解脂耶氏酵母脂肪酶Lip1基因的密码子优化及功能表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酶(Lipase,EC 3.1.1.3)即三酰甘油酯酰基水解酶,广泛存在于各种动植物和微生物中,是一类具有多种催化能力的酶,可以催化三酰甘油酯及其他一些水不溶性酯类的水解、酯化、醇解、酯交换以及酯类的逆向合成反应等。广泛应用于油脂加工、食品、纺织、医药、日化、皮革脱脂、洗涤以及生物传感器等行业,受到广泛的关注。但目前脂肪酶成本较高,因而开发高效、低成本的脂肪酶成为研究的焦点。本论文以解脂耶氏酵母(Yarrowia lipolytica)为出发菌株,根据NCBI中报道的脂肪酶家族基因序列,扩增其脂肪酶基因,并首次实现脂肪酶基因lip1在巴斯德毕赤酵母GS115(Pichia pastoris)中的功能性表达。具体工作和研究结果如下:
     1.根据GeneBank中已经提交的Y. lipolytica脂肪酶家族基因序列,运用生物信息学设计引物,以Y. lipolytica基因组DNA为模板,扩增脂肪酶基因lip1-lip8,其中除lip2、lip7、lip8之外的其它脂肪酶基因的表达,到目前为止均未见文献报道。本论文首次实现了脂肪酶基因lip1在P. pastoris GS115中的功能性表达,丰富了脂肪酶基因资源。
     2.由于P. pastoris表达系统存在密码子偏好性,而脂肪酶基因lip1中含有P. pastoris低频率使用密码子,因而运用重叠延伸PCR(Overlap extension PCR)技术对Lip1的8个氨基酸位点进行优化,改造成为P. pastoris偏爱性密码子,实现了Lip1的高效表达。根据生物信息学预测,Lip1不含有信号肽,是一种细胞内表达脂肪酶。因此,本论文构建了含有GAP强启动子的组成型表达载体pGAP9K,使Lip1实现胞外分泌表达,为进一步研究该脂肪酶的性质奠定技术基础。
     3.将原始脂肪酶基因lip1以及经密码子优化后的基因Mlip1分别克隆至诱导型分泌载体pPIC9K和新构建的组成型分泌载体pGAP9K上,构建了4个表达质粒:pPIC9K-lip1、pPIC9K-Mlip1、pGAP9K-lip1和pGAP9K-Mlip1,表达载体电转至P.pastoris GS115中进行功能性表达,发酵测酶活,结果表明:密码子优化后基因表达水平相对于出发基因有较大提高,且优化后组成型表达水解酶活达8.07 U/mL,明显优于诱导型表达。同时,通过SDS-PAGE电泳验证脂肪酶分子量大小,在53 kDa处有一特异条带。对酵母工程菌GS115-pGAP9K-Mlip1发酵条件进行初步优化,确定其最优发酵培养基,优化结果为最适YP(酵母膏+蛋白胨)含量为3(YP),最适碳源为油酸。
     4.对Lip1酶学性质进行了初步研究,结果表明:Lip1对短链的对硝基苯酚酯有较强的水解活性,其最适底物为pNPB(C4),最适pH为8.5,最适温度为45℃。在60℃的恒温水浴条件下温浴2 h后残余酶活为35.88%;金属离子对脂肪酶Lip1活力影响实验表明,Mg~(2+)、Fe~(2+)和Zn~(2+)对其活力有一定的激活作用,而Cu~(2+)、Ba~(2+)、Mn~(2+)和EDTA则抑制其水解酶活力。此外,运用生物信息学预测和分析脂肪酶Lip1的一级结构,二级结构和三级结构,为下一步对Lip1进行蛋白质纯化及结构生物学研究奠定了技术基础。
Triacylglycerol hydrolases or lipases (EC3.1.1.3.), exists widely in various plant,animal and microorganisms, can catalyse hydrolysis, esterification, alcoholysis, transesterification and ester of reverse synthesis reactions, etc. Widely used in oil processing, foodstuff, textile, pharmaceutical, cosmetic, leather degreasing, washing and biological sensors, etc, has attracted a lot of attention. However, the catalyst---lipases have high price owing to its diffcult derivation. Therefore, the development of high efficiently expression lipase gene resources have become one of the research hot spots. In this paper, by following the information in NCBI, the lipase gene family lip1 - lip8 of Yarrowia lipolytica were amplified, and lip1 was successfully realized functional expression in Pichia pastoris for the first time. The main work and results were as follows:
     1. According to the lipase gene sequences of Y. lipolytica submitted to GeneBank, by applying bioinformatics to design primers, using Y. lipolytica genomic DNA as template, lipase genes lip1-lip8 were amplified. Axcept lip2、lip7 and lip8, there were no report on expression of other lipases so far. In this paper, we first realized functional expression of lip1 in P. pastoris GS115, which greatly enriched lipase gene resources.
