微弧氧化制备WO_3/TiO_2复合膜的结构与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于WO3与TiO2能级之间良好的匹配性,将WO3与TiO2复合不仅可以促进光生载流子的分离,还能拓展其光响应范围,从而提高光催化活性,在环境污染治理领域具有广阔的应用前景。但是,当前研究的WO3/TiO2复合半导体多是粉末形式,回收再利用困难。将WO3/TiO2复合半导体固定为膜层形式能解决回收难题,而现有的WO3/TiO2复合膜层制备技术,如磁控溅射和溶胶-凝胶等,存在着设备复杂、工艺苛刻,或膜层与基体结合力差等不足。因此,制备负载牢固、高催化活性的WO3/TiO2复合膜层成为光催化技术领域的研究重点之一。
     本文基于开发半导体复合TiO2光催化剂的新型负载化和改性技术,采用微弧氧化工艺,首次在钨酸钠电解液中制备了WO3/TiO2复合膜层,系统地研究了电解液成分和电源参数对膜层结构与光催化性能的影响;考察了污染物溶液pH值、无机阴离子、污染物初始浓度和阳极偏压等对膜层光催化性能的影响;通过改变电解液成分,制备了可见光响应的WO3/TiO2复合膜层,研究了该膜层的结构与可见光催化性能,探讨了其可见光响应机理,取得了如下结果:
     以工业纯钛为基体,分别在碱性的磷酸钠和钨酸钠电解液中制备了微弧氧化膜,利用XRD、SEM和EDX表征膜层的结构。结果表明,磷酸钠电解液中制备的膜层(TiO2膜)由锐钛矿和金红石混合晶相组成;而钨酸钠电解液中制备的膜层(WO3/TiO2膜)由锐钛矿、金红石和WO3组成,形成了WO3与TiO2的复合膜。两种膜层表面均为粗糙多孔结构,但WO3/TiO2膜的孔洞数量更多,分布更均匀,具有更大的比表面积。荧光光谱分析发现,WO3/TiO2膜的发光强度比TiO2膜的小,光生电子-空穴之间的分离效果更好。与TiO2膜相比,WO3/TiO2膜的表面酸度更高,吸附有机物和羟基的能力更强。紫外光照射120 min, WO3/TiO2膜能降解85%的罗丹明,而TiO2膜只降解23%的罗丹明。
     研究了TiO2膜和WO3/TiO2膜光催化降解罗丹明的动力学规律。TiO2膜和WO3/TiO2膜对罗丹明的降解过程符合拟一级反应动力学,动力学方程分别为ln(C0/Ct)=0.0023 t+0.029和ln(C0/Ct)=0.016t+0.1,其表观速率常数分别为0.0023和0.016。
     研究了电解液组成和电源参数对WO3/TiO2膜结构与光催化性能的影响。结果表明,随着Na2WO4浓度的增加,膜层中W含量增加,W03的结晶度提高,膜层表面酸度增加,但过量Na2WO4引起剧烈的微弧放电会破坏膜层的表面结构,降低光催化活性。优化后的电解液组成为14.7 g/L Na2WO4+2 g/L NaF+2 g/L NaOH.当电源参数为正压400 V、负压-30 V、频率700 Hz、占空比0.3、处理时间5 min时,制备的WO3/TiO2膜的光催化活性最高。
     以甲基橙为模型污染物,研究了溶液pH值、无机阴离子、甲基橙初始浓度对WO3/TiO2膜光催化性能的影响。中性溶液中甲基橙降解率最低,酸性或碱性溶液中其降解率增加。NO3-、PO43-、HCO3-均促进甲基橙的降解,NO3-的促进效果最显著,这是由于NO3-在大于290 nm的紫外光照射下能产生OH·,使甲基橙的降解主要发生在溶液中而不是催化剂表面。SO42-、Cl-则通过竞争吸附和俘获OH-,抑制甲基橙的降解。随着甲基橙初始浓度的增加,其降解率减小。
     研究了阳极偏压对WO3/TiO2膜降解甲基橙的影响。甲基橙降解率随阳极偏压增加而增大,当阳极偏压为4V时,甲基橙降解率比未加偏压时提高了78.5%。
     在酸性钨酸钠电解液中制备了非晶态氧化物膜层,并对其进行高温煅烧,获得微弧氧化-煅烧WO3/TiO2膜,研究了该膜层的结构与光催化性能。结果表明,煅烧后的膜层表面出现裂纹,有白色W03小颗粒分布其上;膜层的孔洞增大、增多,膜层的比表面积增大。微弧氧化-煅烧WO3/TiO2膜的光吸收截止波长约为471nm,较锐钛矿有了大幅度红移。可见光照射720 min,该膜层对罗丹明的降解率达55%。在实验和理论分析的基础上,探索性地提出了微弧氧化-煅烧WO3/TiO2膜的可见光响应机理。
Coupling TiO2 with WO3 could not only promote the separation of photo-generated carriers, but also extend the photoresponse range of TiO2, resulting in the improvement of photocatalytic activity, due to that the energy levels of TiO2 and WO3 are a great match for each other. Thus, WO3/TiO2 composite semiconductors have a great potential in environmental treatment. However, most of current studies on WO3/TiO2 composite photocatalyst focus on the use of crystalline powder, which is easy to agglomerate and yet difficult to recycle. To promote practical application of WO3/TiO2 photocatalysis, it must be immobilized in film. Present preparation techniques of WO3/TiO2 composite film, such as magnetron sputtering and sol-gel, still face some difficulties, for instance, complicated equipment, hard process or poor adhesion between the film and the substrate, and so forth. Therefore, preparation of WO3/TiO2 composite film with good adhesion and high catalytic activity becomes one of the most important focuses in photocatalysis field.
