多维校正结合HPLC-DAD应用于复杂药物体系定量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学计量学是化学的重要的分支学科,可被认为是一门运用数学、统计学、计算机科学以及其它相关学科的理论与方法,结合现代仪器分析技术,以“数学分离”部分或完全替代“化学分离”,被广泛用于复杂体系中的目标物的定性定量分析的学科。其独特的分离理论及特性,正越来越引起化学家们的关注。色谱技术是当前最普通使用的检测技术,在分离复杂体系,对多组分的同时测定方面发挥了重要的作用。本文对化学计量学中的多维校正方法结合色谱技术的理论及应用方面进行了一些探索研究,取得系列创新性成果,其主要内容包括以下几方面:
     1.二阶校正方法结合HPLC-DAD用于复杂药物体系定量分析(第二章-第五章)
     对药物进行准确、快速定量分析是现代生命科学领域中一项重要的内容,对监控药品质量起着至关重要的作用。面对研究体系的日益复杂化和仪器产生数据的多维化,使用和研究适合的能在有大量未知干扰共存下,直接、快速和准确对样品中的感兴趣组分进行定性定量分析的方法,是所有分析化学学家们所密切关注的问题。当两种物质的分子结构式相似,化学性质也相近,或者体系中存在其它未知组分的干扰时,有时用简单的色谱条件很难将它们完全分离。因此,我们借助化学计量学二阶校正方法,并将其与HPLC-DAD结合用于对血浆中的甲硝唑和替硝唑以及美托洛尔和阿替洛尔药物的同时定量分析,获得了满意的结果,充分利用了二阶校正方法的“二阶优势”。
     药物中同分异构体和对映体的分离也是分析化学家们很关注的问题。同分异构体具有相同的分子量,而且很多还具有相似的化学性质,这给实际的色谱分离带来了很大的因难。由于药物组成复杂,在色谱分析中,药物中的同分异构体之间以及与干扰物之间的色谱和光谱往往会存在部分或严重重叠,这给定量分析带来了困难,此时多采用比较复杂的色谱条件或用昂贵的专用色谱柱。本文利用二阶校正方法结合HPLC-DAD对实际药物样品体系中的同分异构体补骨脂素和异补骨脂素以及土木香内脂和异土木香内脂进行了分析研究,在仅经过简单的样品预处理后,无需复杂的色谱条件,借助化学计量学的“数学分离”部分或完全替代“化学分离”,获得了满意的结果。为了验证方法的可靠,还分别用LC/MS和GC/MS进行了验证实验,结果无显著性差异。化学计量学相对于传统的色谱方法的优势在于,在色谱峰有部分甚至严重重叠的情况下仍能对感兴趣组进行定性或定量分析,这也正是二阶校正方法的“二阶优势”的体现。为复杂药物样品中成分的定量分析提供了一种新的分析方法。
     2.三线性二阶校正方法用于HPLC-DAD重叠色谱分析(第六章)
     在应用的基础上,本文还对三线性二阶校正方法解析色谱重叠方面进行了研究。以归一化之后的分离度或重叠度来表示重叠组分的色谱或光谱的重叠程度,此法最大优点就是使重叠峰尤其是包埋峰中各组分的差异性更加明显化。对模拟数据和实际检测数据进行了分析,结果表明只要是重叠组分归一化之后的色谱和光谱不完全重叠并且色谱和光谱的重叠不同时极大到一定程度时,即使是大色谱峰包小色谱峰的情况,三线性分解算法方法仍然能给出重叠各组分的分辨色谱和光谱,并能对其进行准确的定性定量分析。当色谱和光谱的重叠度越高,共线性越严重,分辨的峰形越嘈杂,在相同条件下,相对来说,重叠度越小,算法解析结果将会越好。
     3.三阶校正结合二维HPLC-DAD用于复杂药物体系的定量分析(第七章)
     随着分析仪器的发展和分析方法不断改进,大量高维数据的获得将变得越来越容易,三维二阶校正方法越来越满足不了需要,因此迫切需要能处理更高维数据的高维校正方法。目前,用于处理复杂四维数据的四线性三阶校正方法尚不多见。本文提出了四线性三阶校正方法交替四线性分解(AQLD)并同交替惩罚四线性分解(APQLD)以及四维平行因子分析(Four-way PARAFAC)算法,对LC×LC-DAD检测川芎样品中阿魏酸得到的四维数据进行了四线性分解分析,获得了比较准确的结果。同时对这三种算法解析实际数据的特点进行了比较。结果表明,三阶校正非常适合解析LC×LC-DAD产生的四维数据阵,三阶校正方法能利用色谱峰重叠组分间的差异信息(色谱保留值和光谱的不同)对感兴趣组分的色谱和光谱进行准确的分辨。在模拟和真实测定体系中,总体上新算法AQLD和APQLD算法的性能要稍优于Four-way PARAFAC算法。相对二阶校正方法,三阶校正方法目前还处于起步发展阶段,其复杂的“三阶优势”或更高阶优势还需要不断探索。
Chemometrics is a developing composite discipline, which is an important branch of the analytical chemistry and widely used to the qualitative and quantitative analysis for the analytes in complex system. Its unique characteristics, "mathematical separation" partially or completely replace "chemical separation", which is increasingly causing the concern of chemists. Now chromatographic techniques play an important role in simultaneous determination of multiple components in samples. In this paper, the research work focuses on multi-way calibration combined with chromatographic techniques for quantitative analysis of interest in complex chemical systems.
     1. Second-order calibration coupled with HPLC-DAD for quantitative analysis of drugs in complex systems (Chapter 2 to Chapter 5)
     Accurate, rapid and quantitative determination of ingredient is an important thing in life science and plays an important role in drug quality control. Quantitative analysis of components of interesting even in the presence of unknown interferences is the most concern of analysts. Two components are difficult to be separated by simple chromatographic condition as they have similar structure and characteristic, accordingly, methods of chemometrics are used to helpfully resolve this problem. Second-order calibration methods were presented to allow accurate and reliable quantitative analysis of metronidazole and tindazole, metoprotol and atenolol in plasma samples, which fully reflects the“second-order advantage”.
     Isomeric compounds have the same molecular weight and many also have similar chemical properties, so it is unnecessary to surprise that they have similar spectral profiles and close retention times in chromatographic analysis. How to effectively separate and quantitatively analyze them in drugs is also the interesting question of analysts. Recently there are many papers to aim at these problems, but most methods often suffer from being time-consuming and needing tedious pretreatments in chromatography or too expensive cost. This study described that HPLC-DAD coupled with second-order calibration methods was employed to determine isomeric compounds such as psoralen and isopsoralen, alantolactone and isoalantolactone in Chinese tradional medicine. With the second-order calibration method, one can simplify the sample preparation procedure only by using a simple and convenient solvent extraction with methanol. Thought isomeric compounds have not only similar spectral profiles and close retention times in chromatographic analysis, but also their profiles overlapping with those of unknown interference from complex system. Nevertheless second-order calibration methods could provide accurate concentration prediction and good resolution of elution and spectral profiles for the analytes of interests under this circumstance. Also LC/MS and GC/MS were performed to validate the accuracy of results which were obtained by second-order calibration methods. The results showed that second-order calibration methods is a powerful chemometric tool to decompose heavily overlapped peaks into their pure chromatographic, spectral and concentration profiles even in complicated systems such as pharmaceutical preparations. The second-order advantage was fully exploited in this paper, which made concentration prediction feasible even in the presence of unknown interferences. In the present work, a simple sample disposal and short analysis time has been achieved. It has been proved that“mathematical separation”instead of partial“physical or chemical separation”was useful in chromatographic analysis. It provides a new method of quantitative analysis for ingredient in complex drug samples.
