海洋优势菌种附着腐蚀Fe_3Al及其复合材料界面与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe和Al是海洋中应用最为广泛的金属材料,对这两种材料的研发和设计可能会成为实现海洋材料工程化与功能化改革的关键,在理论和实验研究中都具有重要的意义。然而单纯的Fe合金和Al合金已经远远不能满足当今快速发展的海洋科技的需求:钢材的力学性能较好,但是耐蚀性很差,不能达到高强轻质海洋材料的要求;Al合金密度较小,在海洋环境中的耐蚀性较其它金属材料优秀,但是其机械强度不高,不能广泛应用于海洋工程建筑。同时,目前发展的海洋材料腐蚀研究方法只是从腐蚀形态表征或腐蚀机理讨论,对具有代表性的好氧菌微生物膜形成机理,以及微生物膜/材料之间界面动力学的认识还很不够。
     本文将Fe3Al金属间化合物及其复合材料引入海洋领域,研究其表面优势附着菌种种类及其生长特性。探索Fe3Al金属间化合物在不同优势附着菌种生长环境下表面微生物膜的生长机制,建立优势菌种附着机制模型。深入研究微生物膜附着与Fe3Al金属间化合物界面状态、物理性质和化学性质之间的关联。综合使用胶体化学理论、流体力学理论、第一密度泛函方法以及计算机分子模拟技术,对微生物膜在Fe3Al表面附着动力学加以研究,并最终为Fe3Al金属间化合物及其复合材料适合用于海洋菌类附着环境提供理论依据。
     通过实海挂片取得Fe3Al材料表面优势附着菌种,经过16S rDNA等微生物生化检测方法,准确判断出三种优势附着菌种分别为芽孢杆菌Bacillus baekryungensis、氯酚节杆菌Arthrobacter chlorophenolicus和耐盐黄色链霉菌Streptomyces flavus。这三类菌种都是好氧革兰氏阳性菌。Bacillus ba,的新陈代谢作用会迅速消耗环境中的游离氧,并降低周围pH值;在有Fe3+存在的条件下,A. chlorophenolicus的新陈代谢产物会与Fe3+形成络合物;Streptomyces flavus是一种硝酸盐还原菌,释放的亚硝酸盐有一定缓蚀作用,且细胞外生长菌丝,易于在材料表面附着。
     论文通过研究微生物膜在Fe3Al材料表面附着生长的形态及膜内成分,揭示了三种优势菌种在Fe3Al材料表面成膜的一般规律:Bacillus ba在Fe3Al材料表面附着形成的微生物膜经历疏松多孔-致密增厚-破裂脱离的三个过程,浸泡一段时间后Fe3Al材料表面孔蚀严重;A.chlorophenolicus菌种附着则首先在Fe3Al材料表面生成特征性纳米级氧化铝薄膜,再依靠新陈代谢产物羟基喹啉同Fe3Al材料中释放的Fe3+生成络合产物,有效填补氧化铝破裂造成的表面钝化膜不完整;Streptomyces flavus在Fe3Al表面形成的微生物膜从初期“玫瑰花瓣”状A1203组织转变为均匀的“蜂窝”状组织,引起溶液中NO2-的吸附,在一定程度上减轻了酸性环境对Fe3Al的腐蚀作用。
     基于对微生物膜附着Fe3Al材料物理性质和电化学性质的一系列测试,验证了各菌种在Fe3Al材料成膜的形成机制和对表面性能的影响;在此基础上通过胶体化学理论和牛顿流体力学方法进一步建立了菌种在Fe3Al表面形成微生物膜界面动力学模型,并最终确定了三种优势菌种在Fe3Al材料表面可逆附着阶段及发展增长阶段的动力学方程。设计了测定微生物膜与Fe3Al试样界面结合力实验模型,推导出优势附着菌种在Fe3Al表面附着的界面结合力计算方程。文中还确定了微生物膜与Fe3Al材料界面之间的界面结合力随浸泡时间变化规律,为进一步探索Fe3Al在微生物膜附着条件下的应用性能奠定了坚实的基础。
     通过深入原子和分子层次了解优势附着菌种细胞组织(以磷壁酸为主)与Fe3Al材料表面(以氧化铝薄膜为主)相互作用的键合方式、附着参数以及电子结构特征,找到磷壁酸单分子的能量最低状态。根据原子电荷密度负性推测,认为磷壁酸分子在材料表面的吸附由磷脂基主要完成,并证实磷壁酸单体分子在A1203基体上结合主要依靠氧原子向表面的附着能力。磷壁酸单体分子与A1203基体之间的界面结合能较大,也由此解释革兰氏阳性菌成为Fe3Al材料表面优势附着菌种的根源。
     论文最后制备了不同组分比例的Fe3Al/ZrO2复合材料,并考察其在无菌环境以及Bacillus ba.附着生长环境中的电化学参数变化趋势,结合Bacillus ba.生长过程中培养基中pH值变化规律,揭示不同成分Fe3Al/ZrO2复合材料的抗腐蚀性能。实验结果表明,ZrO2含量为80%的Fe3Al/ZrO2复合材料由于ZrO2含量较高,并且有适量Fe3Al参与形成钝化膜,两者互相配合,共同抵制酸性附着产物的腐蚀作用,在Bacillus ba,附着生长条件下表现优秀的耐腐蚀性能。
Iron and aluminum are the most widely-accepted materials for the construction of offshore structures and marine hulls. The investigation and design on iron and aluminum may probably be crucial to achieve the combination of industrial applications and functionalizing of ocean materials, and are also theoretically and experimentally of great significance. However, single iron and aluminum alloys are far from meeting the requirement of the rapid development of ocean technology. For example, iron alloys exhibit good mechanical properties but with bad corrosion resistance and high density. Relatively, aluminum alloys exhibit lower density, and improved corrosion resistance due to the passive films, but possess lower mechanical strength, making them unsuitable candidates for marine engineering structures.