     In this paper, Micro-arc Oxidation (MAO) technique was firstly chosen to prepare WO3/TiO2 composite film in alkaline sodium tungstate electrolyte in order to develop new immobilization and modification technique of TiO2 photocatalyst. The effects of electrolyte composition and power parameters on the microstructure and photocatalytic property of WO3/TiO2 composite film were investigated systematically. The effects of external factors, including pH of pollutant solution, inorganic anions, initial pollutant concentration and anodic bias, on the photocatalytic property of WO3/TiO2 composite film were studied. Visible-light-responsive WO3/TiO2 composite film was gained by changing electrolyte composition. The microstructure and visible-light catalytic property were studied and the visible-light-responsive mechanism is discussed. The overall results were as follows.
     MAO films were prepared on titanium in phosphate and tungstate electrolytes, respectively. The microstructure of two films was characterized by XRD, SEM and EDX. The film formed in phosphate electrolyte (TiO2 film) consisted of a mixture phase of anatase and rutile; while the film formed in tungstate electrolyte (WO3/TiO2 film) consisted of anatase, rutile and WO3. Both of these two films had a kind of rough and porous surface. But, more pores with larger specific surface area distributed uniformly on the surface of WO3/TiO2 film. According to spectrofluorimetry, the photo luminescene intensity of WO3/TiO2 film was lower than that of TiO2 film, implying that its separation between photo-generated electrons and holes was more effective. Compared with TiO2 film, WO3/TiO2 film had higher surface acidity, demonstrating stronger capacity of absorbing organic substance and hydroxyl group. More than 85% of rhodanmine was degraded by the WO3/TiO2 film while only 23% of rhodamine by the TiO2 film in UV light for 120 min.
     The degradation kinetics of rhodamine by TiO2 film and WO3/TiO2 film were studied, which were coherent with pseudo first order reaction. The kinetic equations caused by TiO2 film and WO3/TiO2 film were In (C0/Ct)=0.0023 t+0.029 and In (C0/Ct)=0.0161+ 0.1 and the corresponding apparent rate constant were 0.0023 and 0.016, respectively.
     The effects of electrolyte composition and power parameters on the microstructure and photocatalytic property of WO3/TiO2 film were investigated systematically. The content of tungsten, the crystallinity of WO3 and the surface acidity increased with the increase of tungstate concentration, but violent microarc discharge caused by excess Na2WO4 could destroy the surface structure of the film. The optimized electrolyte consisted of 14.7 g/L Na2WO4,2 g/L NaOH,2 g/L NaF. When the positive voltage, negative voltage, frequency, duty cycle and processing time were 400 V,-30 V,700 Hz,0.3 and 5 min, respectively, the prepared WO3/TiO2 film had best photocatalytic activity.
     Methyl orange was chosen as model pollutant, the effect of solution pH, inorganic anions, initial concentration and anodic bias on the photocatalytic property of WO3/TiO2 film was systematically studied. The degradation efficiency of methyl orange was the lowest in neutral solution, while that would be increased either in acidic or alkaline solution. Methyl orange was degraded faster with addition of NO3-, PO43- and HCO3-, and the best facilitation was caused by NO3- for OH·could be produced when NO3-was irradiated in the UV (λ>290 nm). Thus, methyl orange was mainly degraded in solution rather than at the surface of WO3/TiO2 film. SO42- and Cl- inhibited the degradation of methyl orange through competitive adsorbing and capturing OH-. The degradation efficiency of methyl orange decreased as its concentration decreased.
     The influence of anodic bias on the photocatalytic activity of WO3/TiO2 film was investigated. The degradation efficiency of methyl orange increased with the increase of anodic bias. When the applied anodic bias is 4 V, the degradation efficiency of methyl orange exceeded that without bias by 78.5% approximately.
     Amorphous oxide film was prepared in the acidic sodium tungstate electrolyte by MAO technique, and sequentially subjected to high temperature calcination to get crystal WO3/TiO2 film. The microstructure and photocatalytic property of WO3/TiO2 film were investigated. The results showed that both cracks and white small particles of WO3 appeared at the surface of film after calcination. The total number and average size of pores in the inner of film increased. All of these increased the specific surface area of the film. The absorption edge of MAO-calcined WO3/TiO2 film was about 471 nm. Compared with anntase, a significant red-shift was obtained.55% Rhodamine can be effectively degraded by WO3/TiO2 film under visible light irradiation for 720 min. The visible-light-responsive mechanism of MAO-calcined WO3/TiO2 film was tentatively put forward on the basis of experiment and theoretical analysis.
引文
[1]Palmieri G, Cennamo G, Sannia G, et al. Removal brilliant R decolourisation by the fungus pleurotus ostreatus and its oxidative enzymatic system. Enzyme & Microbial Technology,2005,36(1):17-27.