     2. Quantitative analysis of overlapping chromatographic peaks using trilinear second-order methods (Chapter 6)
     Base on the application in practice of trilinear second-order calibration methods, resolution of overlapping chromatograms using these decomposition algorithms are also detailly studied in this paper. Chromatographic and spectral peaks were normalized to calculate resolution or overlapping degree of components in overlapping peaks, which made the difference of components more obvious in overlapping peaks especially in embedded peaks. The results obtained by simulated and real data have shown that trilinear decomposition algorithms have the superior performance to resolve overlapping peaks of elution and spectral profiles and quantify the analytes as there is discrepancy among overlapping peaks or embedded peaks and overlap degree of chromatographic and spectra peaks are not simultaneous severely approximate 100%. With the same noise level and collinearity, the greater of separation of chromatographic and spectral peaks the better results are attained from the algorithms.
     3. Third-order calibration coupled with LC×LC-DAD for quantitative analysis of drugs in complex systems (Chapter 7)
     With the development of analytical instruments and methods, it becomes increasing easier to obtain a large number of high-dimensional data such as four-dimensional data which involve more information than second-dimensional data. It requires more effective higher-order calibration methods of chemometrics to derive useful information from it, accordingly, third-order calibration methods that came into being developed. In this paper, LC×LC-DAD coupled with AQLD (alternating quadrilinear decomposition), APQLD (alternating penalty quadrilinear decomposition) and four-way PARAFAC (parallel factor analysis) was applied to quantitatively determine ferulic acid in chuanxiong samples, acceptable results can be supplied. It come to a conclusion, three third-order calibration methods are adapted to analyze four-way data attained from two-dimensional HPLC-DAD. Comparing with AQLD, APQLD and four-way PARAFAC algorithms, obviously, AQLD and APQLD are generally insensitive to the overestimates of the component number chosen and have fast convergence rate, which is difficult for four-way PARAFAC to surpass. The accuracy of AQLD and APQLD is better than that of four-way PARAFAC illustrated by the EJCR test. The performances of both AQLD and APQLD were slightly better than that of four-way PARAFAC for decomposing quadrilinear data in this paper. Since an additional temporal dimension was introduced and more information of samples was considered, theoretically, third-order calibration could give a higher sensitivity and selectivity than second-order calibration, which can be considered as“third-order advantage”. Admittedly, the advantage of four-dimensional data analysis is still at an early stage of exploration, and complex or higher order advantage is still to be found and studied for us.
引文
[1] Szabadvary F, Robinson A. History of Analytical Chemistry. Oxford: Pergamon Press, 1996
    [2]高鸿.分析化学已发展到分析科学阶段.大学化学, 1999, 14(4): 4-7
    [3]史玉刚,冯新泸,李子存.化学计量学.北京:中国石化出版社, 2002
    [4] Kowalski B R. Analytical chemistry as an information science. Trends in Analytical Chemistry, 1981, 1(3): 71 -74
    [5]俞汝勤.化学计量学导论.长沙:湖南教育出版社, 1991
    [6]许禄.化学计量学方法.北京:科学出版社, 1995
    [7]梁逸曾,俞汝勤.化学计量学.北京:高等教育出版社, 2003
    [8]倪永年.化学计量学在分析化学中的应用.北京:科学出版社, 2004
    [9]杜一平,潘铁英,张玉兰.化学计量学应用.北京:化学工业出版社, 2008
    [10] Sanchez E, Kowalski B R. Tensorial calibration: 1. First-order calibraion. Journal of Chemometrics, 1988, 2(4): 247-263
    [11] Lohnes M T, Guy R D, Wentzell P D. Window target-testing factor analysis: Theory and application to the chromatographic analysis of complex mixtures with multiwavelength fluorescence detection. Analytica Chimica Acta, 1999, 389(1-3): 95-113
    [12] Liang Y Z, Leung A K M, Chau F T. A roughness penalty approach and its application to noisy hyphenated chromatographic two-way data. Journal of Chemometrics, 1999, 13(5): 511-524
    [13] Xu Q S, Liang Y Z. On the equivalence of window factor analysis and orthogonal projection resolution. Chemometrics and Intelligent Laboratory Systems. 1999, 45(1-2): 335-338
    [14] Maeder M. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Analytical Chemistry, 1987, 59(3): 527-530
    [15] Malinowski E R. Window factor analysis: Theoretical derivation and application to flow injection analysis data. Journal of Chemometrics, 1992, 6(1): 29-40
    [16] Gampp H, Maeder M, Meyer C J. Calculation of equilibrium constants from multiwavelength spectroscopic data-III: Model-free analysis of spectrophotometric and ESR titrations. Talanta, 1985, 32(12): 1133-1139
    [17] Maeder M, Zuberbühler A D. The resolution of overlapping chromatographicpeaks by evolving factor analysis. Analytica Chimica Acta, 1986, 181(2): 287-291
    [18] Tauler R, Casassas E. Spectroscopic resolution of macromolecular complexes using factor analysis: Cu (II) -polyethyleneimine system. Chemometrics and Intelligent Laboratory Systems, 1992, 14(1-3): 305-317
    [19] Liang Y Z, Kvalheim O M. Heuristic evolving latent projections: Resolving hyphenated chromatographic profiles by component stripping. Chemometrics and Intelligent Laboratory Systems, 1992, 64, 20(2): 115-125
    [20] Manne R, Shen H L, Liang Y Z. Subwindow factor analysis. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1-2): 171-176
    [21] Shen H L, Manne R, Liang Y Z, et al. Local resolution of hyphenated chromatographic data. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1-2): 323-328
    [22] Jiang J H, Ozaki Y, Kleimann M, et al. Resolution of two-way data from on-line Fourier-transform Raman spectroscopic monitoring of the anionic dispersion polymerization of styrene and 1,3-butadiene by parallel vector analysis (PVA) and window factor analysis (WFA). Chemometrics and Intelligent Laboratory Systems, 2004, 70(1): 83-92
    [23] Windig W, Guilment J. Interactive self-modeling mixture analysis. Analytical Chemistry, 1991, 63(14): 1425-1432
    [24] Jiang J H, Liang Y Z, Ozaki Y. On simplex-based method for self-modeling curve resolution of two-way data. Chemometrics and Intelligent Laboratory Systems, 2003, 65(1): 51-65
    [25] Wang J H, Liang Y Z, Jiang J H, et al. Local chemical rank estimation of two-way data in the presence of heteroscedastic noise: A morphological approach. Chemometrics and Intelligent Laboratory Systems, 1996, 32(2): 265-272
    [26] Juan A, Bogaert B, Sanchez F C, et al.. Application of the needle algorithm for exploratory analysis and resolution of HPLC-DAD data. Chemometrics and Intelligent Laboratory Systems, 1996, 33(2): 133-145.