     Simultaneously, the present ongoing researches about the corrosion of marine materials are limited to the characterization of corrosion morphology or mechanisms. Little effort has been done on the formation mechanisms of the representative aerobic biofilm and the interface dynamics between biofilms and substrate. In addition, examinations about anti-MIC (microbiologically influenced corrosion) performance of new kinds of marine materials are still inadequate and need further explored.
     Based on the above discussions, Fe3Al intermetallic compounds and its composites were brought into marine area in this dissertation. The species of dominantly-adhered bacteria on the surface of Fe3Al, their growth characteristics, the adhesion mechanism and models of biofilms and the interface features between biofilms and Fe3Al were investigated. Colloid chemistry theory, fluid mechanics theory, first density functional theory (DFT) and molecular simulation methods were alos synthetically used to characterize the interface dynamics, which provide valuable theoretical basis for the potential applications of Fe3Al metallic compounds and its composites in the ocean.
     The dominantly-adhered bacteria on Fe3Al surfaces were obtained by hanging samples in seawater. Through a variety of analysis methods such as 16 S rDNA, the three dominantly-adhered bacteria were confirmed to be Bacillus baekyungensis, Arthrobacter chlorophenolicus and Streptomyces flavus, respectively. These bacteria are all aerobic gram-positive bacteria. Bacillus ba. could consume oxygen rapidly and reduce the pH value of the environmental through metabolization; with the presence of Fe3+, complex would be formed by the reaction between the metabolic products of A. chlorophenolicus and Fe3+; Streptomyces flavus, which is a kind of nitrate-reducing bacteria, could easily adhere to the material surface because of its hyphae.
     The general formation mechanisms of biofilms associated with the three dominant bacteria were revealed by investigating the morphology and composition of different biofilms on the Fe3Al surfaces. The attached biofilms formed by Bacillus ba. were loose and porous at first, then became thick and dense, and finally fractured and peeled off from Fe3Al. Serious pitting could be found on the Fe3Al surface after the samples have been immersed in seawater for about 10 days. In the case of A. chlorophenolicus, the characteristic nanostructured Al2O3 films were firstly formed due to the attached biofilms; then, metabolic products of A. chlorophenolicus, Oxine (HQ), reacted with Fe3+ to form complex, which could effectively help repairing the fracture of Al2O3 films. Biofilms caused by Streptomyces flavus underwent morphological evolutions from the roselike oxide film to homogeneous honeycomb-like structure, which led to the adsorption of NO2- and correspondingly mitigated to some extent the acid-induced corrosion of Fe3Al.
