烃类混合物在规整填料内的直接接触传热传质过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先对直接接触传热过程、直接接触冷凝过程和降膜冷凝理论及研究进展进行了总结和介绍。对规整填料内气—液两相流动过程和传热传质行为的研究进展进行了综述,并简介了连续热力学方法及其研究进展。
     针对的原油减压塔换热段波纹板规整填料的体积传热系数缺乏理论预测模型的现状,本文分别建立了三个数学模型并结合了实验研究。本文第二部分建立了减压下气液两相烃类混合物在倾斜通道内直接接触传热传质过程的二维CFD模型。模型中提出了一种新的基于VOF方法的传热传质源项,源项采用“松弛因子×距离热力学平衡的推动力”的形式,在气—液相界面上构建了一个动态的气液两相接近热力学平衡的“内边界条件”。模型中的烃类混合物采用5个虚拟组分来描述。本文还对该模型进行了气液进口边界条件的参数学习。本文第三部分在第二部分所建模型的基础上,建立了基于连续热力学方法的气液直接接触传热传质过程的二维CFD模型。基于连续热力学的汽液平衡关系、传递方程等已有理论,本文提出基于连续热力学方法的气液传热传质源项形式。本文还对该模型进行了气液进口边界条件的参数学习,模拟结果同第二章类似。
     本文第四部分别对常、减压下水-水蒸气系统和柴油系统在规整填料内的直接接触冷凝过程进行了实验研究。实验发现在常、减压下,两种系统中气相冷凝速率均为在填料段下端第一盘填料内最高,在减压操作下,这种趋势更为明显。当汽液温差及喷淋密度均较大时,会发生剧烈的雾化现象从而使填料的局部体积传热系数下降。实验得到的填料局部体积传热系数均比工业减压塔中填料的全局体积传热系数高一个数量级。
     本文第五部分在第三部分所建模型的基础上,建立了整盘及多盘波纹板规整填料内气液直接接触传热传质过程的数学模型,并根据第四部分中柴油系统的实验数据,对该模型进行了初步实验验证。模拟结果与实验结果吻合较好。本文还根据原油减压塔的现场数据,对减压塔顶循段进行了模拟计算。模拟结果显示,气相中烃类混合物的冷凝过程主要发生在填料下方的四盘填料内,并且每盘填料的体积传热系数从填料下端向上依次降低。沿气体流动方向,气相中烃类混合物平均分子量下降,组分变轻。沿液膜流动方向,液膜组成先变轻后变重。从总体上看,润湿面积和不凝气含量是影响气相中烃类混合物冷凝速率的两个重要因素。
In the first part of this dissertation, a brief review of DCH (Direct contact heattransfer), DCC (Direct contact condensation) and falling film condensation, includingtheir related theory and the development was introduced. Published works on theresearch of vapor-liquid two phase flow, heat and mass transfer in structured packingwere also reviewed. In addition, development of CTM (Continuous ThermodynamicsMethod) was introduced.
     In view of the lack of prediction model for the volume heat transfer coefficientin the corrugate plate structured packing of the heat transfer area in a crude oilvacuum distillation tower, three theory models were developed and relatedexperiment researches were carried out. In the second part of this dissertation, a2-DCFD model of direct contact heat and mass transfer of a multicomponent two-phaseflow in an inclined channel at sub-atmospheric pressure was developed, in which anovel source form for heat and mass transfer based on VOF method was presented.While the form of “relaxation parameter×distance to the state of thermodynamicequilibrium” was selected, a “inner boundary condition” close to the state ofthermodynamic equilibrium was formed. Five pseudo-components were used fordescribing the hydrocarbon mixtures. Parameters of gas and liquid inlet boundaryconditions were studied. Based on the model developed in the second part, a2-D CFDmodel of direct contact heat and mass transfer of a two-phase flow coupled with CTMwas developed. According to the existing theory of vapor-liquid equilibrium andtransport equations for CTM, a novel source form base on CTM for heat and masstransfer at gas-liquid interface was presented. Parameters of gas and liquid inletboundary conditions were also studied, and the results were similar to that in thesecond part.
     In the fourth part of this dissertation, direct contact condensation process ofwater-steam and diesel-diesel vapor mixtures in structured packing under atmosphericand vacuum pressure was investigated experimentally. The result showed thatcondensation rate in the first layer was the highest under atmospheric andsub-atmospheric, this trend was more obviously under vacuum condition. When bothtemperature difference and liquid sprayed density were large, serious mistphenomenon occurred which made a lower local volume heat transfer coefficient inthe structured packing. The local volume heat transfer coefficients from the experimental result were an order higher than the total volume heat transfercoefficient in industrial vacuum tower.
     Base on the model in the third section, in the fifth part of this dissertation, amulti-scale model of heat and mass transfer in a structured packing layer or sectionwas developed. Preliminary experimental verification for the model was carried outaccording to the experimental result of diesel-diesel vapor in the fourth section. Thesimulation result of the model was in good agreement with the experimental result. Asimulation focus on the top cycle in the vacuum tower was carried out according tothe industrial data. The result showed that most condensation process of the gashydrocarbon mixtures occurred in the lower four structured packing layers and thevolume heat transfer coefficient of every packing layer decreased in an upwarddirection. Along the direction of gas flow, the molecular weight of the gashydrocarbon mixtures decreased with a lighter composition. Along the direction ofliquid film flow, the film composition was lighter first and then turned heavier. Ingeneral, the area of wet and the mass fraction of non-condensable gas were twoimportant factors which influenced the condensation rate of hydrocarbon mixtures inthe gas phase.