    [27] Juan A, Vander H Y, Tauler R, et al. Assessment of new constraints applied to the alternating least squares method. Analytica Chimica Acta, 1997, 346(3): 307-318
    [28] Malinowski E R. Automatic window factor analysis: A more efficient method for determining concentration profiles from evolutionary spectra. Journal ofChemometrics, 1996, 10(4): 273-279
    [29] Gemperline P J. A priori estimates of the elution profiles of the pure components in overlapped liquid chromatography peaks using target factor analysis. Journal of Chemical Information and Computer Sciences, 1984, 24(4): 206-212
    [30] Vandeginste B G M, Derks W, Kateman G. Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis. Analytica Chimica Acta, 1985, 173(1): 253-264
    [31] Paatero P. Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35
    [32] Gargallo R, Tauler R, Sanchez F C, et al. Validation of alternating least-squares multivariate curve resolution for chromatographic resolution and quantitation. Trends in Analytical Chemistry, 1996, 15(7): 279-286
    [33] Elbergali A K, Brereton R G, Rahmani A. Influence of the method of calculation of noise thresholds on wavelength selection in window factor analysis of diode array high-performance liquid chromatography. The Analyst, 1996, 121(5): 585-590
    [34] Sanchez F C, Rutan S C, Gil Garcia M D, et al. Resolution of multicomponent overlapped peaks by the orthogonal projection approach, evolving factor analysis and window factor analysis. Chemometrics and Intelligent Laboratory Systems, 1997, 36(2): 153-164
    [35] Ritter C, Gilliard J A, Cumps J, et al. Corrections for heteroscedasticity in window evolving factor analysis. Analytica Chimica Acta, 1996, 318(2): 125-136
    [36] Elbergali A, Nygren J, Kubista M. An automated procedure to predict the number of components in spectroscopic data. Analytica Chimica Acta, 1999, 379(1-2): 143-158
    [37] Xie Y L, Hopke P K, Paatero P J. Positive matrix factorization applied to a curve resolution problem. Journal of Chemometrics, 1998, 12(6): 357-364
    [38] Shao X G, Cai W S. Resolution of multicomponent chromatograms by window factor analysis with wavelet transform preprocessing. Journal of Chemometrics, 1998, 12(2): 85-93
    [39] Werbos P. Beyond regression: new tools for prediction and analysis the behavioral sciences. [PhD dissertation], Cambridge, MA: Harvard, 1974
    [40] Vapnik V N. Statistical learning theory. New York: John Wiley and Sons, 1998
    [41] Vandeginste B G M, De Gaian L. Critical Evaluation of Curve Fitting in Infrared Spectrometry. Analytical Chemistry, 1975, 47(13): 2124-2132
    [42] Borgen O S, Kowalski B R. An extension of the multivariate component-resolution method to three components . Analytica Chimica Acta, 1985,174: 1-26
    [43]黄建国,李洪东,许青松等.逐步校正迭代法及其在两组分包埋色谱峰解析中的应用.计算机与应用化学, 2008, 25(8): 967-971
    [44]邵学广,蔡文生.小波包分析用于重叠分析化学信号的处理.高等学校化学学报, 1999, 20(1): 42-46
    [45]熊智新,胡上序,路文初.基于小波变换的重叠色谱峰检测方法研究.浙江大学学报, 2004, 38(8):1072-1076
    [46]董林,许禄.二维重叠色谱峰解析方法的比较.分析化学, 2004, 32(6): 741-746
    [47]李一波,黄小原.基于遗传算法和神经网络的色谱重叠峰解析.北京化工大学学报, 2001, 28(3): 53-56
    [48] Wilson B E, Sanchez E, Kowalski B R. An improved algorithm for the generalized rank annihilation method. Journal of Chemometrics, 1989, 3(3): 493-498
    [49] Li S, Hamilton C, Gemperline P J. Generalized rank annihilation method using similarity transformations. Analytical Chemistry, 1992, 64(6): 599-607
    [50] Faber K, Lorber A, Kowalski B R. Generalized rank annihilation method: Standard errors in the estimated eigenvalues if the instrumental errors are heteroscedastic and correlated. Journal of Chemometrics, 1997, 11(2): 95-109
    [51] Sanchez E, Kowalski B R. Generalized rank annihilation factor analysis. Analytical Chemistry, 1986, 58(2): 496-499
    [52] Sanchez E, Kowalski B R. Tensorial resolution: a direct trilinear decomposition. Journal of Chemometrics, 1990, 4(1): 29-45
    [53] Li S, Gemperline P J. Eliminating complex eigenvectors and eigenvalues in multiway analyses using the direct trilinear decomposition method. Journal of Chemometrics, 1993, 7(1): 77-88
    [54] Lin Z, Booksh K S, Burgess L W, et al. A second-order fiber optic heavy metal sensor employing second-order tensorial calibration. Analytical Chemistry, 1994, 66(15): 2552-2560
    [55] Booksh K S, Lin Z, Wang Z, et al. Extension of trilinear decomposition method with an application to the flow probe sensor. Analytical Chemistry, 1994, 66(15):2561-2569
    [56] Henshow J M, Burgess L W, Booksh K S, et al. Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 1. Multivariate calibration of Fujiwara reaction products. Analytical Chemistry, 1994, 66(20): 3328-3336
    [57] Gui M, Rutan S C, Agbodian A. Kinetic detection of overlapped amino acids in thin-layer chromatography with a direct trilinear decomposition method. Analytical Chemistry, 1995, 67(18): 3293-3299
    [58] Millican D W, McGrown L B. Fluorescence lifetime selectivity in excitation-emission matrices for qualitative analysis of a two-component system. Analytical Chemistry, 1989, 61(6): 580-583
    [59] Millican D W, McGown L B. Fluorescence lifetime resolution of spectra in the frequency domain using multiway analysis. Analytical Chemistry, 1990, 62(20): 2242-2247
    [60] Scarmino I, Kubista M. Analysis of correlated spectral data. Analytical Chemistry, 1993, 65(4): 409-416
    [61] Appelolof C J, Davidson E R. Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents. Analytical Chemistry, 1981, 53(13): 2053-2056
    [62] Linder M, Sundberg R. Precision of prediction in second-order calibration with fous on bilinear regression method. Journal of Chemometrics, 2002, 16(1): 12-27
    [63] Linder M, Sundberg R. Second-order bilinear calibration: the effects of vectorising the data matrices of the calibration set. Chemometrics and Intelligent Laboratory Systems, 2002, 63(2): 107-116
    [64] Damiani P C, Nepote A J, Bearzotti M, et al. A test field for the second-order advantage in bilinear least-squares and parallel factor analyses: fluorescence determination of ciprofloxacin in human urine. Analytical Chemistry, 2004, 76(10): 2798-2806
    [65] Smilde A K, Doornbos D A. Three-way methods for the calibration of chromatographic systems: Comparing PARAFAC and three-way PLS. Journal of Chemometrics, 1991, 5(3): 345-360