     According to a set of measurements of physical and electrochemical properties of Fe3Al, the formation mechanisms of biofilms corresponding to different dominant bacteria and their effects on the surface characteristics of Fe3Al were verified. On this basis, interface dynamic models of biofilms caused by the three dominant bacteria were further established through colloid chemistry theory and Newtonian fluid dynamics methods. Referring to the reversible adhesion theory and the exponential growth model of biofilms, the maximum adhesion amount and the total adhesion coefficient during the reversible adhesion stage were confirmed by analyzing the variation of the adhesion amount of the three dominant bacteria on the Fe3Al surfaces as a function of time and their growth index during the initial growth stage. Finally, dynamic models of the three dominant bacteria on the Fe3Al surfaces during both reversible adhesion stage and developing stage were established. The variation of critical bonding strength between the three dominantly-adhered biofilms and Fe3Al as a function of immersion time was also fixed. This part provides a solid foundation for further exploring the unique physical and chemical properties of Fe3Al-based materials and their potential applications.
     The lowest energy state of a single teichoic acid molecule was determined through in-depth understanding the bonding pattern, adhesion parameters and electronic structure features of mutual interaction between dominantly-adhered microbial cells. According to the speculation of atomic charge density, it can be identified that the phosphatide contributed largely to the adsorption of teichoic acid molecule on the surfaces. It can also be proved that the binding of single teichoic acid molecule to the Al2O3 substrate depend mainly on the adhesion ability of oxygen atoms on the surface, strong binding energy between single teichoic acid molecule and the Al2O3 substrate occurred, evidencing that gram positive bacteria is the source of the dominantly-adhered microbe on the Fe3Al surfaces.
     At the end of this dissertation, we devoted our attention to the preparation of Fe3Al/ZrO2 composites with different Fe3Al-to-ZrO2 ratio and their anti-corrosion performance under both sterile environment and Bacillus ba. existing environment. The results showed that Fe3Al/ZrO2 composites with 80 vol.% ZrO2 exhibited superior anti-corrosion behavior under the Bacillus ba.-adhered condition, which may be due to the mutual cooperation of high content of ZrO2 and the passivation films formed by a small amount of Fe3Al.
引文
[1]Iyer S., Gupta M., Charan S., et al. Volcanogenic-hydrothermal iron-rich materials from the southern part of the Central Indian Ocean Basin [J]. Marine Geology,1999,158:15-25.
    [2]Osaka Gas Co. Flammable ice:methane hydrate opens possibility for new energy [M]. Japan Echo Inc,1998.
    [3]杜希萍.七株海洋真菌次级代谢产物的研究[D]:[博士论文].厦门:厦门大学,2007.
    [4]刘四光,李文权,邓永智.海洋微藻多糖微波提取法研究[J].海洋通报(中文版)2007,26(4):105-110.
    [5]Gualdesi L. An auto-focusing heuristic model to increase the reliability of a scientific mission [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment.2006,567(2):505-507.
    [6]王路明.海洋材料[M].北京:化学工业出版社,2008.
    [7]Hatch E. J. Aluminum Properties and Physical Metalluray [M]. Metals Park,1984:242-309.
    [8]林乐耘,刘增才,徐杰.实海暴露防锈铝合金局部腐蚀敏感性研究[J].腐蚀科学与防护技术,2000,12(4):198-202.
    [9]夏兰廷,王录才,黄桂桥.我国金属材料的海水腐蚀研究现状[J].中国铸造装备与技术,2002,6:1-2.
    [10]黄桂桥.不锈钢在海水中的耐蚀性与腐蚀电位的关系[J].中国腐蚀与防护学报,2000,20(1):35.