     2. Because P. pastoris expression system exits codon bias, while lip1 contains low frequency usage codons, the eight amino acid sites of lip1 were optimized using overlap extensions PCR technology for the first time. The optimized gene Mlip1 was realized efficiently expression in P. pastoris. According to the bioinformatics analysis, lip1 contained no signal peptide, suggesting it is an intracellular lipase. Thus, in this paper we constructed constitutive expression vector pGAP9K with a strong promoter GAP so as to realize exocellular expression of lip1, which layed a solid foundation for further research of this lipase.
     3. Four expression vectors: pPIC9K-lip1、pPIC9K-Mlip1、pGAP9K-lip1 and pGAP9K-Mlip1 were built, and then were electrotransformated into P. pastoris GS115 to implement functional expression of lip1. High copy transformation recombinants were gained through lipase activity functional verification and G418 resistances screening. After shake flask fermentation, PNP ester was used as substrate for assay the activities of the supernatant. The results showed that the optimized gene had a higher expression level than the original one, and activity of the constitutive expression was superior to that of the inducible expression. Fermentation conditions of engineering strain GS115-pGAP9K-Mlip1 was preliminarily optimized the optimal YP (yeast extract + tryptone) content is 3 (YP), and the optimal carbon source is oleic acid.
     4. Preliminary analysis showed that the optimum substrate of Lip1 was p-nitrophenyl butyrate (C4), the optimal temperature and pH was 45℃and 8.5, respectively. After warm bath for 2 h at a constant temperature of 60℃, the residual activity of the lipase was 35.88%. Metal ion had significant influence on the lipase. Mg~(2+), Fe~(2+) and Zn~(2+) could stimulate lipase, while Cu~(2+)、Ba~(2+)、Mn~(2+) and EDTA inhibit its hydrolysis activity. In addition, the primary, secondary and tertiary structures of Lip1 were predicted and analyzed through bioinformatics, which provided a theoretical basis for the following study on protein purification and structure biology of Lip1.
引文
[1] Knez Z, Laudani C G, Habulin M, et al. Exploiting the pressure effect on lipase-catalyzed wax ester synthesis in dense carbon dioxide.[J]. Biotechnology Bioengineering, 2007, 97(6): 1366-1375.
    [2] Low C T, Mohamad R, Tan C P, et al. Lipase-catalyzed production of medium-chain triacylglycerols from palm kernel oil distillate: Optimization using response surface methodology[J]. European Journal of Lipid Science and Technology, 2007, 109(2): 107-119.
    [3] Rogalska E, Douchet I, Verger R. Microbial lipases: structures, function and industrial applications.[J]. Biochemical Society Transactions, 1997, 25(1): 161-164.
    [4] Adamczak M, Bornscheuer U T, Lstrok W, et al. The application of biotechnological methods for the synthesis of biodiesel[J]. European Journal of Lipid Science and Technology, 2009, 111(8): 800-813.
    [5] Tan T, Lu J, Nie K, et al. Biodiesel production with immobilized lipase: A review.[J]. Biotechnology Advances, 2010, 28(5): 628-634.
    [6] Tursi J M, Phair P G, Barnes G L. Plant sources of acid stable lipases: potential therapy for cystic fibrosis.[J]. Journal of Paediatrics and Child Health, 1994, 30(6): 539-543.