    [2]Levin L, Papinutti L, Forchiassin F. Evalution of Aegentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresource Technology,2004,94(2):169-176.
    [3]Rott U, Minke R. Overview of wastewater treatment and recycling in the textile processing industry. Water Science & Technology,1999,40 (1):137-144.
    [4]Alinsafi A, Khemis M, Pons M N, et al. Electrocoagulation of reactive textile dyes and textile wastewater. Chemical Engineering & Processing,2005,44 (4): 461-470.
    [5]Daneshvar N, Oladegaragoze A, Djafarzadeh N. Decolorization of basic dye solutions by electrocoagulation:an investigation of the effect of operational parameters. Journal of Hazardous Materials,2006,129 (1-3):116-122.
    [6]Lourenco N D, Novais J M, Pinheiro H M. Reactive textile dye colour removal in a sequencing batch reactor. Water Science & Technology,2000,42(5-6):321-328.
    [7]Sani R K, Banerjee U C. Decolorization of triphenylmethane dyes and textile and dye-stuff effuent by Kurthia sp.. Enzyme & Microbial technology,1999,24(7): 433-437.
    [8]Alinsafi A, Motta M D, Bonte S L, et al. Effect of variability on the treatment of textile dyeing wastewater by activated sludge. Dyes & Pigments,2006,69(1-2): 31-39.
    [9]Bruggen B V D, Cornelis G, Vandecasteele C. Fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry. Desalination,2005,175(1):111-119.
    [10]Walker G M, Weatherley L R. Adsorption properties of acid dyes on to granular activated carbon in fixed beds. Water Research,1997,31(8):2093-2101.
    [11]Wang L, Wang A. Adsorption properties of congo red from aqueous solution onto N,O-carboxymethyl-chitosan. Bioresource Technology,2008,99(5):1403-1408.
    [12]Mohan N, Balasubramanian N, Basha C A. Electrochemical oxidation of textile wastewater and its reuse. Journal of Hazardous Materials,2007,147 (1-2): 644-651.
    [13]Tan B H, Teng T T, Omar A K M. Removal of dyes and industrial dye wastes by magnesium chloride. Water Research,2000,34(2):597-601.
    [14]Lopez-Grimau V, Gutierrez M C. Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light. Chemosphere,2000, 62(1):106-112.
    [15]Ozer A, Altundogan H S, Erdem M, et al. A study on the Cr(VI) removal from aqueous solution by steel wool. Environmental Pollution,1997,97(1-2):107-112.
    [16]Frijters C T M J, Vos R H, Scheffer G, et al. Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system. Water Research,2006,40(6):1249-1257.
    [17]Baban A, Yediler A, Ciliz N, et al. Biodegradability oriented treatability studies on high strength segregated wastewater of a woolen textile dyeing plant. Chemosphere,2004,57(7):731-738.
    [18]Sharma P, Singh L, Dilbaghi N. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius. Journal of Hazardous Materials,2009,161(2-3):1081-1086.
    [19]Kosinska K, Miskiewicz T. Performance of an anaerobic bioreactor with biomass recycling, continuously removing COD and sulphate from industrial wastes. Bioresource Technology,2009,100(1):86-90.
    [20]Lu X J, Liu L, Yang B, et al. Reuse of printing and dyeing wastewater in processess assessed by pilot-scale test using combined biological process and sub-filter technology. Journal of Cleaner Production,2009,17(2):111-114.
    [21]Zylla R, Sojka-Ledakowicz J, Stelmach E, et al. Coupling of membrane filtration with biological methods for textile wastewater treatment. Desalination,2006, 198(1-3):316-325.
    [22]Barredo-Damas S, Iborra-Clar M I, Bes-Pia A, et al. Study of preozonation influence on the physical-chemical treatment of textile wastewater. Desalination, 2005,182(1-3):267-274.
    [23]Lu X J, Yang B, Chen J H, et al. Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process. Journal of Hazardous Materials,2009,161(1):241-245.
    [24]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238(5358):37-38.
    [25]Hoigne J, Bader H. The role of hydroxyl radical reactions in ozonation processes in aqueous solution. Water Research,1976,10(2):377-380.
    [26]Glaze W H, Kang J W, Chapin D H. The chemistry of water treatment processs involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Science & Engineering,1987,9(4):355-359.
    [27]孙存普,张建中,段绍瑾.自由基生物学导论.合肥:中国科学技术大学出版社,1999.
    [28]Staehelin J, Hoigne J. Decomposition of ozone in water:rate of initiation by hydroxide ion and hydrogen peroxide. Environmental Science & Technology,1982, 16(3):676-681.
    [29]Duguet J P. Application of combined ozone-hydrogen peroxide for the removal of aromatic compounds from a groundwater. Ozone Science & Engineering,1990, 12(3):281-294.
    [30]Petrier C, Lamym L, Francon A Y, et al. Sonochemical degradation of phenod in dilute aqueous solutions:comparision of the reaction rates at 20 and 487 kHz. The Journal of Physical Chemistry,1994,98(5):1051-1057.
    [31]史惠祥,陈岚,汪大晕.03与O3/H2O2两个体系降解除草剂2,4-D反应特性研究.农业环境科学学报,2005,24(4):690-693.