引文
[1] Fair J. R., Designing direct contact coolers/condensers, Chemical Engineering,1972,79(13):91-100.
    [2] Kreith F., The CRC handbook of thermal engineering, Boca Raton, USA: CRCPress LLC,2000: chap.4.21.
    [3] Kreith F., Boehm R., Direct contact heat transfer, New York: Hemisphere Pub,1988.
    [4] Hausbrand, Evaporating condensing and cooling apparartus, Fifth EnglishEdition ed, New York: Van Nostrand,1933.
    [5] Jacobs H. R., Fannir H., Direct contact condensers—a literaure survey,DOE/1523-3. Washington, D.C.: Department of Energy,1977.
    [6] Sideman S., Moalem-Maron D., Direct contact condensation, Advances in HeatTransfer,1982,15:227-281.
    [7] Jacobs H., Direct-contact heat transfer for process technologies, Journal of heattransfer,1988,110:1259.
    [8] Fair J. R., Direct contact gas-liquid heat exchange for energy recovery, Journalof Solar Energy Engineering,1990,112:216.
    [9]南建忠,吴治坚,填料塔内直接接触冷凝实验研究,化学工程,1989,17(6):28-33.
    [10] Bharathan D., Parsons B. K., Althof J. A., Direct-Contact Condensers forOpen-Cycle OTEC Applications. Springfield, VA: Solar Energy ResearchInstitute,1988,(SERI/TR-252-3108).
    [11] De Andres M., Hoo E., Zangrando F., Performance of direct-contact heat andmass exchangers with steam-gas mixtures at subatmospheric pressures,International journal of heat and mass transfer,1996,39(5):965-973.
    [12] Ghiaasiaan S., Wassel A., Lin C., Direct contact condensation in the presence ofnoncondensables in OC-OTEC condensers, Journal of Solar EnergyEngineering,1991,113:228.
    [13] Bontozoglou V., Karabelas A. J., Direct-contact steam condensation withsimultaneous noncondensable gas absorption, AIChE Journal,1995,41(2):241-250.
    [14] Spiegel L., Bomio P., Hunkeler R., Direct heat and mass transfer in structuredpackings, Chemical Engineering and Processing: Process Intensification,1996,35(6):479-485.
    [15] Cai T. J., Kunesh J. Heat transfer performance of large structured packing,AICHE Spring meeting, Houston, Texas,1999.
    [16]高静,直接接触式热质同时同相传递过程研究,[硕士论文],上海:华东理工大学,2003.
    [17]高静,在水汽逆向流动填料塔内热质同时传递过程的研究,华东理工大学学报,2004,30(5):539-544.
    [18]李凭芝,常减压蒸馏装置减压深拔的研究,[硕士论文],天津:天津大学,2003.
    [19]颜世闯,燃料型减压塔减压深拔的研究,[硕士论文],天津:天津大学,2004.
    [20] Takahashi M., Nayak A. K., Kitagawa S., et al., Heat transfer in direct contactcondensation of steam to subcooled water spray, Journal of heat transfer,2001,123:703.
    [21] Waintraub S., Torres G. a. S., Guimaraes F. M. Q., et al. Is it necessary to useinternals in heat transfer section of refinery columns, AICHE annual meeting,San Francisco,2003.
    [22] Waintraub S., Torres G. a. S., Serpa A. L. W., et al. Removing packing fromheat transfer sections of vacuum towers, AICHE Spring National Meeting,Atlanta,2005.
    [23] Gulawani S. S., Joshi J. B., Shah M. S., et al., CFD analysis of flow pattern andheat transfer in direct contact steam condensation, Chemical EngineeringScience,2006,61(16):5204-5220.
    [24] Gulawani S. S., Dahikar S. K., Mathpati C. S., et al., Analysis of flow patternand heat transfer in direct contact condensation, Chemical Engineering Science,2009,64(8):1719-1738.
    [25] Dahikar S. K., Sathe M. J., Joshi J. B., Investigation of flow and temperaturepatterns in direct contact condensation using PIV, PLIF and CFD, ChemicalEngineering Science,2010,65(16):4606-4620.
    [26] Gulawani S. S., Deshpande S. S., Joshi J. B., et al., Submerged Gas Jet into aLiquid Bath: A Review, Industrial&engineering chemistry research,2007,46(10):3188-3218.
    [27] De La Rosa J. C., Escrivá A., Herranz L. E., et al., Review on condensation onthe containment structures, Progress in Nuclear Energy,2009,51(1):32-66.
    [28] Geni S. B., Direct-contact condensation heat transfer on downcommerlesstrays for steam–water system, International journal of heat and mass transfer,2006,49(7-8):1225-1230.
    [29] Geni S. B., Ja imovi B. M., Vladi L. A., Heat transfer rate of direct-contactcondensation on baffle trays, International journal of heat and mass transfer,2008,51(25-26):5772-5776.
    [30] Ma kowiak J. F., Górak A., Kenig E. Y., Modelling of combined direct-contactcondensation and reactive absorption in packed columns, Chemical EngineeringJournal,2009,146(3):362-369.