    [7] Ellis L A, Hamosh M. Bile salt stimulated lipase: comparative studies in ferret milk and lactating mammary gland.[J]. Lipids, 1992, 27(11): 917-922.
    [8] Verma M L, Azmi W, Kanwar S S. Microbial lipases: at the interface of aqueous and non-aqueous media. A review.[J]. Acta Microbiologica et Immunologica Hungarica, 2008, 55(3): 265-294.
    [9]朱俊任,郑旭煦,李强,等.不同来源脂肪酶催化制备生物柴油的研究进展[J].中国农学通报, 2010, 26(4): 318-322.
    [10] Bancerz R, Ginalska G. A novel thermostable lipase from basidiomycete Bjerkandera adusta R59: characterisation and esterification studies.[J]. Journal of Industrial Microbiology and Biotechnology, 2007, 34(8): 553-560.
    [11] Hermansyah H, Wijanarko A, Kubo M, et al. Rigorous kinetic model considering positional specificity of lipase for enzymatic stepwise hydrolysis of triolein in biphasic oil-water system.[J]. Bioprocess and Biosystems Engineering, 2009.
    [12] Ahmed E H, Raghavendra T, Madamwar D. A thermostable alkaline lipase from a local isolate Bacillus subtilis EH 37: characterization, partial purification, and application in organic synthesis.[J]. Applied Biochemistry and Biotechnology, 2010, 160(7): 2102-2113.
    [13] Fischer B E, Kleber H P. Isolation and characterization of the extracellular lipase of Acinetobacter calcoaceticus 69 V.[J]. Journal of Basic Microbiology, 1987, 27(8): 427-432.
    [14] Artyukhov V G, Kovaleva T A, Kozhokina O M, et al. Computer-aided analysis of spatial structure of some hydrolytic enzymes.[J]. Biochemistry (Moscow), 2005, 70(10): 1086-1094.
    [15] Ogino H, Hiroshima S, Hirose S, et al. Cloning, expression and characterization of a lipase gene (lip3) from Pseudomonas aeruginosa LST-03.[J]. Molecular Genetics & Genomics, 2004, 271(2): 189-196.
    [16] Jaeger K E, Dijkstra B W, Reetz M T. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases.[J]. Annual Review of Microbiology, 1999, 53: 315-351.
    [17] Xu X. Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review[J]. European Journal of Lipid Science and Technology, 2000, 102(4):287-303.
    [18]周晓露,宗敏华.促进非水相酶反应的研究进展[J].分子催化, 2000, 14(6): 452-460.
    [19] Krishna S H. Developments and trends in enzyme catalysis in nonconventional media.[J]. Biotechnology Advances, 2002, 20(3-4): 239-267.
    [20] Dordick J S. Designing enzymes for use in organic solvents.[J]. Biotechnology Progress, 1992, 8(4): 259-267.
    [21]阎金勇,闫云君.脂肪酶非水相催化作用[J].生命的化学, 2008, 28(3): 268-271.
    [22] Mine Y, Fukunaga K, Yoshimoto M, et al. Modification of lipases with poly(ethylene glycol) and poly(oxyethylene) detergents and their catalytic activities in organic solvents.[J]. Journal of Bioscience and Bioengineering, 2001, 92(6): 539-543.
    [23] Krishna S H. Developments and trends in enzyme catalysis in nonconventional media.[J]. Biotechnology Advances, 2002, 20(3-4): 239-267.
    [24] Halling P J. Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis.[J]. Enzyme and Microbial Technology, 1994, 16(3): 178-206.
    [25] Chang C S, Wu P L. Synthesis of triglycerides of phenylalkanoic acids by lipase-catalyzed esterification in a solvent-free system.[J]. Journal of Biotechnology, 2007, 127(4): 694-702.
    [26]黄锡荣,李越中,等.微乳液凝胶及其固定化脂肪酶研究进展[J].微生物学杂志, 2001, 21(2): 33-35.