    [32]施利毅,李春忠,房鼎业.TiCl4-O2体系高温反应制备超细YiO2光催化材料的研究.无机材料学报,1999,14(5):717-725.
    [33]Choi W Y, Termin A, Hoffmann M R. The Role of Metal ion dopants in quantum-sized TiO2-correlation between photo-reactivity and charge-carrier recombination dynamics. The Journal of Physical Chemistry,1994,98(51): 13669-13679.
    [34]Mills A, Hunte S L. An overview of semiconductor photocatalysis.Journal of Photochemistry and Photobiology A:Chemistry,1997,108(1):1-35.
    [35]崔婷.纳米TiO2及TiO2/SiO2复合薄膜的制备、表征与性能研究:[硕士学位论文].湖南:湖南大学图书馆,2006.
    [36]于向阳,梁文,程继健.提高二氧化钛光催化性能的途径.硅酸盐学报,2000,(1):53-57.
    [37]何建波,张鑫,等.Ti02薄膜晶相组成对苯胺光催化降解的影响.应用化学,1999,16(5):57-60.
    [38]Bacsa P R, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Applied Catalysis B:Environmental,1998,16(1):19-29.
    [39]鹿院卫,马重芳,王伟,等.纳米光催化杀菌技术研究进展.北京工业大学学报,2006,32(7):622-627.
    [40]张青红,高濂,郭景坤.二氧化钛纳米晶的光催化活性研究.无机材料学报,2000,15(3):556-560.
    [41]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002.
    [42]Tanabe K, Sumiyoshi T, Shibata K, et al. A new hypothesis regarding the surface acidity of binary metal oxides. Bulletin of the Chemical Society of Japan.1974, 47(5):1064-1066.
    [43]清山哲郎著.金属氧化物及其催化作用.黄敏明译.合肥:中国科学技术大学出版社,1991.
    [44]Li M S, Shen J Y. Microcalorimetric adsorption characterizations of supported vanaadia catalysts for the selective oxidation of propylene to acetone. Journal of Catalysis,2002,205(2):248-258.
    [45]Akurati K K, Vital A, Dellemann J, et al. Flame-made WO3/TiO2 nanoparticles: Relation between surface acidity, structure and photocatalytic activity. Applied Catalysis B:Environmental,2008,79(1):52-63.
    [46]Kwon Y T, Song K Y, Lee W I, et al. Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. Journal of Catalysis,2000,191(1):192-199.
    [47]Bhatkhande D S, Panggarkar V G, Beenackers A A. Photocatalytic degradation for environmental applications-a review. Journal of Chemical Technology & Biotechnology,2001,77(1):102-116.
    [48]Abdullah M, Low G K C, Matthews R W. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. The Journal of Physical Chemistry,1990,94(17):6820-6825.
    [49]Bhatkhande D S, Kamble S P, Sawant S B, et al. Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light. Chemical Engineering Journal,2004,102(3):283-290.
    [50]王侃.负载型TiO2催化剂可见光降解燃料污染物的研究:[博士学位论文].浙江:浙江大学图书馆,2004.
    [51]Yamazaki S, Matsunaga S, Hori K. Photocatalytic Degradation of Trichloroethylene in Water Using TiO2 Pellets. Water Research,2001,35(4): 1022-1028.
    [52]Chen S F, Cao G Y. Study oh the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos. Chemosphere,2005,60(9):1308-1315.
    [53]刘凡新,崔作林,张志琨.纳米TiO2复合膜光催化降解甲基橙的研究.感光科学与光化学,2003,21(2):119-125.
    [54]Nam W, Kim J, Han G Y. Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor. Chemosphere,2002,47(9):1019-1024.
    [55]刘丽秀.纳米Ti02膜的制备及光催化降解甲基橙的研究:[硕士学位论文].四川:四川大学图书馆,2006.
    [56]柏源,孙红旗,金万勤.pH值对氮掺杂Ti02物化性质和光催化活性的影响.无机材料学报,2008,23(2):387-392.
    [57]常江.纳米Ti02光催化氧化水体中有机酸的反应动力学研究:[硕士学位论文].甘肃:兰州大学图书馆,2008.
    [58]Djebbar K, Zertal A, Sehili T. Photocatalytic degradation of 2,
    4-dichlorophenoxyactic acid and 4-chloro-2-methylphenoxyacetic acid in water by using TiO2. Environmental Technology,2006,27(11):1191-1197.
    [59]孙宪荣,沈嘉年,爱可可,等.TiO2/Ti电极上外加阳极偏压对亚甲基蓝光催化降解的影响.稀有金属材料与工程,2006,35(11):1770-1774.
    [60]Vinodgopal K, Kamat P. V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environmental Science & Technology,1995,29(3):841-845.
    [61]Vinodgopal K, Bedja I, Kamat P V. Nanostructured semiconductors films for photocatalysis photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chemistry of Materials,1996,8(8):2180-2187.
    [62]黄金球,唐超群,马新国,等.电场对TiO2纳米膜光催化性能的影响.催化学报,2006,27(9):783-786.
    [63]Hepel M, Luo J. Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystlline WO3 electrodes. Electrochimica Acta,2001,47(5): 729-740.