    [11]Arenas A., Damborenea D. J. Protection of Zn-Ti-Cu alloy by cerium trichloride as corrosion inhibitor [J]. Surface & Coatings Technology,2005,200:2085-2091.
    [12]Mahmoud S. S. Electrochemical studies of pitting corrosion of Cu-Fe alloy in sodium chloride solutions [J]. Journal of Alloys and Compounds,2008,457:587-592.
    [13]Gurrappa I. Characterization of titanium alloy Ti-6A1-4V for chemical, marine and industrial applications [J]. Materials Characterization,2003:131-139.
    [14]Narayanan N., Seshadri S. K. Point defect model and corrosion of anodic oxide coatings on Ti-6Al-4VR [J]. Corrosion Science,2008,50:1521-1529.
    [15]Li Y., Qu L., Wang F. H. The electrochemical corrosion behavior of TiN and (Ti,Al)N coatings in acid and salt solution [J]. Corrosion Science,2003,45:1367-1381.
    [16]Tang Z. G., Stumpf W. The role of molybdenum additions and prior deformation on acicular ferrite formation in microalloyed Nb-Ti low-carbon line-pipe steels [J]. Materials Characterization,2008,59(6):717-728.
    [17]Blake J.I., Shenoi R. A., House J., et al. Strength modelling in stiffened FRP structures with viscoelastic inserts for ocean structures [J]. Ocean Engineering,2002,29(8):849-869.
    [18]Read P. J., Shenoi R. A. A review of fatigue damage modelling in the context of marine FRP laminates [J]. Marine Structures,1995,8(3):257-278.
    [19]Shenoi R. A., Dodkins A. R., Kelly A., et al. Design of Ships and Marine Structures Made from FRP Composite Materials [M]. Comprehensive Composite Materials, Oxford: Pergamon,2000,449429.
    [20]Triantallou T. C. Composites:a new possibility for the shear strengthening of concrete, masonry and wood [J]. Composites Science and Technology,1998,58:1285-1295.
    [21]Read P. J. C. L., Shenoi R. A. A Review of Fatigue Damage Modelling in the Context of Marine FRP Laminates [J]. Marine Structures,1995,8:257-278.
    [22]Khalifa M. A., Hodhodt O. A., Zaki M. A. Analysis and design methodology for an FRP cable-stayed pedestrian bridge [J]. Composites:Part B,1996,27B:307-317.
    [23]Lee S. C., Jeong S. T, Park J. N., et al. A study on mechanical properties of carbon fiber reinforced plastics by three-point bending testing and transverse static response [J]. Journal of Materials Processing Technology,2008,201(1-3):761-764.
    [24]Zhang Q. C., Wu J. S., Wang J. J., et al. Corrosion behavior of weathering steel in marine atmosphere [J]. Materials Chemistry and Physics,2002,77:603-608.
    [25]Lins V. F. C., Freitas M. A., Silva E. M. Paula E. Corrosion resistance study of Fe-Mn-Al-C alloys using immersion and potentiostatic tests [J]. Applied Surface Science,2005:124-134.
    [26]Godlewska E. Effect of molybdenum on high-temperature corrosion of Fe-Al intermetallics [J]. Intermetallics,2006,14:280-286.
    [27]Huang H. H., Chuang T. H. Erosion-and wear-corrosion behavior of Fe-Mn-Al alloys in NaCl solution [J]. Materials Science and Engineering,2000, A292:90-95.
    [28]Espinosa-medina M. A., La T. G. C. D., Liu H. B., et al. Hot corrosion behaviour of Fe-Al based intermetallic in molten NaVO3 salt [J]. Corrosion Science,2009,51:1420-1427.
    [29]Zhu X. L., Yao Z. J., Gu X. D., et al. Microstructure and corrosion resistance of Fe-Al intermetallic coating on 45 steel synthesized by double glow plasma surface alloying technology [J]. Transactions of Nonferrous Metals Society of China,2009,19:143-148.