    [66] Bro R. Multi-way analysis in the food industry, PhD Thesis, University of Amsterdam and Royal Veterinary and Agricultural university, Denmark, 1998
    [67] Mitchell B C, Burdick D S. Slowly converging PARAFAC sequences: Swampsand two-factor degeneracies. Journal of Chemometrics , 1994, 8(2): 155-168
    [68] Bro R. PARAFAC: Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 149-171
    [69] Rayens W S, Mitchell B C. Two-factor degeneracies and a stabilization of PARAFAC. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 173-181
    [70] Krijnen W P. The Analysis of three-way Arrays by Constrained PARAFAC Methods, Leiden: DSWO Press, Leiden University, 1993
    [71] Harshman R A. Foundations of the PARAFAC procedure: Models and conditions for an‘explanatory’multi-modal factor analysis. UCLA Working Papers in Phonetics, 1970, 16(1): 1-84
    [72] Carroll J D, Chang J J. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika, 1970, 35(3): 283-319
    [73] Jiang J H, Wu H L, Chen Z P, et al. Coupled vectors resolution method for chemometric calibration with three-way data. Analytical Chemistry, 1999, 71(19): 4254-4262
    [74] Jiang J H, Wu H L, Li Y, et al. Alternating coupled vectors resolution (ACOVER) method for trilinear analysis of three-way data. Journal of Chemometrics, 1999, 13(6): 557-578
    [75] Jiang J H, Wu H L, Li Y, et al. Three-way data resolution by alternating slice-wise diagonalization (ASD) method. Journal of Chemometrics, 2000, 14(1): 15-36
    [76] Li Y, Jiang J H, Wu H L, et al. Alternation coupled matrics resolution method for three-way array analysis. Chemometrics and Intelligent Laboratory Systems, 2000, 52(1): 33-43
    [77] Chen Z P, Wu H L, Yu R Q. On the self-weighted alternating trilinear decomposition algorithm - the property of being insensitive to excess factors used in calculation. Journal of Chemometrics, 2001, 15(5): 439-453
    [78] Chen Z P, Li Yang, Yu R Q. Pseudo alternating least squares algorithm for trilinear decomposition. Journal of Chemometrics, 2001, 15(3): 149-167
    [79] Chen Z P, Wu H L, Li Y, et al. A novel constrained PARAFAC algorithm for second-order linear calibration. Analytica Chimica Acta, 2000, 423(1): 187-196
    [80] Cao Y Z, Chen Z P, Mo C Y, et al. A PARAFAC algorithm using penalty diugonalization error (PDE) for three-way data array resolution. The Analyst,2000, 125(12): 2303-2310
    [81] Wu H L, shibukawa M, Oguma K. An alternating trilinear decomposition method with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbous. Journal of Chemometrics, 1998, 12(1): 1-26
    [82] Xia A L, Wu H L, Fang D M, et al. Alternating penalty trilinear decomposition for second-order calibration with an application to interference-free analysis of excitation-emission matrix fluorescence data. Journal of Chemometrics, 2005, 19(2): 65-76
    [83] Xia A L, Wu H L, Fang D M, et al. Determination of daunomycin in human plasma and urine using an interference-free analysis of excitation-emission matrix fluorescence data with second-order calibration. Analytical Sciences, 2006, 22(9): 1189-1195
    [84] Hu L Q, Wu H L, Ding Y J, et al. Alternating asymmetric trilinear decomposition for three-way data arrays analysis. Chemometrics and Intelligent Laboratory Systems, 2006, 82(1-2):145-153
    [85] Xie H P, Chu X, Jiang J H, et al. Competitive interactions of adriamycin and ethidium bromide with DNA as studied by full rank parallel factor analysis of fluorescence three-way array data. Spectrochimica Acta Part A, 2003, 59(4):743-749
    [86] Juan A, Rutan S C, Tauler R, et al. Comparison between the direct trilinear decomposition and the multivariate curve resolution-alternating least squares methods for the resolution of three-way data sets. Chemometrics and Intelligent Laboratory Systems, 1998, 40(1): 19-32
    [87] Saurina J, Hemandez-Cassou S, Tauler R. Multivariate curve resolution and trilinear decomposition methods in the analysis of stopped-flow kinetic data for binary amino acid mixtures. Analytical Chemistry, 1997, 69(13): 2329-2336
    [88] Paatero P. Construction and analysis of degenerate PARAFAC models. Journal of Chemometrics, 2000, 14(3): 285-299
    [89] Tomasi G, Bro R. PARAFAC and missing values. Chemometrics and Intelligent Laboratory Systems, 2005, 75(2): 163-180
    [90] Lavine B, Workman J J. Chemometrics: Fundamental review. Analytical Chemistry, 2004, 76(12): 3365-3372
    [91] Booksh K S, Kowalski B R. Theory of analytical chemistry. Analytical Chemistry, 1992, 66(15): 782A-791A
    [92] Jalali-Heravi M, Zekavat B, Sereshti H. Use of gas chromatography–mass spectrometry combined with resolution methods to characterize the essential oil components of Iranian cumin and caraway. Journal of Chromatography A, 2007, 1143(1-2): 215-226
    [93] Wang Z G,Jiang H H,Ding Y J,et al. Trilinear evolving factor analysis for the resolution of three-way multi-component chromatograms. Analytica Chimica Acta, 2006, 558(1-2): 137-143
    [94] Ho C N, Christian G D, Davidson. Application of the method of rank annihilation to quantitative analyses of multicomponent fluorescence data form the video fluorometer. Analytical Chemistry, 1978, 50(8):3345-3351
    [95] Ho C N, Christian G D, Davidson. Application of the method of rank annihilation to fluorescent multicomponent mixtures of polynuclear aromatic hydrocarbons. Analytical Chemistry, 1980, 52(7):1071-1079
    [96] Ho C N, Christian G D, Davidson. Simultaneous multicomponent rank annihilation and applications to multicomponent fluorescent data acquired by the video fluorometer. Analytical Chemistry, 1981, 53(1):92-98
    [97] Paatero P. Construction and analysis of degenerate PARAFAC models. Journal of Chemometrics, 2000, 14(3): 285-299
    [98] Culzoni M L, Goicoechea H C. Determination of loratadine and pseudoephedrine sulfate in pharmaceuticals based on non-linear second-order spectrophotometric data generated by a pH-gradient flow injection technique and artificial neural networks. Analytical and Bioanalytical Chemistry, 2007, 389(7-8): 2217-2225
    [99] Culzoni M J, Goicoechea H C, Pagani A P, et al. Evaluation of partial least-squares with second-order advantage for themulti-way spectroscopic analysis of complex biological samples in the presence of analyte-backgroundinteractions. The Analyst, 2006, 131(6) 718-723