    [64]Hidaka H, Ajisaka K, Horikoshi S, et al. Photodecomposition of amino acids and photocurrent generation on TiO2/OTE electrodes prepared by pulse laser deposition. Catalysis Letters,1999,60(1-2):95-98.
    [65]章福祥,张秀,陈继新,等.Ag/TiO2复合纳米催化剂的制备和表征及其光催化活性.催化学报,2003,24(11):877-880.
    [66]包华辉,徐铸德,殷好勇,等.TiO2纳米管负载Ag、 Au、 Pt纳米粒子的微波合成与表征.无机化学学报,2005,21(3):374-378.
    [67]Ambrus Z, Balazs N, Alapi T, et al. Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3. Applied Catalysis B: Environmental,2008,81 (1-2):27-37.
    [68]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293:269-271.
    [69]Zhang X W. Lei L C. Preparation of photocatalytic Fe2O3-TiO2 coatings in one step by metal organic chemical vapor deposition. Applied Surface Science,2008, 254(8):2406-2412.
    [70]Robert D. Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications. Catalysis Today,2007,122(1-2): 20-26.
    [71]Chavadej S, Phuaphromyod P, Gulari E, et al. Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by micromulsion technique. Chemical Engineering Journal,2008,137(3):489-495.
    [72]Arabatzis I M, Stergiopoulos T, Andreeva D, et al. Chatacterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. Journal of Catalysis,2003,220(2):127-135.
    [73]Xie B P, Xiong Y, Chen R M, et al. Catalytic activities of Pd-TiO2 film towards the oxidation of formic acid. Catalysis Communications,2005,6(11):699-704.
    [74]Subramaniun V, Wolf E E, Kamat P V. Catalysts with TiO/Gold nanocomposites. Effect of metal partice size on the Firmi level equilibration. Journal of The American Chemical Society,2004,126(15):4943-4950.
    [75]Gerischer H, Heller A. The role of oxygen in photooxidation of organic molecules on semiconductor particles. Journal of Physical Chemistry,1991,95(13): 5261-5267.
    [76]Gerischer H, Heller A. Photocatalytic oxidation of organic molecules at titanium dioxide particles by sunlight in aerated water. Journal of the Electrochemical Society,1992,139(1):113-118.
    [77]Verwey J W M, Voort D V D, Dirksen G J, et al. Luminescence processes in the crystalline and glass modifications of LnBGeO5-tape compositions. Journal of Solid State Chemistry,1990,89(1):106-117.
    [78]Ilepemma O A, Tennakone K, Dissanayake W D D P. Photocatalytic behaviour of metal doped titanium dioxide:Studies on the photochemical synthesis of ammonia on Mg/TiO2 catalyst systems. Applied Catalysis,1990,62(1):L1-L5.
    [79]陈恩伟,银董红,宋慧娟,等.镧系离子掺杂Ti02的制备及其对咪唑降解反应的光催化活性.催化学报,2006,27(4):344-348.
    [80]Yu J G, Yu H G, Ao C H, et al. Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films. Thin Solid Films,2006,496(2): 273-280.
    [81]Mo Sh D, Lin L B, Lin D L. Electron states of iron group impurities in doped rutile (TiO2). Journal of Physics & Chemistry of Solids,1994,55(11):1309-1313.
    [82]Zhao D, Peng T Y, Liu M, et al. Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure. Microporous and Mesoporous Materials,2008,114(1-3):166-174.
    [83]Fan X X, Chen X Y, Zhu S P, et al. The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2. Journal of Molecular Catalysis A: Chemical,2008,284(1-2):155-160.
    [84]Wang H, Lewis J P. Secend-generation photocatalytic materials:anion-doped TiO2. Journal of Physics:Condensed Mater,2006,18(2):421-434.
    [85]Mrowetz M, Balcerski W, Colussi A J, et al. Oxidative power of Nitrogen-doped TiO2 photocatalysts under visible illumination. The Journal of Physical Chemistry B,2004,108(45):17269-17273.
    [86]Yamada K, Yamane H, Matsushima S, et al. Photocatalytic activity of TiO2 thin films doped with nitrogen using a cathodic magnetron plasma treatment. Thin Solid Films,2008,516(21):7560-7564.
    [87]方晓明,张正国,陈清林.具可见光活性的氮掺杂二氧化钛光催化剂.化学进展,2007,19(9):1282-1290.
    [88]姚秉华,郑怀礼,杨丽芹,等.CdS/TiO2/漂珠复合光催化剂制备及其降解高效氯氰菊酯研究.光谱学与光谱分析,2007,27(5):1010-1014.
    [89]Georgieva J, Armyanov S, Valova E, et al. Enhanced photocatalytic activity of electrosynthesised tungsten trioxide-titanium dioxide bi-layer coatings under ultraviolet and visible light illumination. Electrochemistry Communications,2007, 9(3):365-370.
    [90]Akurati K K, Vital A, Dellemann J, et al. Flame-made WO3/TiO2 nanoparticles: Relation between surface acidity, structure and photocatalytic activity. Applied Catalysis B:Environmental,2008,79(1):52-63.
    [91]曹立.微弧氧化法制备TiO2陶瓷层薄膜的性能的研究:[硕士学位论文].浙江:浙江大学,2005.