    [30]Hu G. X., Xu Z. X., Liu J. J., et al. Microstructure and corrosion resistance of simultaneous Al-Fe coating on copper by pack cementation [J]. Surface & Coatings Technology,2009,203: 3392-3397.
    [31]高殿荣.海洋学(2)[M].北京:高等教育出版社,1986:152.
    [32]Fuente D. L., Castan J. G., Morcillo M. Long-term atmospheric corrosion of zinc [J]. Corrosion Science,2007,49:1420-1436.
    [33]Jonsson M., Persson D., Leygraf C. Atmospheric corrosion of field-exposed magnesium alloy AZ91D [J]. Corrosion Science,2008,50:1406-1413.
    [34]Jonsson M., Persson D., Gubner R. The initial atmospheric corrosion of magnesium alloy AZ91D [J]. Journal of the Electrochemical Society,2007,154:684-691.
    [35]Merlatti C., Perrin F. X., Aragon E. Evaluation of physico-chemical changes in sub-layers of multi-layer anticorrosive marine paint systems:Plasticizer and solvent release [J]. Progress in Organic Coatings,2008,61:53-62.
    [36]Mikhajlovskij Y. N., Strekalov P. V., Agafonov V. V. A model of atmospheric corrosion of metals allowing for meteorological and aero chemical characteristics [J]. Zashchita Metallov, 1980,16:396-413.
    [37]Bozec N. L., Jonsson M., Thierry D. Atmospheric corrosion of magnesium alloys influence of temperature, relative humidity and chloride deposition [J]. Corrosion,2004,60:356-361.
    [38]侯保荣等.金属材料的海洋腐蚀与防护[M].北京:科学出版社,1997:5-11.
    [39]Sadananda K., Vasudevant A. K. Analyses of high temperature fatigue crack growth behavior [J]. International Journal of Fatigue,1997,19(S1):183-189.
    [40]Louat N., Sadananda K., Duesberry M. Theoretical Evaluation of Crack Closure. metallurgical and materials transactions [J]. Physical metallurgy and materials science,1993, 24:2225-2228.
    [41]石伯妹,吕国志,张有宏,等.腐蚀疲劳裂纹扩展的马尔可夫链模型及实验验证[J].科学技术与工程,2007,17(18):5182-5185.
    [42]Kim D. K., Muralidharan S., Ha T. H. Electrochemical studies on the alternating current corrosion of mild steel under cathodic protection condition in marine environments [J]. Electrochimica Acta,2006,51:5259-5267.
    [43]Melchers R. E. Pitting corrosion of mild steel in marine immersion environment-Part 1: Maximum pit depth [J]. Corrosion,2004,60(9):824-836.
    [44]Nakai T., Matsushita H., Yamamoto N. Effect of pitting corrosion on local strength of hold frames of bulk carriers [J]. Marine Structure,2004,17:403-432.
    [45]王燕舞,崔维成.考虑腐蚀影响的船舶结构可靠性研究现状与展望[J].船舶力学,2007,11(2):307-320.
    [46]Liu J. H., Li S. M. Effect of sulphate-reducing bacteria on the electrochemical impedance spectroscopy characteristics of 1Cr18Ni9Ti. Journal of University of Science and Technology Beijing,2007,14(5):425-430.
    [47]Beech I. B. Corrosion of technical materials in the presence of biofilms-current understanding and state-of-the art methods of study [J]. International Biodeterioration & Biodegradation, 2004,53:177-183.
    [48]薛超波,王国良,金珊.海洋微生物多样性研究进展[J].海洋科学进展,2004,22(3):377-384.
    [49]Marshall K. C. Adsorption and adhesion processes in microbial growth at interfaces [J]. Advances in colloid and interface science,1986,25:59-86.
    [50]Clint J. H., Wicks A. C. Adhesion under water:surface energy considerations [J]. International Journal of Adhesion and Adhesives,2001,21(4):267-273.
    [51]Bayoudh S., Othmane A., Mora L., et al. Assessing bacterial adhesion using DLVO and XDLVO theories and the jet impingement technique [J]. Colloids and Surfaces B: Biointerfaces,2009,73(1):1-9.