    [100] Comas E, Gimeno R A, FerréJ, et al., Quantification from highly drifted and overlapped chromatographic peaks using second-order calibration methods. Journal of Chromatography A, 2004, 1035(2): 195-202
    [101] Rodríguez-Cuesta M J, BoquéR, Rius F X, et al. Development and validation of a method for determining pesticides in groundwater from complex overlapped HPLC signals and multivariate curve resolution. Chemometrics and Intelligent Laboratory Systems, 2005, 77(1-2): 251-260
    [102] Peré-Trepart E, Hildebrandt A, BarcelóD, et al. Fast chromatography ofcomplex biocide mixtures using diode array detection and multivariate curve resolution. Chemometrics and Intelligent Laboratory Systems, 2004, 74(2): 293-303
    [103] Gimeno R A, Comas E, MarcéR M, et al., Second-order bilinear calibration for determining polycyclic aromatic compounds in marine sediments by solvent extraction and liquid chromatography with diode-array detection. Analytica Chimica Acta. 2003, 498(1-2): 47-53
    [104] Zan D M M, García G M D, Culzoni M J, et al. Solving matrix-effects exploiting the second order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modelling liquid chromatography data with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms: I. Effect of signal pre-treatment. Journal of Chromatography A, 2008, 1179(2): 106-114
    [105] Ghasemi J, Niazi A. Two- and three-way chemometrics methods applied for spectrophotometric determination of lorazepam of lorazepam in pharmaceutical formulations and biological fluids. Analytica Chimica Acta, 2005, 533(2): 169-177
    [106] Sena M M, Poppi R J. N-way PLS applied to simultaneous spectrophotometric determination of acetylsalicylic acid, paracetamol and caffeine. Journal of Pharmaceutical and Biomedical Analysis. 2004, 34(1): 27-34
    [107] Ouyang L Q, Wu H L, Nie J F, et al. Simultaneous determination of psoralen and isopsoralen in plasma and Chinese medicine Xian Ling Gu Bao capsule by using HPLC-DAD coupled with alternating trilinear decomposition algorithm. Analytica Chimica Acta, 2009, 650(2): 160-166
    [108] Coello J, Maspoch S, Villegas N. Simultaneous kinetic-spectrophotometric determination of levodopa and benserazide by bi- and three-way partial least squares calibration. Talanta, 2000,53 (3): 627-637
    [109] Leitao J M M, da Silva J C G E. PARAFAC and PARAFAC2 calibration models for antihypertensor Nifedipine quantification. Analytica Chimica Acta. 2006, 559 (2): 271-280
    [110] Leitao J M M, da Silva J C G E. PARAFAC2 and MCR-ALS quantification of Diltiazem antihypertensor based on a kinetic spectrophotometric methodology. Chemometrics and Intelligent Laboratory Systems. 2007, 89(2): 90-96
    [111] Braga J W B, Bottoli C B G, Jardim I C S F, et al. Determination of pesticidesand metabolites in wine by high performance liquid chromatography and second-order calibration methods Journal of Chromatography A, 2007, 1148(2): 200-210
    [112] Zhang Y, Wu H L, Xia A L, et al. Interference-free determination of Sudan dyes in chilli foods using second-order calibration algorithms coupled with HPLC-DAD. Talanta, 2007, 72(3): 926-931
    [113] Sinha A E, Hope J L, Prazen B J, et al. Algorithm for locating analytes of interest based on mass spectral similarity in GC×GC-TOF-MS data: analysis of metabolites in human infant urine. Journal of Chromatography A, 2004, 1058 (1-2): 209-215
    [114] Zhang Y, Wu H L, Ding Y J, et al. Simultaneous determination of cortisol and prednisolone in body fluids by using HPLC-DAD coupled with second-order calibration based on alternating trilinear decomposition. Journal of Chromatography B, 2006,840(2): 116-123
    [115] Ouyang L Q, Wu H L, Liu Y J, et al. Simultaneous determination of metronidazole and tinidazole in plasma by using HPLC-DAD coupled with secdond-order calibration. Chinese Chemical Letters, 2010, 21(10): 1223-1226
    [116] Wiberg K, Jacobsson S P. Parallel factor analysis of HPLC-DAD data for binary mixtures of lidocaine and prilocaine with different levels of chromatographic separation. Analytica Chimica Acta. 2004, 514 (2): 203-209
    [117] Goicoechea H C, Yu S, Olivieri A C, et al. Four-way data coupled to parallel factor model applied to environmental analysis: determination of 2,3,7,8-tetrachloro-dibenzo-para-dioxin in highly contaminated waters by solid-liquid extraction laser-excited time-resolved Shpol’skii spectroscopy. Analytical Chemistry, 2005, 77(8): 2608-2616
    [118] Xia A L, Wu H L, Li S F, et al. Alternating penalty quadrilinear decomposition algorithm for an analysis of four-way data arrays. Journal of Chemometrics, 2007, 21(3-4):133-144
    [119] Arancibia J A, Olivieri A C, Gil D B, et al. Trilinear least-squares and unfolded-PLS coupled to residual trilinearization: New chemometric tools for the analysis of four-way instrumental data. Chemometrics and Intelligent Laboratory Systems, 2006, 80(1):77-86
    [120] Rodríguez N, Ortiz M C, Sarabia L A. Fluorescence quantification of tetracycline in the presence of quenching matrix effect by means of a four-way model. Talanta, 2009, 77(3): 1129-1136
    [121] Porter S E G, Stoll D R, Rutan S C, et al. Analysis of four-way two-dimensional liquid chromatography-diode array data: Application to metabolomics. Analytical Chemistry, 2006, 78(15): 5559-5569
    [122] Tucker L R. Some mathematical notes on three-mode factor analysis. Psychometrika, 1966, 31(3): 279-311
    [123] Kroonenberg P M, Leeuw de J. Principal components analysis of three-mode data by means of alternating least-squares algorithms. Psychometrika, 1980, 45(1): 69-97
    [124]项新华,沈建忠.HPLC法检测硝基咪唑类药物残留及其有效化学测量的研究,卫生研究,2007,36(3):379-381
    [125] FDA.Appendlx III.US residue limits for veterinary drugs and unavoidable contaminants in meat,poultry,and egg products.1999
    [126]中华人民共和国农业部.农业部公告第235号.附录一:食品动物禁用的兽药及其他化合物清单.2002
    [127]王克森,徐传新,董珩等,替硝唑栓的研制及临床应用.中国医院药学杂志,1996,16(1):17-19
    [128]潘细贵,王军,罗毅等.替硝唑漱口水稳定性研究.中国医院药学杂志,1999,19(3):158-159
    [129]邓丽云,孟桂凤,宋继静.头孢噻肟及氧氟沙星与替硝唑注射液配伍的稳定性实验.中国药事, 1998, 12(3): 171-172
    [130]国家医药管理局医药工业情报中心站.国际医药服务公司.世界药物指南.上海:上海医科大学出版社.1989: 190-201
    [131]朱人敏,何小平,邵海枫等.盐酸洛美沙星治疗呼吸道细菌性感染的临床研究.药学进展, 2001, 25(1): 47-50