    [31] Li Y., Klausner J. F., Mei R., et al., Direct contact condensation in packed beds,International journal of heat and mass transfer,2006,49(25-26):4751-4761.
    [32] Li Y., Heat and mass transfer for the diffusion driven desalination process [D],Gainesville, FL: University of florida2006.
    [33] Alnaimat F., Klausner J. F., Mei R., Transient analysis of direct contactevaporation and condensation within packed beds, International journal of heatand mass transfer,2011.
    [34] Nusselt W., Die Oberflachenkondensation des Wasserdamfes, Z Ver Dt Ing,1916,60:541-546,569-575.
    [35] Rohsenow W. M., Hartnet J. P., Cho Y. I., Handbook of heat transfer, New York:McGraw-Hill,1998: chap.14.
    [36] Kutateladze S. S., Fundamentals of heat transfer, New York: Adademic Press,Inc.,1963,303-308.
    [37] Butterworth D., Condensers: Basic heat transfer and fluid flow, in: Kakac S.,Bergles A. E., Mayinger F.(eds), Heat exchangers, New York: HemispherePublishing Corp.,1981,289-314.
    [38] Labuntsov D. A., Heat transfer in film condensation of pure steam on verticalsurfaces and horizontal tubes, Teploenergetika,1957,4(7):72-80.
    [39] Sparrow E. M., Gregg J. L., A boundary-layer treatment of laminar filmcondensation, Journal of heat transfer,1959,81:13-18.
    [40] Chen M. M., An analytical study of laminar film condensation, part I: flat plates,Journal of Heat Transfer,1961,83:48-54.
    [41] Koh J. C. Y., Sparrow E. M., Hartnet J. P., The two phase boundary layer inlaminar film condensation, International journal of heat and mass transfer,1961,2:69-82.
    [42] Rose J. W., Fundamentals of condensation heat transfer: Laminar-filmcondensation, JSME Int J,1988,(31):357-375.
    [43] Rose J. W., Condensation heat transfer, Heat mass transfer,1999,(35):479-485.
    [44] Fujii T., Theory of laminar film condensation, New York: Springer-Verlag,1991.
    [45] Collier J. G., Thome J. R., Convective boiling and condensation, third ed, NewYork: Oxford University Press, Inc.,1996.
    [46] Oosthuizen P. H., Naylor D., An introduction to convective heat transferanalysis, New York: WCB/McGraw-Hill,1999.
    [47] Shang D. Y., Free convection film flows and heat transfer, Berlin, Heidelbergand New York: Springer-Verlag,2006.
    [48] Bird R. B., Stewart W. E., Lightfoot E. N., Transport Phenomena, New York:John Wiley&Sons, Inc,2002.
    [49] Peterson P. F., Schrock V. E., Kageyama T., Diffusion layer theory for turbulentvapor condensation with noncondensable gases, Journal of heat transfer,1993,115(4):998-1003.
    [50] Herranz L. E., Anderson M. H., Corradini M. L., A diffusion layer model forsteam condensation within the AP600containment, Nuclear engineering anddesign,1998,183(1-2):133-150.
    [51] Minkowycz W. J., Sparrow E. M., Condensation heat transfer in the presence ofnoncondensables, interfacial resistance, superheating, variable properties, anddiffusion, Int J Heat Mass Transfer,1966,9:1125-1144.
    [52] Felicione F., Seban R., Laminar film condensation of a vapor containing asoluble, noncondensing gas, International journal of heat and mass transfer,1973,16(8):1601-1610.
    [53] Al-Diwany H., Rose J., Free convection film condensation of steam in thepresence of non-condensing gases, International journal of heat and masstransfer,1973,16(7):1359-1369.
    [54] Karapantsios T., Kostoglou M., Karabelas A., Local condensation rates ofsteam-air mixtures in direct contact with a falling liquid film, Internationaljournal of heat and mass transfer,1995,38(5):779-794.
    [55] Karapantsios T., Karabelas A., Direct-contact condensation in the presence ofnoncondensables over free-falling films with intermittent liquid feed,International journal of heat and mass transfer,1995,38(5):795-805.
    [56] Chin Y. S., Ormiston S. J., Soliman H. M. Numerical Solution of the completetwo-phase model for laminar film condensation with a noncondensable gas,Proc10th Int heat transfer conference, Brighton,1994,287-292.
    [57] Chin Y. S., Ormiston S. J., Soliman H. M., A two-phase boundary-layer modelfor laminar mixed-convection condensation with a noncondensable gas oninclined plates, Heat mass transfer,1998,34:271-277.
    [58] Wang C. Y., Tu C. J., Effects of non-condensable gas on laminar filmcondensation in a vertical tube, International journal of heat and mass transfer,1988,31(11):2339-2345.
    [59] Siddique M., Golay M. W., Kazimi M. S., Theoretical modeling of forcedconvection condensation of steam in a vertical tube in the presence of anoncondensable gas, Nuclear Technology,1994,106(2):202-215.
    [60] Park S., Kim M., Yoo K., Condensation of pure steam and steam-air mixturewith surface waves of condensate film on a vertical wall, International journalof multiphase flow,1996,22(5):893-908.
    [61] Hasanein H., Kazimi M., Golay M., Forced convection in-tube steamcondensation in the presence of noncondensable gases, International journal ofheat and mass transfer,1996,39(13):2625-2639.