    [52]Characklis W. G. Fouling biofilm development:A process analysis [J]. Biotechnology and Bioengineering,1981,23:1923-1960.
    [53]Osiro D., Colnago L. A., Otoboni A. M., et al. A kinetic model for Xylella fastidiosa adhesion, biofilm formation, and virulence [J]. FEMS Microbiology Letters,2004,236(2): 313-318.
    [54]Geoghegan J. A., Smith E.J., Speziale P., et al. Staphylococcus pseudintermedius expresses surface proteins that closely resemble those from Staphylococcus aureus [J]. Veterinary Microbiology,2009,138(3-4):345-352.
    [55]Foster T. J., Magnus H.. Surface protein adhesins of Staphylococcus aureus [J]. Trends in Microbiology,1998,6(12):484-488.
    [56]Lee A. Neglected niches, the microbial ecology of the gastrointestinal tract [J]. Advanced Microbial Ecologic.1985,8:115-162.
    [57]唐俊妮,史贤明,王红宁,等.细菌生物膜的形成与调控机制[J].生物学杂志,2009,26(2):48-53.
    [58]孟春,郭养浩,石贤爱,等.金色链霉菌代谢与胞外多糖降解消耗耦联效应的研究[J].福州大学学报(自然科学版),2002,30(6):900-903.
    [59]Tansel B., Sager J., Garland J., et al. Deposition of extracellular polymeric substances (EPS) and microtopographical changes on membrane surfaces during intermittent filtration conditions [J]. Journal of Membrane Science,2006,285(1-2):225-231.
    [60]Li X. Y., Yang S. F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge [J]. Water Research, 2007,41(5):1022-1030.
    [61]Cogan N. G., Chellam S.. Incorporating pore blocking, cake filtration, and EPS production in a model for constant pressure bacterial fouling during dead-end microfiltration [J]. Journal of Membrane Science,2009,345(1-2):81-89.
    [62]Decho A. W., Visscher P. T., Reid R. P.. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite [J]. Palaeogeography, Palaeoclimatology, Palaeoecology Geobiology:Objectives, Concept, Perspectives.2005,219(1-2):71-86.
    [63]Kjelleberg S., Humphrey B. A., Marshall K. C. Initial phases of starvation and activity of bacteria at surfaces [J]. Applied and Environmental Microbiology,1982,43:1166-1172.
    [64]Stott J. F. D. Corrosion in microbial environments [A]. Shreir's Corrosion,2010,2: 1169-1190.
    [65]Reyes A., Letelier M. V., Iglesia D. L. R., et al. Microbiologically induced corrosion of copper pipes in low-pH water [J]. International Biodeterioration & Biodegradation,2008,61: 135-141.
    [66]Mansfeld F.. The interaction of bacteria and metal surfaces [J]. Electrochimica Acta,2007,52: 7670-7680.
    [67]Herrera L. K., Videla H. A. Role of iron-reducing bacteria in corrosion and protection of carbon steel [J]. International Biodeterioration & Biodegradation,2009,63(7):891-895.
    [68]Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiological Reviews,1995,59(1): 143-169.
    [69]Arnold R. G., Hoffmann M. R., Dichristina T. J., et al. Regulation of dissimilatory Fe(Ⅲ) reduction activity in Shewanella putrefaciens [J]. Applied and Environmental Microbiology, 1990,56(9):2811-2817.
    [70]Starosvetsky J., Starosvetsky D., Armon R. Identification of microbiologically influenced corrosion (MIC) in industrial equipment failures [J]. Engineering Failure Analysis,2007, 14(8):1500-1511.
    [71]Beech I. B., Sunner J.. Biocorrosion:towards understanding interactions between biofilms and metals [J]. Current Opinion in Biotechnology,2004,15(3):181-186.
    [72]Rojas-chapana J. A., Tributsch H. Biochemistry of sulfur extraction in bio-corrosion of pyrite by Thiobacillus ferrooxidans [J]. Hydrometallurgy,2001,59(2-3):291-300.