    [92]Tong H X, Chen Q Y, Hu H P, et al. Preparation, characterization and photocatalytic behavior of WO3-TiO2/Nb2O5 catalysts. Journal of Central South University of Technology,2007,14(6):788-792.
    [93]Xiao M W, Wang L S, Huang X J, et al. Synthesis and characterization of WO3/titanate nanotubes nanocomposite with enhanced photocatalytic properties. Journal of Alloys and Compounds,2009,470(1-2):486-491.
    [94]Yang L X, Xiao Y, Liu S H, et al. Photocatalytic reduction of Cr(111) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid. Applied Catalysis B: Environmental,2010,94(1-2):142-149.
    [95]成英之,张渊明,唐渝.WO3-TiO2薄膜型复合光催化剂的制备和性能.催化学报,2001,22(2):203-205.
    [96]Zhang J Y, Zheng S K, Hao W Ch, et al. Characterization of WO3-doped TiO2 photocatalytic thin films prepared by self-assembly method. Rare Metal Materials & Engineering,2005,34(5):731-733.
    [97]张琦,李新军,李芳柏,等.WOx/TiO2光催化剂的可见光催化活性机理探讨.物理化学学报,2004,20(5):507-511.
    [98]Brown S D, Wirtz G P. Mechanism of anodic spark deposition. American Ceramic Society Bulletin,2004,56(6):563-566.
    [99]Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolytes for surface engineering. Surface & Coatings Technology,1999,122(2-3):73-93.
    [100]Dittrich K H, Krysmann W, Kurze P, et al. Structure and properties of an layers. Journal of Crystal Research & Technology,1984,19(1):93-99.
    [101]薛文斌,邓志威,来永春,等.有色金属表面微弧氧化技术评述.金属热处理,2000,1:1-3.
    [102]刘凤岭,骆更新,毛立信.微弧氧化与材料表面陶瓷化.材料保护,1998,31(3):22-24.
    [103]Shin Y K, Chae W S, Song Y W, et al. Formation of titania photocatalyst films by microarc oxidation of Ti and Ti-6A1-4V alloys. Electrochemistry Communications, 2006,8(3):465-470.
    [104]李宣东,吴晓宏.微等离子体氧化法制备Ti02陶瓷膜的光催化活性研究.稀有金属,2003,27(6):661-664.
    [105]Wu X H, Ding X B, Qin W, et al. Enhanced photo-catalytic activity of TiO2 films with doped La prepared by micro-plasma oxidation method. Journal of Hazardous Materials,2006,137(1):192-197.
    [106]Wu X H, Qin W, Ding X B, et al. Photocatalytic activity of Eu-doped TiO2 ceramic films prepared by microplasma oxidation method. Journal of Physics & Chemistry of Solids,2007,68(12):2387-2393.
    [107]Wan L, Li J F, Feng J Y, et al. Anatase TiO2 films with 2.2 eV band gap prepared by microarc oxidation. Materials Science & Engineering B,2007,139(2-3): 216-220.
    [108]Bayati M R, Moshfegh A Z, Golestani-Fard F. In situ growth of vanadia-titania nano/micro-porous layers with enhanced photocatalytic performance by micro-arc oxidation. Electrochimica Acta,2010,55(9):3093-3102
    [109]Bayati M R, Moshfegh A Z, Golestani-Fard F. Synthesis of narrow band gap (V2O5)x-(TiO2)i-x nano-structured layers via micro arc oxidation. Applied Surface Science,2010,256(9):2903-2909.
    [110]Wu X H, Ding X B, Qin W, et al. Enhanced photo-catalytic activity of TiO2 films with doped La prepared by micro-plasma oxidation method. Journal of Hazardous Materials,2006,137(1):192-197.
    [111]Yerokhin A L, Snizhko L O, Gurevina N L, et al. Discharge characterization in plasma electrolytic oxidation of aluminium. Journal of Physics D:Applied Physics, 2003,36:2110-2120.
    [112]Yang G L, Lu X Y, Bai Y Z, et al. Characterization of micro-arc oxidation discharge process for depositing ceramic coating. Chinese Physics Letters,2001, 18(8):1141-1143.
    [113]李颂.镁合金微弧氧化膜的制备、表征及性能研究[博士学位论文].吉林:吉林大学图书馆,2007.
    [114]Kishenyev B S. Universal Varible-Frequency Resonant Power Supply. WO03/090003A1,2003.
    [115]Spurr R A, Myers H. Quantitative analysis of anatase-rutile mixture with an X-ray diffractometer. Analytical Chemistry,1957,29(5):760-762.
    [116]蒋永峰,李均明,蒋百灵,等.铝合金微弧氧化陶瓷层形成因素的分析.表面技术,2001,30(2):37-39.
    [117]蔡振钱,申乾宏,高基伟,等.TiO2/SnO2复合薄膜的低温制备及其光催化性能.无机材料学报,2007,22(4):733-736.
    [118]李芳柏,古国榜,李新军,等.纳米复合Sb2O3/TiO2的光催化性能研究.无机化学学报,2001,17(1):37-42.