    [62] Dehbi A., Guentay S., A model for the performance of a vertical tube condenserin the presence of noncondensable gases, Nuclear engineering and design,1997,177(1-3):41-52.
    [63] No H. C., Park H. S., Non-iterative condensation modeling for steamcondensation with non-condensable gas in a vertical tube, International journalof heat and mass transfer,2002,45(4):845-854.
    [64] Groff M., Ormiston S., Soliman H., Numerical solution of film condensationfrom turbulent flow of vapor-gas mixtures in vertical tubes, Internationaljournal of heat and mass transfer,2007,50(19-20):3899-3912.
    [65] Li J. D., Saraireh M., Thorpe G., Condensation of vapor in the presence ofnon-condensable gas in condensers, International journal of heat and masstransfer,2011,54(17-18):4078-4089.
    [66] Silver L., Gas cooling with aqueous condensation, Transactions of theinstitution of chemical engineers1947,25:30-42.
    [67] Bell K., Ghaly M. Approximate generalized design method formulticomponent/partial condensers, AIChE symposium series,1972,72-79.
    [68] Webb D. R., Design of multicomponent condensers, Heat exchanger designupdate, New York: Begell House Publishers,1995.
    [69] Toor H., Solution of the linearized equations of multicomponent mass transfer: I,AIChE Journal,1964,10(4):448-455.
    [70] Toor H., Solution of the linearized equations of multicomponent mass transfer:II. Matrix methods, AIChE Journal,1964,10(4):460-465.
    [71] Stewart W. E., Prober R., Matrix calculation of multicomponent mass transferin isothermal systems, Industrial&engineering chemistry fundamentals,1964,3(3):224-235.
    [72] Krishna R., Standart G., A multicomponent film model incorporating a generalmatrix method of solution to the Maxwell-Stefan equations, AIChE Journal,1976,22(2):383-389.
    [73] Sardesai R. G., Shock R. A., Butterworth D., Heat and mass transfer inmulticomponent condensation and boiling, Heat transfer engineering,1982,3:104-114.
    [74] Ackermann, Combined heat and mass transfer in the same field at hightemperature and partial pressure differences, Forschung imingenieurwesen-engineering research1937,382(8):1-16.
    [75] Perry R. H., Green D. W., Perry's chemical engineers' handbook, eighth ed:McGraw-Hill New York,2008,5.50-5.57.
    [76] Stephan K., Green C. V., Heat transfer in condensation and boiling, Berlin:Springer-Verlag,1992.
    [77] Taylor R., Krishna R., Multicomponent mass transfer, New York: Wiley&Sons,Inc,1993.
    [78] Hewitt G. F., Shires G. L., Bott T. R., Process Heat Transfer, Boca Raton,Florida: CRC Press, Inc.,1994.
    [79] Kandlikar S. G., Shoji M., Dhir V. K., Handbook of phase change: boiling andcondensation, Philadelphia: Taylor&Francis,1999.
    [80] Taitel Y., Tamir A., Film condensation of multicomponent mixtures,International journal of multiphase flow,1974,1(5):697-714.
    [81] Tamir A., Merchuk J., Verification of a theoretical model for multicomponentcondensation, The chemical engineering journal,1979,17(2):125-139.
    [82] Sage F. E., Estrin J., Film condensation from a ternary mixture of vapors upon avertical surface, International journal of heat and mass transfer,1976,19(3):323-333.
    [83] Webb D. R., Sardesai R. G., Verification of multicomponent mass transfermodels for condensation inside a vertical tube, International journal ofmultiphase flow,1981,7(5):507-520.
    [84] Kotake S., Effects of a small amount of noncondensable gas on filmcondensation of multicomponent mixtures, International journal of heat andmass transfer,1985,28(2):407-414.
    [85] Fujii T., Koyama S., Watabe M., Laminar film condensation ofgravity-controlled convection for ternary vapor mixtures on a flat plate,Transactions of the Japan Society of Mechanical Engineers,1989,510B(55):434-441.
    [86] Koyama S., Goto M., Watabe M., et al., laminar film condensation ofmulticomponent mixtures on a flat plate-second report, gravity controlledcondensation, Reports of institute of advanced material study: KyushuUniversity,1987,1(1):85-89.
    [87] Braun M., Renz U., Multicomponent diffusion interactions during condensationin laminar and turbulent pipe flow, International journal of heat and masstransfer,1996,40(1):131-139.
    [88] Peterson P. F., Diffusion layer modelling for condensation with multicomponentnoncondensable gases, Journal of heat transfer,2000,122(4):716-720.
    [89] Karkoszka K., Anglart H., Multidimensional effects in laminar filmwisecondensation of water vapour in binary and ternary mixtures withnoncondensable gases, Nuclear engineering and design,2008,238(6):1373-1381.
    [90] Kundsen M., The kinetic theory of gases: Some modern aspects, London:Methuen&Co. Ltd.,1934.
    [91] Lide D. R., CRC handbook of chemistry and physics, Boston: CRC Press,1998.
    [92] De Schepper S. C. K., Heynderickx G. J., Marin G. B., Modeling theevaporation of a hydrocarbon feedstock in the convection section of a steamcracker, Computers& Chemical Engineering,2009,33(1):122-132.