    [132]杨树平,乔兆萍.国产洛美沙星对下呼吸道感染112例疗效观察.河南诊断与治疗杂志, 2000, 14(4): 209
    [133]杨青青.盐酸洛美沙星与甲硝唑氯化钠注射液配伍稳定性考察.实用药物与临床, 2008, 11(5): 321-322
    [134]秦安龙,李蓉,于红艳.盐酸洛美沙星氯化钠注射液与甲硝哇注射液配伍的稳定性实验.黑龙江医药, 2008, 21(6): 23-24
    [135]赵树进,袁进,孙桂华.洛美沙星、头孢曲松钠与甲硝唑配伍治疗胆道感染的药物经济学研究.广东医学, 2002, 23(11): 1126-1127
    [136]陈灵,郑传痴,何志义等.替硝唑葡萄糖注射液与洛美沙星注射液配伍的稳定性实验.遵义医学院学报, 2000, 23(3): 284-285
    [137] Nagaraja P, Sunitha K R, Vasantha R A. Spectrophotometric determination ofmetronidazole and tinidazole in pharmaceutical preparations Original Research Article. Journal of Pharmaceutical and Biomedical Analysis, 2002, 28(3-4): 527-535
    [138] Joshi D M, Joshi A P. Polarographic determination of tinidazole and furazolidone. Indian Drugs, 1996, 33(7): 338-343
    [139] Sun H W, Wang F C, Ai L F. Simultaneous determination of seven nitroimidazole residues in meat by using HPLC-UV detection with solid-phase extraction. Journal of Chromatography B, 2007, 857(2): 296-300
    [140] Cronly M, Behan P, Foley B. Rapid confirmatory method for the determination of 11 nitroimidazoles in egg using LC/MS. Journal of Chromatography A, 2009, 1216(46): 8101-8109
    [141] Bro R, Kiers H A L. A new efficient method for determining the number of components in PARAFAC modes. Journal of Chemometrics, 2003, 17(5): 274-286
    [142]张永全,刘学田.β受体阻滞剂的临床应用进展.中国急救医学, 2005, 25(10): 754-756
    [143]黄振文,汤建民,程安玲等.美托洛尔治疗充血性心力衰竭的临床研究.河南医学研究,1999, 8(1): 53-55
    [144]杨丕俊,牛存龙,王书琨等.美托洛尔治疗慢型克山病的效果观察.中国地方病学杂志, 2000, 19(4): 298-300
    [145]唐宝华,党瑜华,王晓燕等.阿替洛尔和美托洛尔治疗急性心肌梗死临床观察.实用诊断与治疗杂志, 2006, 20(5): 324-327
    [146] Klein G, Berger J, Olsson G, et al. A double-blindcomparison of metoprolol CR/ZOK 50 mg and atenolol 50 mg once daily for uncomplicated hyperten-sion. Journal of Clinical Pharmacology, 1990, 30 (2 ): 72-77
    [147] Wikstrand J, Berglund G, Tuomilehto J. Beta-bloekers in the primary prevention of coronary heart disease in hypertensive patients.Review of present evidence. Circulation, 1991, 84(6): 93-100
    [148] Karlson BW, Herlitz J, Hjalmarson A. Impact of clinical trials on the use of beta blockers after acute myocardial infarction and its relation to other risk indicators for death and 1-year mortality rate. Clinical Cardiology, 1994,17(6): 311-316
    [149] Carlberg B, Samuelsson O, Lindholm L H. Atenolol in hypertension: is it awise choice. The Lancet, 2004, 364(9446): 1684-1689
    [150]曹剑,范利,李小鹰等.美托洛尔、阿替洛尔治疗老年心力衰竭的临床观察.解放军保健医学杂志,2001, 3(4): 220-222
    [151] Bhushan R, Thiongo G T. Direct enantioseparation of someβ-adrenergic blocking agents using impregnated thin-layer chromatography. Journal of Chromatography B, 1998, 708(1-2): 330-334
    [152] Ghanem R, Bello M A, Guiraúm C M A. Determination of beta-blocker drugs in pharmaceutical preparations by non-suppressed ion chromatography. Journal of Pharmaceutical and Biomedical Analysis, 1996, 15(3): 383-388
    [153] Park Y J, Lee D W, Lee W Y. Determination ofβ-blockers in pharmaceutical preparations and human urine by high-performance liquid chromatography with tris (2,2ˊ-bipyridyl)ruthenium(II) electrogenerated chemiluminescence detection. Analytica Chimica Acta, 2002, 471(1): 51-59
    [154] Vázquez P P, Galera M M, Guirado A S, et al. Determination of five beta-blockers in wastewaters by coupled-column liquid chromatography and fluorescence detection. Analytica Chimica Acta, 2010, 666(1-2): 38-44
    [155] Modamio P, Lastra C F, Montejo O. Development and validation of liquid chromatography methods for the quantitation of propranolol, metoprolol, atenolol and bisoprolol: application in solution stability studies. International Journal of Pharmaceutics, 130(1): 137-140
    [156] Maguregui M I, Alonso R M, Jiménez R M. High-performance liquid detection applied to the chromatography with amperometric screening ofβ-blockers in human urine. Journal of Chromatography B, 1995, 674(1): 85-91
    [157] Rapado-Martínez I, García-Alvarez-Coque M C, Villanueva-Cama?as R M. Liquid chromatographic procedure for the evaluation ofβ-blockers in pharmaceuticals using hybrid micellar mobile phases. Journal of Chromatography A, 1997, 765(2): 221-231
    [158] Delamoye M, Duverneuil C, Paraire F, et al. Simultaneous determination of thirteenβ-blockers and one metabolite by gradient high-performance liquid chromatography with photodiode-array UV detection. Forensic Science International, 2004,141(1): 23-31
    [159] Rantaa V P, Toropainen E, Talvitie A, et al. Simultaneous determination of eightβ-blockers by gradient highperformance liquid chromatography with combined ultraviolet and fluorescence detection in corneal permeability studies in vitro. Journal of Chromatography B, 2002, 772(1): 81-87
    [160] Hernando M D, Petrovic M, Fernández-Al A R, et al. Analysis by liquid chromatography–electrospray ionization tandem mass spectrometry and acute toxicity evaluation forβ-blockers and lipid-regulating agents in wastewatersamples. Journal of Chromatography A, 2004, 1046(1-2): 133-140
    [161] Vieno N M, Tuhkanen T, Kronberg L. Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography–tandem mass spectrometry detection. Journal of Chromatography A, 2006, 1134(1-2): 101-111
    [162] Johnson R D, Lewis R J. Quantitation of atenolol, metoprolol, and propranolol in postmortem human fluid and tissue specimens via LC/APCI-MS. Forensic Science International, 2006, 156(2-3): 106-117
    [163] Maurer H H, Tenberken O, Kratzsch C. Screening for library-assisted identification and fully validated quantification of 22 beta-blockers in blood plasma by liquid chromatography–mass spectrometry with atmospheric pressure chemical ionization. Journal of Chromatography A, 2004, 1058(1-2): 169-181
    [164] Kristoffersen L, Qiestad E L, Opdal M S, et al. Simultaneous determination of 6 beta-blockers, 3 calcium-channel antagonists, 4 angiotensin-II antagonists and 1 antiarrhytmic drug in post-mortem whole blood by automated solid phase extraction and liquid chromatography mass spectrometry: Method development and robustness testing by experimental design. Journal of Chromatography B, 2007, 850(1-2): 147-160
    [165] Nikolai L N, McClure E L, MacLeod S L. Stereoisomer quantification of the -blocker drugs atenolol, metoprolol, and propranolol in wastewaters by chiral high-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2006, 1131(1-2): 103-109