    [73]Ignatiadis I., Amalhay M. Experimental study of corrosion of two stainless steels during the oxidative bacterial dissolution of pyrite using mass loss and electrochemical techniques [J]. International Journal of Mineral Processing,2001,62(1-4):199-215.
    [74]Rainha V. L., Fonseca I. T. Kinetic studies on the SRB influenced corrosion of steel:A first approach [J]. Corrosion Science,1997,39(4):807-813.
    [75]Von Wolzogen Kuhr C. A. H., Van der Vlugt I. S. The graphitization of cast irons an electrochemical process in anaerobic soils [J]. Water,1934,18:147-165.
    [76]Silva S. D., Basseguy R., Bergel A. The role of hydrogenases in the anaerobic microbiologically influenced corrosion of steels [J]. Bioelectrochemistry,2002,56:77-79.
    [77]Daumas S., Magot M., Crolet J. L. Measurement of the net production of acidity by a sulphate-reducing bacterium:experimental checking of theoretical models of microbially influenced corrosion [J]. Research in Microbiology,1993,144(4):327-332.
    [78]Silva S. D., Basseguy R., Bergel A. Electron transfer between hydrogenase and 316L stainless steel:identification of a hydrogenase-catalyzed cathodic reaction in anaerobic mic [J]. Journal of Electroanalytical Chemistry,2004,561:93-102.
    [79]Bryant R. D., Laishley E. J. The role of hydrogenase in anaerobic biocorrosion [J]. Canadian Journal of Microbiology,1990,36:259-264.
    [80]Videla H. A. Manual of Biocorrosion [M]. New York:Lewis,1996:179-220.
    [81]Borenstein S. w.. Microbiologically Influenced Corrosion Handbook [M]. Cambridge, U.K: Woodhead Publishing,1994:310.
    [82]Harby J. A. Utilization of cathodic hydrogen by Sulphate-Reducing Bacteria [J]. British Corrosion Journal,1983,18(4):190-193.
    [83]Iverson. Microbiany influenced corrosion on stainless steel in wastewater treatment plants [J]. British Corrosion Journal,2001,36(4):277-283.
    [84]Lee W., Characklis W. G. Corrosion of mild steel under anaerobic biofilm [J]. Corrosion, 1993,49(3):186-199.
    [85]Eashwar M. H. Microbiologically Influenced Corrosion of steel during putrefaction of seawater:evidence for a new mechianism [J]. Corrosion,1993,49(2):108-113.
    [86]Jayaraman, Ornek D., Lee C. C., et al. Axenic aerobic biofilms inhibit corrosion of copper and aluminum [J]. Applied Microbiology and Biotechnology,1992,52(6):787-790.
    [87]Jayaraman, Hallock P. J., Carson R. M. Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ [J]. Applied Microbiology and Biotechnology,1999,52(2):267-275.
    [88]Jayaraman, Chang E. T., Earthman J. C., et al. Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion [J]. Journal of Industrial Microbiology and Biotechnology,1997,48(1):11-17.
    [89]Ismall K. M., Gehrig R., Jayaraman A., et al. Corrosion control of mild steel by aerobic bacteria under continuous flow conditions [J]. Corrsion,2000,58(5):417-423.
    [90]Videla H. A., Herrera L. K.. Understanding microbial inhibition of corrosion. A comprehensive overview [J]. International Biodeterioration & Biodegradation,2009,63(7): 896-900.
    [91]Dexter S. C., Duquette D. J., Siebert O. W., et al. Use and limitations of electrochemical techniques for investigating microbiological influenced corrosion [J]. Corrosion,1991,47: 308-318.
    [92]Videla H. A., Guiamet P. Protection Actions of Serratia marcescens in Relation to the Corrosion of Aluminum and its Alloys [M]. Biodeterloration Research 1, New York:NY Plenum Press,1986,75.
    [93]Jayaraman, Sun A. K., Wood T. K.. Characterization of axenic Pseudomonas fragi and Escherichia coli biofilms that inhibit corrosion of SAE 1018 steel [J]. Journal of Applied Microbiology,1998,48(4):485-492.