    [119]Li D, Haneda H, Ohashi N, et al. Systhesis of nanosized nitrogen-containing MOx-ZnO (M=W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition. Catalysis Today,2004,93-95(1):895-901.
    [120]Neves M C, Nogueira J M F, Trindade T, et al. Photosensitization of TiO2 by Ag2S and its catalytic activity in phenol photodegradation. Journal of Photochemistry & Photobiology A:Chemistry,2009,204(2-3):168-173.
    [121]Ohno T, Tokieda K, Higashida S, et al. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Applied Catalysis A:General, 2003,244(2):383-391.
    [122]Jiang D L, Zhang Sh Q, Zhao H J. Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/rutile phases. Environmental Science Technology,2007,41(1):303-308.
    [123]Qiu T, Wu X L, Jin F Y. et al. Self-assembled growth of MgO nanosheet arrays via a micro-arc oxidation technique. Applied Surface Science,2007,253(8): 3987-3990.
    [124]刘奎仁,韩庆,陈建设,等.光降解用WO3-TiO2复合光催化剂.东北大学学报,2003,24(11):1064-1067.
    [125]李芳柏,古国榜,李新军,等.WO3/TiO2纳米材料的制备及光催化性能.物理 化学学报,2000,16(11):997-1002.
    [126]Tatsuma T, Takeda S, Saitoh S, et al. Bactericidal effect of an energy storage TiO2-WO3 photocatalyst in dark. Electrochemistry Communications,2003,5(9): 793-796.
    [127]Yang H M, Shi R G, Zhang K, et al. Synthesis of WO3/TiO2 nanocomposites via sol-gel method. Journal of Alloys & Compounds,2005,398(1-2):200-202.
    [128]Chen L, Graham M E, Li G H, et al. Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter deposition. Thin Solid Films,2006,515(3):1176-1181.
    [129]Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry & Photobiology A:Chemistry,2001, 141(2-3):209-217.
    [130]Scholz A, Schnyder B, Wokaun A. Influence of caicination treatment on the structure of grafted WOx species on titania. Journal of Molecular Catalysis A: Chemical,1999,138(2-3):249-261.
    [131]Su L Y, Lu Z. All solid-state smart window of electrodeposited WO3 and TiO2 particulate film with ptrefg gel electrolyte. Journal of Physics & Chemistry of Solids,1998,59(8):1175-1180
    [132]舒心.钛基复合光催化材料的制备及性能研究:[博士学位论文].北京:北京化工大学,2009.
    [133]Guo H F, An M Z. Growth of ceramic coating on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluorade solutions and evaluation of corrosion resistance. Applied Surface Science,2005,246(1-3):229-238.
    [134]Mu W Y, Han Y. Characterization and properties of the MgF2/ZrO2 composite coatings on magnesium prepared by micro-arc oxidation. Surface & Coatings Technology,2008,202(17):4278-4284.
    [135]Li J F, Wan L, Feng J Y. Study on the preparation of titania films for photocatalytic application by micro-arc oxidation. Solar Energy Materials & Solar Cells,2006,90(15):2449-2455.
    [136]Frey G L, Rothschild A, Sloan J, et al. Investigations of nonstoichiometric tungsten oxide nanoparticles. Journal of Solid State Chemistry,2001,162(2): 300-314.
    [137]Bond G C, Flamerz S, Wijk L V. Structure and reactivity of titania-supported molybdenum and tungsten oxides. Catalysis Today,1987,1(1-2):229-243.
    [138]杨新丽,戴维林,高瑞华,等.新型WO3/TiO2纳米管催化剂的合成及其在环戊烯选择氧化反应中的性能研究.化学学报,2008,66(12):1390-1398.
    [139]包淑娟,张校刚,刘献明,等.磁载WO3-TiO2/SiO2/Fe3O4复合光催化剂的制备及其光催化活性.催化学报,2003,24(12):909-913.
    [140]Ding Z, Lu G Q, Greenfield P F. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. The Journal of Physical Chemistry B,2000,104(19):4815-4820.
    [141]Li J X, Xu J H, Dai W L, et al. One-pot synthesis of twist-like helix tungsten-nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol. Applied Catalysis B:Environmental, 2008,82(3-4):233-243.
    [142]高玉周,严立,张世峰,等.微等离子体氧化制备Ti02薄膜的结构特性.中国表面工程2003,(6):35-37.
    [143]Yerokhin A L, Leyland A, Mattews A. Kinetic aspects of aluminum titanate layer formation on titanium alloys by plasma electrolytic oxidation. Applied Surface Science,2002,200(1-4):172-184.
    [144]李淑华,程金生,尹玉军,等.LY12A1合金微弧氧化过程中电流和电压变化规律.腐蚀科学与防护技术,2001,13(6):362-364.
    [145]朱瑞富,王志刚,肖桂勇,等.电极电压对纯钛表面微弧氧化陶瓷膜结构及性能的影响.硅酸盐学报,2008,36(5):631-635.
    [146]何宏辉,曾庆圣,王天石,等.镁合金等离子体微弧氧化过程负压调控的研究.材料热处理学报,2006,27(2):118-121.
    [147]魏同波,田军.液相等离子体电沉积表面处理技术.材料科学与工程学报,2003,21(3):450-455.