    [93] Lee W. H., A pressure iteration scheme for two-phase flow modeling, in:Veziroglu T. N.(eds), Multiphase transport fundamentals, reactor safety,applications, Washington, D. C.: Hemisphere Publishing,1980.
    [94] Wu H. L., Peng X. F., Ye P., et al., Simulation of refrigerant flow boiling inserpentine tubes, International journal of heat and mass transfer,2007,50(5-6):1186-1195.
    [95] Yang Z., Peng X. F., Ye P., Numerical and experimental investigation of twophase flow during boiling in a coiled tube, International journal of heat andmass transfer,2008,51(5-6):1003-1016.
    [96] Kister H., Distillation Design, NewYork: McGraw-Hill Professional,1992.
    [97]毕力特,填料塔,北京:化学工业出版社,1998.
    [98]刘乃鸿,工业塔新型规整填料应用手册,天津:天津大学出版社,1993.
    [99]王树楹,现代填料塔技术指南,北京:中国石化出版社,1998.
    [100]谷芳,规整填料局部流动与传质的计算流体力学研究,[博士学位论文],天津:天津大学,2004.
    [101] Oluji., Van Baak R., Haaring J., et al., Liquid Distribution Properties ofConventional and High Capacity Structured Packings, Chemical EngineeringResearch and Design,2006,84(10):867-874.
    [102] Muzen A., Cassanello M. C., Flow regime transition in a trickle bed withstructured packing examined with conductimetric probes, ChemicalEngineering Science,2007,62(5):1494-1503.
    [103] Alekseenko S. V., Markovich D. M., Evseev A. R., et al., Experimentalinvestigation of liquid distribution over structured packing, AIChE Journal,2008,54(6):1424-1430.
    [104] Luo S. J., Fei W. Y., Song X. Y., et al., Effect of channel opening angle on theperformance of structured packings, Chemical Engineering Journal,2008,144(2):227-234.
    [105] Luo S., Li H., Fei W., et al., Liquid Film Characteristics on Surface ofStructured Packing, Chinese Journal of Chemical Engineering,2009,17(1):47-52.
    [106] Grünig J., Skale T., Kraume M., Liquid flow on a vertical wire in acountercurrent gas flow, Chemical Engineering Journal,2010,164(1):121-131.
    [107] Green C. W., Farone J., Briley J. K., et al., Novel Application of X-rayComputed Tomography: Determination of Gas/Liquid Contact Area and LiquidHoldup in Structured Packing, Industrial&engineering chemistry research,2007,46(17):5734-5753.
    [108] Aferka S., Viva A., Brunazzi E., et al., Tomographic measurement of liquid holdup and effective interfacial area distributions in a column packed with highperformance structured packings, Chemical Engineering Science,2011,66(14):3413-3422.
    [109] Viva A., Aferka S., Brunazzi E., et al., Processing of X-ray tomographic images:A procedure adapted for the analysis of phase distribution in MellapakPlus752.Y and Katapak-SP packings, Flow Measurement and Instrumentation,2011,22(4):279-290.
    [110] Owens S. A., Kossmann A., Farone J., et al., Flow Field Visualization inStructured Packing Using Real Time X-ray Radiography, Industrial&engineering chemistry research,2009,48(7):3606-3618.
    [111] Szulczewska B., Zbicinski I., Górak A., Liquid Flow on Structured Packing:CFD Simulation and Experimental Study, Chemical Engineering&Technology,2003,26(5):580-584.
    [112] Iliuta I., Petre C. F., Larachi F., Hydrodynamic continuum model for two-phaseflow structured-packing-containing columns, Chemical Engineering Science,2004,59(4):879-888.
    [113] Gu F., Liu C. J., Yuan X. G., et al., CFD Simulation of Liquid Film Flow onInclined Plates, Chemical Engineering&Technology,2004,27(10):1099-1104.
    [114] Valluri P., Matar O. K., Hewitt G. F., et al., Thin film flow over structuredpackings at moderate Reynolds numbers, Chemical Engineering Science,2005,60(7):1965-1975.
    [115] Raynal L., Boyer C., Ballaguet J.-P., Liquid Holdup and Pressure DropDetermination in Structured Packing with CFD Simulations, The CanadianJournal of Chemical Engineering,2004,82(5):871-879.
    [116] Hoffmann A., Ausner I., Repke J.-U., et al., Fluid dynamics in multiphasedistillation processes in packed towers, Computers& ChemicalEngineering,2005,29(6):1433-1437.
    [117] Ataki A., Bart H. J., Experimental and CFD Simulation Study for the Wetting ofa Structured Packing Element with Liquids, Chemical Engineering&Technology,2006,29(3):336-347.
    [118] Wang G. Q., Yuan X. G., Yu K. T., A method for calculating effective interfacialarea of structured packed distillation columns under elevated pressures,Chemical Engineering and Processing: Process Intensification,2006,45(8):691-697.
    [119] Raynal L., Royon-Lebeaud A., A multi-scale approach for CFD calculations ofgas–liquid flow within large size column equipped with structured packing,Chemical Engineering Science,2007,62(24):7196-7204.
    [120] Mahr B., Mewes D., CFD Modelling and Calculation of Dynamic Two-PhaseFlow in Columns Equipped with Structured Packing, Chemical EngineeringResearch and Design,2007,85(8):1112-1122.