    [166] Macleod S L, Sudhir P, Wong C S. Stereoisomer analysis of wastewater-derivedβ-blockers, selective serotonin re-uptake inhibitors, and salbutamol by high-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2007, 1170(1-2): 23-33
    [167] Li S J, Liu G Y, Jia J Y, et al. Simultaneous determination of ten antiarrhythic drugs and a metabolite in human plasma by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 2007, 847(2): 174-181
    [168] Wren S A C, Tchelitcheff P. UPLC/MS for the identification ofβ-blockers. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40(3): 571-580
    [169] Yilmaz B, Arslan S, Akba V. Gas chromatography–mass spectrometry method for determination of metoprolol in the patients with hypertension. Talanta, 2009, 80(1): 346-351
    [170] Galera M M, García M D G, Culzoni M J, et al. Determination ofpharmaceuticals in river water by column switching of large sample volumes and liquid chromatography-diode array detection, assisted by chemometrics: An integrated approach to green analytical methodologies. Journal of Chromatography A, 2010, 1217(1-2): 2042-2049
    [171]陈业高,于丽丽,黄荣.补骨脂化学成分的分离与鉴定.云南化工, 2005, 32(2): 3-5
    [172]国家药典委员会编.中华人民共和国药典,一部.北京:化学工业出版社, 2005, 1291
    [173]王淑.补骨脂的药理作用研究概况.时珍国医国药, 2006,17(6): 1081-1082
    [174] Kotiyal J P, Sharma D P. Phytochemical studies on Psoralea species -A review. Bulletin of Medico-Ethno-Botanical Research, 1992, 13: 209-233
    [175]吉力,徐植灵.补骨脂化学成分的综述.中国中药杂志, 1995, 20(2): 120-122
    [176]黄剑,赵陆华,邹巧根等.补骨脂化学成分及药理研究进展.药学进展, 2000, 24(4):212-214
    [177]郭江宁,吴侯,翁新楚等.补骨脂中活性成分的分离与抗癌实验研究.中药材, 2003, 26(3): 185-187
    [178] Latha P G, Panikkar K R. Antitumour active fraction from Psoralea corylifolia seeds. Fitoterapia, 1998, 69 (5): 451-455
    [179]卢艳芳主编.中药有效成分提取分离技术.北京:化学工业出版社, 2005: 2151
    [180]杨明容,陈丽艳.补骨脂及其品的鉴别.海峡药学, 2001,13(2): 42-44
    [181]辛丹,颜冬梅,王跃飞等.补骨脂及其相关化学成分的药理与毒理研究进展.辽宁中医药大学学报, 2009,4(7): 70-72
    [182]荆凡波,孙术红,宋金明.薄层扫描法测定肠康颗粒中补骨脂素的含量.中国现代中药, 2006, 8(1): 14-15
    [183]杨云,王浴铭,李国茹.开白康冲剂中补骨脂素的含量测定.河南中医药学刊, 1998, 5(2): 26-28
    [184]庞志功,汪宝琪,祁彦.用荧光法研究补骨脂素与异补骨脂素的药代动力学.分析化学, 2001, 29(2): 146-149
    [185] Wu F, Wang A F, Zhou Y, et al. Determination of Psoralen and Isopsoralen in Traditional Chinese Medicines by Capillary Zone Electrophoresis with Amperometric Detection. Chromatographia, 2005, 61(3-4): 157-160
    [186]姚三桃,杨滨,徐植灵等.气相色谱法测定补骨脂中的有效成分.中国药学杂志, 1996, 31(7): 394-396
    [187] Feng C, Cai Y L, Ruan J L. Simultaneous determination of 10 active components in traditional Chinese medicine“YIGONG”capsule by RP-HPLC-DAD. Journalof Pharmaceutical and Biomedical Analysis. 2008, 47 (2): 442-447
    [188]郑菁,陈华庭,徐楚鸿.反相高效液相色谱法测定强筋健骨胶囊中补骨脂素及异补骨脂素的含量.中国医院药学杂志, 2004, 24(5): 277-278
    [189]姜舜尧. HPLC测定3种含补骨脂中成药中的补骨脂素、异补骨脂素的含量.中成药. 2000, 22(4): 293-295
    [190] Zhao L H, Huang C Y, Shan Z, Fingerprint analysis of Psoralea corylifolia L. by HPLC and LC-MS Original Research Article. Journal of Chromatography B, 2005, 821(1): 67-74
    [191]白鸽,曹学丽,谭莉等.高速逆流色谱对补骨脂中补骨脂素和异补骨脂素的分离纯化研究.中药研究, 2009, 11(6): 864-867
    [192] Ito Y. Efficient preparative counter-current chromatography with a coil planet centrifuge. Journal of Chromatography A, 1981, 214(1) :122-125
    [193] Ito Y. New continous extraction method with a coil planet centrifuge. Journal of Chromatography A, 1981, 207(2) :161-170
    [194] Gómez V, Callao M P, Analytical applications of second-order calibration methods. Analytica Chimica Acta. 2008, 627(2): 169-183
    [195] Prazen B J, Synovec R E, Kowalski B R, Standardization of second-order chromatographic/spectroscopic data for optimum chemical analysis. Analytica Chemistry, 1998, 70(2): 218-225
    [196] Nie J F, Wu H L, Xia A L, et al. Determination of sulpiride in human urine using excitation-emission matrix fluorescence coupled with second-order calibration. Analytical Sciences, 2007, 23(12): 1377-1382
    [197]回瑞华,侯冬岩,李铁纯.微波-萃取木香挥发性化学成分的气相色谱-质谱分析.质谱学报, 2003, 24(4): 471-476
    [198]邱琴,崔兆杰,刘廷礼等. GCMS法测定木香挥发油化学成分.理化检验-化学分册, 2001, 37(8):346-348
    [199]国家药典委员会.中华人民共和国药典. 2005年版一部.北京:化学工业出版社,2005, 17-18
    [200]李雪莲,朴惠善.土木香的化学成分及药理作用研究进展.中国现代中药,2007,9(6): 28-29
    [201] Delectis Florae Republicae Popularis Sinicae Agendae Academiae Sinicae. Flora Republicae Popularis Sinicae. Beijing:Science Press, 1979, 248-254
    [202]郭启雷,杨峻山.旋覆花属植物中倍半萜类成分及药理活性研究进展.天然产物研究与开发, 2005, 17(6): 804-809
    [203]罗达尚.中华藏本草.北京:民族出版社, 1997, 254
    [204] Cantrell C L, Abate L, Fronczek F R, et al. Antimycobacterial eudesmanolides from Inula helenium and Rudbeckia subtomentosa. Planta Medica, 1999, 65(4): 351-355
    [205] Konishi T, Shimada Y, Nagao T, et al. Antiproliferative sesquiterpene lactones from the roots of Inula helenium. Biological & Pharmaceutical Bulletin, 2002, 25(10): 1370-1372
    [206]王潞,赵烽,何恩其等. 18种木香倍半萜对6种人源肿瘤细胞增殖的影响.天然产物研究与开发, 2008, 20(5): 808-812
    [207]沈嘉怡.欧洲的植物疗法.中国中医药信息杂志, 1999, 6(8): 79
    [208]楼之岑.常用中药材品种整理和质量研究.北京:北京医科大学、中国协和医科大学联合出版社, 1996, 30-31
    [209]乔洪翔,刘永晔,吴理茂等.青木香与其替代药材土木香对大鼠肾脏毒性的研究.中国中药杂志, 2007, 32(19): 2048-2051
    [210]丘翠嫦,戴斌.新疆木香中土木香内酯与异土木香内酯的分离鉴定.中药材, 1995, 18(1): 30-31
    [211] Wang K T, Liu H T, Zhao Y K, et al. Separation and determination of alantolactone and isoalantolactone in traditional Chinese herbs by capillary electrophoresis, Talanta, 2000, 52(6): 1001-1005
    [212]曾锐,瞿燕,高宇明. RP-HPLC测定藏药六味能消胶囊中土木香内酯和异土木香内酯的含量.西南大学学报(自然科学版), 2009, 31(5): 121-123
    [213] Huo Y, Shi H M, Li W W, et al. HPLC determination and NMR structural elucidation of sesquiterpene lactones in Inula helenium. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51(4): 942-946
    [214]夏晶,季申.气相色谱法测定土木香中的同分异构体.中国药学杂志, 2005, 40(24): 1895-1896
    [215]蒋波,陈晓辉,高珣等. GC法同时测定六味安消胶囊中三组分含量,药物分析杂志, 2009, 29(8): 1313-1315
    [216]梁晟,梁逸曾,李雅文等.木香挥发性化学成分的气相色谱-质谱分析,广州化学, 2007, 32(4):12-17
    [217]回瑞华,侯冬岩,李铁纯.微波-萃取木香挥发性化学成分的气相色谱-质谱分析.质谱学报, 2003, 24(4): 471-476
    [218]邱琴,崔兆杰,刘廷礼等. GCMS法测定木香挥发油化学成分.理化检验-化学分册, 2001, 37(8):346-348
    [219]戴斌,丘翠嫦.新疆木香挥发油气相色谱-质谱分析.中药材, 1995, 18(3): 139-142
    [220] Dolan J W, Snyder L R, Blanc T, et al. Selectivity differences for C18 and C8 reversed-phase columns as a function of temperature and gradient steepness: I. Optimizing selectivity and resolution. Journal of Chromatography A, 2000, 897(1-2): 37-50.