    [27] Oldfield C. Enzymes in water-in-oil microemulsions ('reversed micelles'): principles and applications.[J]. Biotechnology & Genetic Engineering Reviews, 1994, 12: 255-327.
    [28] Lin R, Tavlarides L L. Determination of diffusion coefficients by supercritical fluidchromatography: Effects of mobile phase mean velocity and column orientation.[J]. Journal of Chromatography A, 2010, 1217(26): 4454-4462.
    [29] Liu K J, Huang Y R. Lipase-catalyzed production of a bioactive terpene ester in supercritical carbon dioxide.[J]. Journal of Biotechnology, 2010, 146(4): 215-220.
    [30] Wu X Y, Linko Y. An investigation of crude lipases for hydrolysis, esterification,and transesterification[J]. Enzyme and Microbial Technology, 1996, 19(3): 226-231.
    [31] Powell L W. Developments in immobilized-enzyme technology.[J]. Biotechnology & Genetic Engineering Reviews, 1984, 2: 409-438.
    [32]陈秀琳.脂肪酶固定化的研究概况[J].海峡药学, 2007, 19(12): 114-116.
    [33] Jaeger K E, Ransac S, Dijkstra B W, et al. Bacterial lipases.[J]. FEMS Microbiology Reviews, 1994, 15(1): 29-63.
    [34] Ranganathan S V, Narasimhan S L, Muthukumar K. An overview of enzymatic production of biodiesel.[J]. Bioresource Technology, 2008, 99(10): 3975-3981.
    [35]曾淑华,周位,杨江科,等.固定化脂肪酶催化大豆油制备生物柴油[J].食品与生物技术学报, 2007, 26(3): 75-79.
    [36] Gao Y, Tan T W, Nie K L, et al. Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media[J]. Sheng Wu Gong Cheng Xue Bao, 2006, 22(1): 114-118.
    [37]刘云,商伟胜,辛红玲,等.乌桕梓油酶法制备生物柴油的研究[J].应用化工, 2008, 37(9): 977-980.
    [38] Samukawa T, Kaieda M, Matsumoto T, et al. Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil.[J]. Journal of Bioscience and Bioengineering, 2000, 90(2): 180-183.
    [39] Watanabe Y, Shimada Y, Sugihara A, et al. Stepwise ethanolysis of tuna oil using immobilized Candida antarctica lipase.[J]. Journal of Bioscience and Bioengineering,1999, 88(6): 622-626.
    [40] Laboret F, Perraud R. Lipase-catalyzed production of short-chain acids terpenyl esters of interest to the food industry.[J]. Applied Biochemistry and Biotechnology, 1999, 82(3): 185-198.
    [41] Seitz E W. Industrial application of microbial lipases: a review.[J]. Journal of the American Oil Chemists' Society, 1974, 51(2): 12-16.
    [42] Weber H, Barth G. Nonconventional yeasts: their genetics and biotechnological applications.[J]. Critical Reviews in Biotechnology, 1988, 7(4): 281-337.
    [43]罗玉萍,李思光.一种具有应用价值的基因工程表达系统[J].微生物学通报, 1999, 26(5): 368-370.
    [44] Madzak C, Gaillardin C, Beckerich J M. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review.[J]. Journal of Biotechnology, 2004, 109(1-2): 63-81.
    [45] Pignede G, Wang H, Fudalej F, et al. Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica.[J]. The Journal of Bacteriology, 2000, 182(10): 2802-2810.
    [46] Yu M, Lange S, Richter S, et al. High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization.[J]. Protein Expression and Purification, 2007, 53(2): 255-263.
    [47] Cancino M, Bauchart P, Sandoval G, et al. A variant of Yarrowia lipolytica lipase with improved activity and enantioselectivity for resolution of 2-bromo-arylacetic acid esters[J]. Tetrahedron: Asymmetry, 2008, 19(2008): 1608-1612.
    [48]刘文山,徐莉,赵鹤云,等.利用a凝集素在酿酒酵母表面展示解脂耶氏酵母脂肪酶Lip2[J].微生物学报, 2008, 48(11): 1543-1548.