    [148]王亚明,雷廷权,蒋百灵,等.交流窄脉冲占空比调制对钛合金微弧氧化陶瓷 涂层的影响.稀有金属材料与工程2005,34(2):329-333.
    [149]薛文斌,邓志威,张通和,等.铸造镁合金微弧氧化机理.稀有金属材料与工程1999,28(6):353-356.
    [150]吴汉华,于松楠.龙北玉,等.处理时间对铝合金微弧氧化陶瓷膜特性的影响.材料科学与工艺2008,16(5):605-608.
    [151]吴振东,姜兆华,姚忠平,等.反应时间对LY12铝合金微弧氧化膜层组织及性能的影响.无机材料学报,2007,22(3):555-559.
    [152]吴合进,吴鸣,谢茂松,等.增强型电场协助光催化降解有机污染物.催化学报,2000,21(5):399-403.
    [153]Miyake M, Yoneyama H, Tamura H. Denki Kagaku,1977,45 (1):411.
    [154]Paola A D. Transition metal doped TiO2:physical properties and photocatalytic behavior. International Journal of Photoenergy,2001,3(4):171-176.
    [155]Yu J C, Lin J, Kwok R W M. Enhanced photocatalytic activity of Ti1-xVxO2 solid solution on the degradation of acetone. Journal of Photochemistry & Photobiology A:Chemistry,1997,111(1-3):199-203.
    [156]张音波.Ti02光催化降解甲基橙的试验及机理研究:[硕士学位论文].广东:广州工业大学图书馆,2002.
    [157]郑怀礼,张峻华,熊文强.纳米Ti02光催化降解有机污染物研究与应用新进展.光谱学与光谱分析,2004,24(8):1003-1008
    [158]Kotzias D, Parlar H, Korte F. Photoreaktivitat organischer chemikalien in waβrigen Systemen in Gegenwart von Nitraten und Nitriten. Naturwissenschaften, 1982,69(9):444-445.
    [159]Mai F D, Lu C S, Wu C W, et al. Mechanisms of photocatalytic degradation of Victoria Blue R using nano-TiO2. Separation & Purification Technology,2008, 62(2):423-436
    [160]Morrison R. Electrochemistry at semiconductor and oxidized metal electrode.吴辉煌译.北京:科学出版社,1988.
    [161]查全性.电极过程动力学导论.北京:科学出版社,1987.
    [162]傅献材,沈文霞,姚天扬.物理化学.北京:高等教育出版社,1990.
    [163]蒋展鹏,王海燕,杨宏伟.电助光催化技术研究进展.化学进展,2005,17(4):622-630.
    [164]Rodriguez J, Gomez M, Niklason G A, et al. Sputter-deposited Ti oxide films used for photoelectrocatalytic degradation of 4-chlorophnol. Journal of Materials Science,2001,36(15):3699-3705.
    [165]王海燕,蒋展鹏,杨宏伟.电助光催化氧化苯甲酰胺.中国环境科学,2004,24(6):674-678.
    [166]戴清,郭妍,袁春伟,等.二氧化钛多孔薄膜对含氯苯酚的电助光催化降解.催化学报,1999,20(3):317-320.
    [167]Leng W H, Zhang Z, Zhang J Q. Photoelectro-catalytic degradation of anline over rutile TiO2/Ti electrode thermally formed at 600 ℃. Journal of Molecular Catalysis A:Chemical,2003,206(1-2):239-252.
    [168]Ke D N, Liu H J, Peng T Y, et al. Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles. Materials Letters,2008,62(3):447-450.
    [169]Lukiyanchuk I V, Rudnev V S, Kuryavyi V G, et al. Surface morphology, composition and thermal behavioe of tungsten-containing anodic spark coatings on aluminium alloy. Thin Solid Films,2004,446(1):54-60.
    [170]张玉娟,沈嘉年,等.Ti02光催化纳米薄膜的晶化处理.稀有金属材料与工程2006,35(1):92-95.
    [171]Ohtani B, Ogawa Y, Nishimoto S. Photocatalytic activity of amorphous-anatase mixture of titanium (IV) oxides particles suspended in aqueous solutions. The Journal of Physical Chemistry B,1997,101(19):3746-3752.
    [172]马德垺,黎源.WO3-TiO2-SO42-固体超强酸的制备及应用研究.精细化工,2002,19(1):36-38.
    [173]Azimirad R, Naseri N, Akhavan O, et al. Hydrophilicity variation of WO3 thin films with annealing temperature. Journal of Physics D:Applied Physics,2007, 40(4):1134-1137.
    [174]Yang Y, Wang H Y, Li X, et al. Electrospun mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis. Materials Letters,2009,63(2):331-333.
    [175]熊家林,贡长生,张克立.无机精细化学品的制备和应用.北京:化学工业出版社,1999.
    [176]申半文,车云霞.无机化学丛书.北京:科学出版社,1998.
    [177]陈建华,冯娟娟,刘自力.钨离子掺杂对钛片表面Ti02薄膜光催化活性的影响.工业催化,2009,17(1):63-67.
    [178]Fernandez-Garcia M, Martinez-Arias A, Fuerte A, et al. Nanostructured Ti-W mixed-metal oxides:structural and electronic properties. The Journal of Physical Chemistry B,2005,109(13):6075-6083.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.