    [121] Mahr B., Mewes D., Two-phase flow in structured packings: Modeling andcalculation on a macroscopic scale, AIChE Journal,2008,54(3):614-626.
    [122] Khosravi Nikou M. R., Ehsani M. R., Turbulence models application on CFDsimulation of hydrodynamics, heat and mass transfer in a structured packing,International Communications in Heat and Mass Transfer,2008,35(9):1211-1219.
    [123] Fernandes J., Lisboa P. F., Sim es P. C., et al., Application of CFD in the studyof supercritical fluid extraction with structured packing: Wet pressure dropcalculations, The Journal of Supercritical Fluids,2009,50(1):61-68.
    [124] Yu.Ya T., Counter-current gas liquid flow between vertical corrugated plates,Chemical Engineering Science,2011,66(20):4851-4866.
    [125] Shojaee S., Hosseini S. H., Rafati A., et al., Prediction of the Effective Area inStructured Packings by Computational Fluid Dynamics, Industrial&engineering chemistry research,2011,50(18):10833-10842.
    [126] Haelssig J. B., Etemad S. G., Tremblay A. Y., et al., Parametric study forcounter-current vapour–liquid free-surface flow in a narrow channel, TheCanadian Journal of Chemical Engineering,2011,89(4):647-654.
    [127] Lewis W., Whitman W., Principles of Gas Absorption, Industrial&EngineeringChemistry,1924,16(12):1215-1220.
    [128] Higbie R., The rate of absorption of a pure gas into a still liquid during shotperiods of exposure, Transactions of the American Institute of ChemicalEngineers,1935,31:365-383.
    [129] Danckwerts P., Significance of liquid-film coefficients in gas absorption,Industrial&Engineering Chemistry,1951,43(6):1460-1467.
    [130] Rocha J. A., Bravo J. L., James R., Distillation columns containing structuredpackings: a comprehensive model for their performance.2. Mass-transfer model,Industrial&engineering chemistry research,1996,35(5):1660-1667.
    [131] Olujic Z., Kamerbeek A., De Graauw J., A corrugation geometry based modelfor efficiency of structured distillation packing*1,*2, Chemical engineeringand processing,1999,38(4-6):683-695.
    [132] Billet R., Schultes M., Fluid dynamics and mass transfer in the total capacityrange of packed columns up to the flood point, Chemical Engineering&Technology,1995,18(6):371-379.
    [133] Olujic Z., Development of a complete simulation model for predicting thehydraulic and separation performance of distillation columns equipped withstructured packings, Chemical and biochemical engineering quarterly,1997,11(1):31-46.
    [134] Nawrocki P., Xu Z., Chuang K., Mass transfer in structured corrugated packing,The Canadian Journal of Chemical Engineering,1991,69(6):1336-1343.
    [135] Wang G., Yuan X., Yu K., Review of Mass-Transfer Correlations for PackedColumns*, Industrial&engineering chemistry research,2005,44(23):8715-8729.
    [136] Shilkin A., Kenig E. Y., A new approach to fluid separation modelling in thecolumns equipped with structured packings, Chemical Engineering Journal,2005,110(1-3):87-100.
    [137] Shilkin A., Kenig E. Y., Olujic Z., Hydrodynamic-analogy-based model forefficiency of structured packing columns, AIChE Journal,2006,52(9):3055-3066.
    [138] Del Carlo L., Oluji., Paglianti A., Comprehensive Mass Transfer Model forDistillation Columns Equipped with Structured Packings, Industrial&engineering chemistry research,2006,45(23):7967-7976.
    [139] Mori H., Ibuki R., Taguchi K., et al., Three-component distillation usingstructured packings: Performance evaluation and model validation, ChemicalEngineering Science,2006,61(6):1760-1766.
    [140]杨定政,规整填料表面点传质的可视化研究,化学工业与工程,2009,26(2):132-136.
    [141] Oluji., Behrens M., Spiegel L., Experimental Characterization and Modelingof the Performance of a Large-Specific-Area High-Capacity Structured Packing,Industrial&engineering chemistry research,2007,46(3):883-893.
    [142] Haghshenas Fard M., Zivdar M., Rahimi R., et al., CFD simulation of masstransfer efficiency and pressure drop in a structured packed distillation column,Chemical Engineering&Technology,2007,30(7):854-861.
    [143] Zhang W. W., Liu C. J., Yuan X. G., et al., Prediction of Axial Mixing for aStructured Packed Column Using a Two-equation Model, ChemicalEngineering&Technology,2008,31(2):208-214.
    [144] Banerjee R., A numerical study of combined heat and mass transfer in aninclined channel using the VOF multiphase model, Numerical Heat TransferPart A: Applications,2007,52(2):163-183.
    [145] Banerjee R., Turbulent conjugate heat and mass transfer from the surface of abinary mixture of ethanol/iso-octane in a countercurrent stratified two-phaseflow system, International journal of heat and mass transfer,2008,51(25-26):5958-5974.
    [146] Chen J., Liu C., Yuan X., et al., CFD Simulation of Flow and Mass Transfer inStructured Packing Distillation Columns, Chinese Journal of ChemicalEngineering,2009,17(3):381-388.
    [147] Zhu M., Liu C. J., Zhang W. W., et al., Transport Phenomena of Falling LiquidFilm Flow on a Plate with Rectangular Holes, Industrial&engineeringchemistry research,2010,49(22):11724-11731.