    [49] Fickers P, Fudalej F, Le Dall M T, et al. Identification and characterisation of LIP7and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica.[J]. Fungal Genetics and Biology, 2005, 42(3): 264-274.
    [50] Redondo O, Herrero A, Bello J F, et al. Comparative kinetic study of lipases A and B from Candida rugosa in the hydrolysis of lipid p-nitrophenyl esters in mixed micelles with Triton X-100.[J]. Biochimica et Biophysica Acta, 1995, 1243(1): 15-24.
    [51] Zhou J, Liu W J, Peng S W, et al. Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability.[J]. The Journal of Virology, 1999, 73(6): 4972-4982.
    [52] Deml L, Bojak A, Steck S, et al. Multiple effects of codon usage optimization on expression and immunogenicity of DNA candidate vaccines encoding the human immunodeficiency virus type 1 Gag protein.[J]. The Journal of Virology, 2001, 75(22): 10991-11001.
    [53] Hentze M W. Determinants and regulation of cytoplasmic mRNA stability in eukaryotic cells.[J]. Biochimica et Biophysica Acta, 1991, 1090(3): 281-292.
    [54] Xu L, Jiang X Q, Yang J K, et al. Cloning of a novel lipase gene, lipJ08, from Candida rugosa and expression in Pichia pastoris by codon optimization.[J]. Biotechnology Letters, 2010, 32(2): 269-276.
    [55] Cid-Arregui A, Juarez V, Zur H H. A synthetic E7 gene of human papillomavirus type 16 that yields enhanced expression of the protein in mammalian cells and is useful for DNA immunization studies.[J]. The Journal of Virology, 2003, 77(8): 4928-4937.
    [56]姚斌,张春义.产植酸酶的黑曲霉菌株筛选及其植酸酶基因克隆[J].农业生物技术学报, 1998, 6(1): 1-6.
    [57] Kim C H, Oh Y, Lee T H. Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells.[J]. Gene, 1997, 199(1-2): 293-301.
    [58]王丽,杨文理,龚舒,等.用重叠延伸PCR技术纠正人工合成乙型肝炎病毒核心抗原基因中的突变[J].泸州医学院学报, 2010(1): 25-27.
    [59]熊爱生,姚泉洪,彭日荷,等.透明颤菌血红蛋白(VHb)基因合成及原核生物中的效应[J].上海农业学报, 2000, 16(3): 19-24.
    [60] Lee G C, Lee L C, Sava V, et al. Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris.[J]. Biochemical Journal, 2002, 366(Pt 2): 603-611.
    [61] Pauwels P J, Wurch T, Lestienne F. Optimisation of overlap extension PCR-based mutagenesis of a GC-rich DNA template application to the humanα2C-adrenoceptor cDNA[J]. Biotechnology Letters, 2000, 22: 1603-1609.
    [62] Rouwendal G J, Mendes O, Wolbert E J, et al. Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage.[J]. Plant Molecular Biology, 1997, 33(6): 989-999.
    [63] Cereghino J L, Cregg J M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris.[J]. FEMS Microbiology Reviews, 2000, 24(1): 45-66.
    [64] Cregg J M, Barringer K J, Hessler A Y, et al. Pichia pastoris as a host system for transformations.[J]. Molecular and Cellular Biology, 1985, 5(12): 3376-3385.
    [65] Hasslacher M, Schall M, Hayn M, et al. High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts.[J]. Protein Expression and Purification, 1997, 11(1): 61-71.
    [66] Cregg J M, Cereghino J L, Shi J, et al. Recombinant protein expression in Pichia pastoris.[J]. Molecular Biotechnology, 2000, 16(1): 23-52.
    [67] Tschopp J F, Brust P F, Cregg J M, et al. Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris.[J]. Nucleic Acids Research, 1987,15(9): 3859-3876.
    [68] Waterham H R, Digan M E, Koutz P J, et al. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter.[J]. Gene, 1997, 186(1): 37-44.
    [69] Zhang A L, Zhang T Y, Luo J X, et al. Constitutive expression of human angiostatin in Pichia pastoris by high-density cell culture.[J]. Journal of Industrial Microbiology and Biotechnology, 2007, 34(2): 117-122.
