-784.
    50 Ke CY, Mathias CJ, Green MA. Folate-receptor-targeted radionuclide imaging agents. Adv Drag Deliv Rev. 2004, 56(8): 1143-1160.
    51 Ross JF, Wang H, Behm et al. Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer. 1999, 85(2): 348-357.
    52 Nakashima-Matsushita N, Homma T, Yu S, et al. Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum. 1999, 42(8): 1609-1616.
    53 Turk MJ, Breur GJ, Widmer WR, et al. Folate-targeted imaging of activated macrophages in rats with adjuvant-induced arthritis. Arthritis Rheum. 2002, 46(7): 1947-1955.
    54 Nagayoshi R, Nagai T, Matsushita K, et al. Effectiveness of anti-folate receptor beta antibody conjugated with truncated Pseudomonas exotoxin in the targeting of rheumatoid arthritis synovial macrophages. Arthritis Rheum. 2005, 52(9): 2666-2675.
    55 王洪武,主编.现代肿瘤靶向治疗技术.北京.中国医药科技出版社.2005,1-3.
    56 Leamon CP, Low PS. Cytotoxicity of momordin-folate conjugates in cultured human cells. J Biol Chem. 1992, 267(35): 24966-24971.
    57 Gabizon A, Shmeeda H, Horowitz AT, et al. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev. 2004, 56(8): 1177-1192.
    58 Zhang L, Hou S, Mao S. Uptake of folate-conjugated albumin nanoparticles to the SKOV3 cells. Int J Pharm. 2004, 287(1-2): 155-162.
    59 Oyewumi MO, Mumper RJ. Influence of formulation parameters on gadolinium entrapment and tumor cell uptake using folate-coated nanoparticles. Int J Pharm. 2003, 251(1-2): 85-97.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.