    [148] Haelssig J. B., Tremblay A. Y., Thibault J., et al., Direct numerical simulation ofinterphase heat and mass transfer in multicomponent vapour–liquid flows,International journal of heat and mass transfer,2010,53(19-20):3947-3960.
    [149] Ganguli A. A., Kenig E. Y., A CFD-based approach to the interfacial masstransfer at free gas–liquid interfaces, Chemical Engineering Science,2011,66(14):3301-3308.
    [150] Haroun Y., Legendre D., Raynal L., Volume of fluid method for interfacialreactive mass transfer: Application to stable liquid film, Chemical EngineeringScience,2010,65(10):2896-2909.
    [151] Haroun Y., Legendre D., Raynal L., Direct numerical simulation of reactiveabsorption in gas-liquid flow on structured packing using interface capturingmethod, Chemical Engineering Science,2010,65(1):351-356.
    [152] Rahimpour M. R., Momeni H., Paymooni K., et al., A New Model for theCalculation of Height Equivalent to Theoretical Plate in High Pressure ColumnsEquipped with Structured Packing for iC4/nC4Separation, Industrial&engineering chemistry research,2011,50(11):6886-6897.
    [153] Tsai R. E., Seibert A. F., Eldridge R. B., et al., A dimensionless model forpredicting the mass-transfer area of structured packing, AIChE Journal,2011,57(5):1173-1184.
    [154] Rejl F. J., Valenz L., Linek V.,“Profile Method” for the Measurement of kLaand kVa in Distillation Columns. Validation of Rate-Based Distillation ModelsUsing Concentration Profiles Measured along the Column, Industrial&engineering chemistry research,2010,49(9):4383-4398.
    [155] Valenz L., Rejl F. J., Linek V., Gas and Liquid Axial Mixing in the ColumnPacked with Mellapak250Y, Pall Rings25, and Intalox Saddles25under FlowConditions Prevailing in Distillation Columns, Industrial&engineeringchemistry research,2010,49(20):10016-10025.
    [156] Valenz L., Rejl F. J., Linek V., Effect of Gas-and Liquid-Phase Axial Mixing onthe Rate of Mass Transfer in a Pilot-Scale Distillation Column Packed withMellapak250Y, Industrial&engineering chemistry research,2011,50(4):2262-2271.
    [157] Katz D. L., Brown G. G., Vapor Pressure and Vaporization of PetroleumFractions, Industrial&Engineering Chemistry,1933,25(12):1373-1384.
    [158]任丽丽,真组分法石油馏分描述研究及其应用,[硕士论文],青岛:中国石油大学(华东),2007.
    [159] Briano J. G., Glandt E. D., Molecular thermodynamics of continuous mixtures,Fluid Phase Equilibria,1983,14(C):91-102.
    [160] Whitson C. H., CHARACTERIZING HYDROCARBON PLUS FRACTIONS,Society of Petroleum Engineers journal,1983,23(4):683-694.
    [161] Cotterman R. L., Prausnitz J. M., Flash calculations for continuous orsemicontinuous mixtures by use of an equation of state, Industrial&Engineering Chemistry Process Design and Development,1985,24(2):434-443.
    [162] Cotterman R. L., Bender R., Prausnitz J. M., Phase equilibria for mixturescontaining very many components. Development and application of continuousthermodynamics for chemical process design, Industrial&EngineeringChemistry Process Design and Development,1985,24(1):194-203.
    [163] Cotterman R. L., Prausnitz J. M., Application of continuous thermodynamics tonatural-gas mixtures, Revue-Institut Francais du Petrole,1990,45(5):633-643.
    [164] Chou G. F., Prausnitz J. M., Adiabatic flash calculations for continuous orsemicontinuous mixtures using an equation of state, Fluid Phase Equilibria,1986,30(C):75-82.
    [165]胡上序,孙太升, Redlich—Kwong状态方程中参数的连续化及复杂混合物汽液平衡计算,高校化学工程学报,1986,1(1):13-24.
    [166] Peng D. Y., Wu R. S., Batycky J. P., Application of continuous thermodynamicsto oil reservoir fluid systems using an equation of state, AOSTRA Journal ofResearch,1987,3:113-122.
    [167] Shibata S. K., Sandler S. I., Behrens R. A., Phase equilibrium calculations forcontinuous and semicontinuous mixtures, Chemical Engineering Science,1987,42(8):1977-1988.
    [168] Willman B., Teja A. S., Prediction of dew points of semicontinuous natural gasand petroleum mixtures.1. Characterization by use of an effective carbonnumber and ideal solution predictions, Industrial and Engineering ChemistryResearch,1987,26(5):948-952.
    [169]徐忠,气液相平衡连续热力学——半连续混合物的计算,工程热物理学报,1989,10(3):240-242.
    [170]徐忠,用连续热力学方法计算多组分混合物,工程热物理学报,1989,10(1):16-18.
    [171]马建坤,叶汝强,英徐根等,丙酮一油、甲苯一蜡系统的汽液平衡和连续热力学研究,石油学报(石油加工),1991,7(3):92-99.
    [172]江涛,杨光华,连续热力学及其在复杂混合物相平衡计算中的应用,石油大学学报(自然科学版),1992,16(2):115-120.