    [221] Dolan J W, Snyder L R, Djordjevic N M, et al. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time: I. Peak capacity limitations. Journal of Chromatography A, 1999, 857(1-2): 1-20
    [222] Dolan J W, Snyder L R, Djordjevic N M, et al. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time: II. Two-run assay procedures. Journal of Chromatography A, 1999, 857(1-2): 21-39
    [223] Dolan J W, Snyder L R, Wolcott R G, et al. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time: III. Improving the accuracy of computer simulation. Journal of Chromatography A, 1999, 857(1-2): 41-68
    [224] Dolan J W, Snyder L R, Djordjevic N M, et al. Simultaneous variation of temperature and gradient steepness for reversed-phase high-performance liquid chromatography method development: I. Application to 14 different samples using computer simulation. Journal of Chromatography A, 1998, 803(1-2): 1-31
    [225] Dolan J W, Snyder L R, Saunders D L, et al. Simultaneous variation of temperature and gradient steepness for reversed- phase high-performance liquid chromatography method development: II. The use of further changes in conditions. Journal of Chromatography A, 1998, 803(1-2): 33-50
    [226] Nakamura S. Differential signal detection system for improved analysis of overlapping signals in liquid chromatography. Journal of Chromatography A, 1999, 859(2): 221-225
    [227] Martin M,Eon C,Guiochon G.Study of the pertinency of pressure in liquid chromatography: I. theoretical analysis. Journal of Chromatography A,l974,99:357-376
    [228]王智聪,张庆合,张维冰等.全二维液相色谱(IEC/RP)的构建与评价.高等学校化学学报, 2005, 26(3): 426-429
    [229] Tollsten L, in: S. Gorog (Ed.), Identification and Determination of Impurities in Drugs, Elsevier, Amsterdam, 2000: 266-298
    [230] Wilson I D, Griffiths L, Lindon J C, et al. in: S. Gorog (Ed.), Identification andDetermination of Impurities in Drugs, Elsevier, Amsterdam, 2000: 299-322.
    [231] Fukutsu N, Kawasaki T, Saito K, et al. Application of high-performance liquid chromatography hyphenated techniques for identification of degradation products of cefpodoxime proxetil. Journal of Chromatography A, 2006, 1129(2): 153-159
    [232] Frankowskia M, Frankowska A Z. Siepak J. New method for speciation analysis of aluminium fluoride complexes by HPLC–FAAS hyphenated technique. Talanta, 2010, 80(5): 2120-2126
    [233] Mandal B K, Suzuki K T, Anzai K, et al. A SEC-HPLC-ICP MS hyphenated technique for identification of sulfur-containing arsenic metabolites in biological samples. Journal of Chromatography B, 2008, 874(1-2): 64-76
    [234] Xu L, Tang L J, Cai C B, et al. Chemometric methods for evaluation of chromatographic separation quality from two-way data—a review. Analytica Chimica Acta, 2008, 613(2): 121-134
    [235] Zomeren P V, Metting H J, Coenegracht P M J, et al. Simultaneous resolution of overlapping peaks in high-performance liquid chromatography and micellar electrokinetic chromatography with diode array detection using augmented iterative target transformation factor analysis. Journal of Chromatography A, 2005, 1096(1-2): 165-176
    [236] Gyseghem E V, Dejaegher B, Put R, et al. Evaluation of chemometric techniques to select orthogonal chromatographic systems. Journal of Pharmaceutical and Biomedical Analysis, 2006 41(1): 141-151
    [237] Windig W, Smith W F. Chemometric analysis of complex hyphenated data Improvements of the component detection algorithm. Journal of Chromatography A, 2007, 1158(1-2): 251-257
    [238] Wang Z G, Cheng Z P, Gong F, et al. Inner chromatogram projection (ICP) for resolution of GC-MS data with embedded chromatographic peaks. The analyst,2002, 127(5): 623-628
    [239]国家药典委员会.中国药典,第5版.北京:化学工业出版社,2005, 28-28
    [240]曹凤银,刘文心,温月笙等.川芎化学成分研究.中草药, 1983,14(6): 1-2
    [241]肖永庆,李丽,游小琳等.川芎化学成分研究.中国中药杂志, 2002,27(7): 519-522
    [242]胡益勇,徐晓玉.阿魏酸的化学和药理研究进展.中成药, 2006,28(2): 253-255
    [243]姬生国,王东.薄层扫描法测定降脂通脉口服液中阿魏酸的含量.西北药学杂志, 2002,17(4): 151-152
    [244]黄艳凤,周庆礼,李士炼等.从黑麦麸中提取的阿魏酸的检测.药物生物技术, 2004, 11 (4): 49-51
    [245] Chu Q C, Zhang D L, Zhang H T, el al. Study on Rhizoma Chuanxiong based on capillary electrophoresis with amperometric detection. Chinese Chemical Letters, 2010, 21(2): 217-220
    [246]李秋怡,干国平,王光忠等.气相色谱法测定川芎油中阿魏酸的含量.时珍国医国药, 2007, 18(7): 1687-1688
    [247] Yan R, Li S L, Chung H S, el al. Simultaneous quantification of 12 bioactive components of Ligusticum chuanxiong Hort. by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2005, 37(1): 87-95
    [248] Sheng Y X, Li L, Wang Q, el al. Simultaneous determination of gallic acid, albiflorin, paeoniflorin, ferulicacid and benzoic acid in Si-Wu decoction by high-performance liquid chromatography DAD method. Journal of Pharmaceutical and Biomedical Analysis, 2005, 37(4): 805-810
    [249] Zhang C, Qi M L, Shao Q L, el al. Analysis of the volatile compounds in Ligusticum chuanxiong Hort. using HS-SPME-GC-MS. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44(2): 464-470
    [250]李松林,林鸽,钟凯声,等.应用HPLC-DAD-MS联用技术研究中药川芎指纹图谱.药学学报, 2004, 39(8): 621-626
    [251] Giddings J C. Two-dimensional separations: Concept and promise. Analytical Chemistry, 1984, 56(12): 1258-1270
    [252] Erni F, Frei R W. Two-dimensional column liquid chromatographic technique for resolution of complex mixtures. Journal of Chromatography A, 1978, 149: 561-569
    [253] Bushey M M, Jorgenson J W. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins. Analytical Chemistry. 1990, 62(2): 161-167
    [254]唐涛,张维冰,李彤等.六味地黄丸组分的二维液相色谱分离.分析化学, 35(12): 1767-1771
    [255] Chen X G, Kong L, Su X Y. Separation and identification of compounds in Rhizoma chuanxiong by comprehensive two-dimensional liquid chromatographycoupled to mass spectrometry. Journal of Chromatography A, 2004, 1040(2): 169-178
    [256] Hu L H, Chen X G, Kong L, etal. Improved performance of comprehensive two-dimensional HPLC separation of traditional Chinese medicines by using a silica monolithic column and normalization of peak heights. Journal of Chromatography A, 2005, 1092(2): 191-198
    [257] Nadler B, Coifman R R. The prediction error in CLS and PLS: The importance of feature selection prior to multivariate calibration. Journal of Chemometrics, 2005, 19(2): 107-115
    [258] Chen Z P, Liu Z, Cao Y Z, et al. Efficient way to estimate the optimum number of factors for trilinear decomposition. Analytica Chimica Acta, 2001, 444(2): 295-307
    [259] Xia A L, Wu H L, Zhang Y, et al. A novel efficient way to estimate the chemical rank of high-way data arrays. Analytica Chimica Acta, 2007, 598(1): 1-11
    [260] Malinowski E R. Determination of the number of factors and the experimental error in a data matrix. Analytical Chemistry, 1977, 49(4): 612-617
    [261] Kim Y C, Jordan J A, Nahorniak M L, et al. Photocatalytic degradation-excitation?emission matrix fluorescence for increasing the selectivity of polycyclic aromatic hydrocarbon analyses. Analytical Chemistry, 2005, 77(23): 7679-7686
    [262] Olivieri A C, Computing Sensitivity and selectivity in parallel factor analysis and related multiway techniques: The need for further developments in net analyte signal theory. Analytical Chemistry, 2005, 77(15): 4936-4946
    [263] Arancibia J A, Escandar G M. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta, 2003, 60(6): 1113-1121
    [264] González A G, Herrador M A, Asuero A G. Intra-laboratory testing of method accuracy from recovery assays. Talanta, 1999, 48(3): 729-736
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.