    [70] Shen S, Sulter G, Jeffries T W, et al. A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris.[J]. Gene, 1998, 216(1): 93-102.
    [71] Liu H, Tan X, Russell K A, et al. PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import.[J]. The Journal of Biological Chemistry, 1995, 270(18): 10940-10951.
    [72] Sears I B, O'Connor J, Rossanese O W, et al. A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris.[J]. Yeast, 1998, 14(8): 783-790.
    [73] Li P, Gao X G, Arellano R O, et al. Glycosylated and phosphorylated proteins--expression in yeast and oocytes of Xenopus: prospects and challenges--relevance to expression of thermostable proteins.[J]. Protein Expression and Purification, 2001, 22(3): 369-380.
    [74] Raemaekers R J, de Muro L, Gatehouse J A, et al. Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide.[J]. European Journal of Biochemistry, 1999, 265(1): 394-403.
    [75] Daly R, Hearn M T. Expression of heterologous proteins in Pichia pastoris: a usefulexperimental tool in protein engineering and production.[J]. Journal of Molecular Recognition, 2005, 18(2): 119-138.
    [76]梁伟锋,张朝春,杨希才.一种多拷贝毕赤酵母表达载体的构建及人脑源性神经营养因子的表达[J].微生物学报, 2005, 45(1): 34-38.
    [77] Shi Q Q, Hao Y Y, Wu K H, et al. The effect of induction temperature on aggregation of consensus interferon-alpha expressed by Pichia pastoris[J]. Chinese Journal of Biotechnology, 2006, 22(2): 311-315.
    [78] Liu W, Xu L, Zhao H, et al. [Cell Surface display of Yarrowia lipolytica lipase Lip2 in Saccharomyces cerevisiae with a-agglutinin as carrier protein].[J]. Wei Sheng Wu Xue Bao, 2008, 48(11): 1543-1548.
    [79] Bordes F, Barbe S, Escalier P, et al. Exploring the conformational states and rearrangements of Yarrowia lipolytica Lipase.[J]. Biophysical Journal, 2010, 99(7): 2225-2234.
    [80] Jiang Z B, Song H T, Gupta N, et al. Cell surface display of functionally active lipases from Yarrowia lipolytica in Pichia pastoris.[J]. Protein Expression and Purification, 2007, 56(1): 35-39.
    [81]萨姆布鲁克J,拉塞尔D.W.分子克隆实验指南[M].第三版.北京:科学出版社, 2002.
    [82] Aiyar A, Xiang Y, Leis J. Site-directed mutagenesis using overlap extension PCR.[J]. Methods Mol Biol. 1996, 57: 177-191.
    [83] Kordel M, Hofmann B, Schomburg D, et al. Extracellular lipase of Pseudomonas sp. strain ATCC 21808: purification, characterization, crystallization, and preliminary X-ray diffraction data.[J]. J Bacteriol. 1991, 173(15): 4836-4841.
    [84] Hu S, Li L, Qiao J, et al. Codon optimization, expression, and characterization of an internalizing anti-ErbB2 single-chain antibody in Pichia pastoris.[J]. Protein ExprPurif. 2006, 47(1): 249-257.
    [85] Teng D, Fan Y, Yang Y L, et al. Codon optimization of Bacillus licheniformis beta-1,3-1,4-glucanase gene and its expression in Pichia pastoris.[J]. Appl Microbiol Biotechnol. 2007, 74(5): 1074-1083.
    [86]张爱联,罗进贤,张添元,等.用GAP启动子在毕节酵母中组成型表达人血管抑制素[J].遗传学报. 2004, 31(6): 552-557.
    [87]舒正玉,杨江科,闫云君.黑曲霉F044脂肪酶的分离纯化及酶学性质研究[J].生物工程学报. 2007, 23(1): 96-100.
    [88]舒正玉,段漠杰,闫云君,等.黑曲霉脂肪酶分子结构预测[J].生物技术通报. 2009(4): 36-39.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.