    [173]张国政,英徐根,叶汝强等,糠醛一油, N—甲基一2—毗咯烷酮一油汽液平衡的连续热力学研究,华东理工大学学报,1996,22(2):193-199.
    [174]张成海,李承烈,利用状态方程计算石油馏分相平衡的连续热力学方法,石油学报(石油加工),1996,12(2):119-127.
    [175]马林,方文军,宗汉兴等,连续热力学方法计算石油馏分饱和蒸气压,炼油设计,1998,28(5):41-43.
    [176]倪力军,张立国,倪进方,石油馏分的组成预测初探,石油学报(石油加工),1998,14(2):81-85.
    [177]蔡钧,英徐根,刘洪来等,多分散流体混合物的临界性质,化工学报,2000,51(1):90-95.
    [178] Tamim J., Hallett W. L. H., A continuous thermodynamics model formulticomponent droplet vaporization, Chemical Engineering Science,1995,50(18):2933-2942.
    [179] Lippert A. M., Reitz R. D., Modeling of multicomponent fuels using continuousdistributions with application to droplet evaporation and sprays, SAE paper,1997,972882.
    [180] Hallett W. L. H., A simple model for the vaporization of droplets with largenumbers of components, Combustion and flame,2000,121(1-2):334-344.
    [181] Zhu G. S., Reitz R. D., A model for high-pressure vaporization of droplets ofcomplex liquid mixtures using continuous thermodynamics, Internationaljournal of heat and mass transfer,2002,45(3):495-507.
    [182] Abdel-Qader Z., Hallett W. L. H., The role of liquid mixing in evaporation ofcomplex multicomponent mixtures: modelling using continuousthermodynamics, Chemical Engineering Science,2005,60(6):1629-1640.
    [183] Hallett W., Clark N., A model for the evaporation of biomass pyrolysis oildroplets, Fuel,2006,85(4):532-544.
    [184] Banerjee R., Isaac K., A study to determine vapor generation from the surface ofgasoline flowing in an inclined channel using a continuous thermodynamicsapproach, Numerical Heat Transfer Part A: Applications,2006,50(8):705-729.
    [185] Lage P. L. C., The quadrature method of moments for continuousthermodynamics, Computers&chemical engineering,2007,31(7):782-799.
    [186] Baer U., Browarzik D., Kehlen H., Thermodynamics of semicontinuousmixtures using equations of state with group contributions, Fluid PhaseEquilibria,1997,127(1-2):29-44.
    [187] Zhang L., Kong S. C., Modeling of multi-component fuel vaporization andcombustion for gasoline and diesel spray, Chemical Engineering Science,2009,64(16):3688-3696.
    [188] Lee C. F., Cheng W. L., Wang D., Finite diffusion wall film evaporation modelfor engine simulations using continuous thermodynamics, Proceedings of theCombustion Institute,2009,32(2):2801-2808.
    [189] Ra Y., Reitz R. D., A vaporization model for discrete multi-component fuelsprays, International journal of multiphase flow,2009,35(2):101-117.
    [190] Hallett W., Beauchamp-Kiss S., Evaporation of single droplets of ethanol-fueloil mixtures, Fuel,2010,89(9):2496-2504.
    [191] Zhang L., Kong S. C., High-pressure vaporization modeling ofmulti-component petroleum-biofuel mixtures under engine conditions,Combustion and flame,2011.
    [192] Rivard E., Brüggemann D., Numerical investigation of semi-continuous mixturedroplet vaporization at low temperature, Chemical Engineering Science,2010,65(18):5137-5145.
    [193]李雪梅,纯梁馏分油物性的预测研究,[硕士学位论文],北京:中国石油大学,2009.
    [194]程文龙,谢鲲,赵锐等,生物油气液相平衡与比热容研究,工程热物理学报,2010,31(1):24-27.
    [195] Hirt C. W., Nichols B. D., Volume of fluid (VOF) method for the dynamics offree boundaries, Journal of Computational Physics,1981,39(1):201-225.
    [196] Brackbill J., Kothe D. B., Zemach C., A continuum method for modelingsurface tension, Journal of Computational Physics,1992,100(2):335-354.
    [197] Perry R. H., Green D. W., Perry's chemical engineer's handbook, Eighth ed.,New York: McGraw-Hill,2008.
    [198] Menter F. R., Two-equation eddy-viscosity turbulence models for engineeringapplications, AIAA journal,1994,32(8):1598-1605.
    [199] Egorov Y., Contact condensation in stratified steam-water flow,EVOL-ECORDA-D,2004.
    [200] ProII Reference Manual,601S. Valencia Ave., Brea, California92621, USA:Simulation Science Inc.,2008.
    [201] Daubert T. E., Danner R. P., API Technical Data Book–Petroleum Refining,sixth ed., Washington, D. C.: American Petroleum Institute (API),1997.
    [202] Ansys Fluent Theory Guide, Release13.0,2010.
    [203] Lakehal D., Fulgosi M., Banerjee S., et al., Turbulence and heat exchange incondensing vapor-liquid flow, Physics of Fluids,2008,20:065101.
    [204] Ratzsch M., Kehlen H., Continuous thermodynamics of complex mixtures,Fluid Phase Equilibria,1983,14:225-234.
    [205] Poling B. E., Prausnitz J. M., John P. O. C., The properties of gases and liquids,New York: McGraw-Hill,2001.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.