    [94]Jayaraman, Lee C. C., Chen M. W., et al. Inhibiting sulfate-reducing bacteria in bilfilms by expressing the antimicrobial peptides indolicidin and bactenecin [J]. Journal of Industrial Microbiology and Biotechnology,1999,22(3):167-175.
    [95]段继周.海水和海泥环境中厌氧细菌对海洋用钢微生物腐蚀行为的影响[D]:[博士论文].青岛:中国科学院海洋研究所,2004.
    [96]Dubiel M., Hsu C. H., Chien C. C., et al. Microbial iron respiration can protect steel from corrosion [J]. Applied Environmental Microbiology,2002,68:1440-1445.
    [97]Edyvean R. G. J., Benson J., Thomas C. J., et al. Biological Influences on Hydrogen Effects in Steel in Seawater [C]. Houston, TX:NACE International,1997.
    [98]Kelly R. G., Scully J. R., Shoesmith D. W., et al. Electrochemical techniques in corrosion science and engineering [M]. USA.:CRC press,2002:59-70.
    [99]Eashwar M., Maruthamuthu S., Sathiyanarayanan S., et al. The ennoblement of stainless alloys by marine biofilms:the neutral pH and passivity enhancement model [J]. Corrosion Science,1995,37(8):1169-1176.
    []00]王庆飞.模拟生物腐蚀方法研究典型金属材料的海水腐蚀行为[D]:[博士论文].天津:天津大学,2000.
    [101]李相波.海洋环境中微生物附着的电化学特征及检测与控制方法研究[D]:[博士论文].青岛:中国科学院海洋研究所,2004.
    [102]曲雨水,黄德先,金以慧.基于多神经网络的发酵过程菌丝浓度估计[J].计算机工程与应用,2004,40(10):208-210.
    [103]Fentem J. H., Briggs D., Chesn C., et al. A prevalidation study on in vitro tests for acute skin irritation:results and evaluation by the Management Team [J]. Toxicology in Vitro, 2001,15(1):57-93.
    [104]Wen J., Zhao K. L., Gu T. Y., et al. A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde [J]. International Biodeterioration & Biodegradation,2009:1102-1106.
    [105]Miranda E., Bethencourt B M., Botana F. J., et al. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator [J]. Corrosion Science,2006,48:2417-2431.
    [106]Li W. W., Zhou W. Z., Zhang Y. Z., et al. Flocculation behavior and mechanism of an exopolysaccharide from the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913 [J]. Bioresource Technology,2008,99(15):6893-6899.
    [107]Coyer J. A., Cabello-pasini A., Swift H. et al. N2 fixation in marine heterotrophic bacteria: Dynamics of environmental and molecular regulation [J]. Proceedings of the National Academy of Sciences,1996,93:3575-3580.
    [108]刘涛.金属基体超疏水表面的制备及其海洋防腐防污功能的研究[D]:[博士论文].中国海洋大学,2009.
    [109]Mohammed E. S., Martha E. S., Fischer B. H.. On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behaviour and in vitro biocompatibility [J]. Biomaterials,2002,23(14):2887-2894.
    [110]Mohammed E. S., Martha E. S., Fischer B. H.. On the transformation behaviour, mechanical properties and biocompatibility of two NiTi-based shape memory alloys:NiTi42 and NiTi42Cu7 [J]. Biomaterials,2001,22:2153-2161.
    [111]Rombaut G., Dhert P., Vandenberghe J., et al. Selection of bacteria enhancing the growth rate of axenically hatched rotifers Brachionus plicatilis [J]. Aquaculture,1999,176: 195-207.
    [112]Mansfield F., Little B. A technical review of electrochemical techniques applied to microbiolog ically influenced corrosion [J]. Corrosion Science,1991,32:247-272.
    [113]Dexter S. C., Duquette D. J., Siebert O. W., et al. Use and limitation of electrochemical techniques for investigating microbiological corrosion [J]. Corrosion,1991,47:308-317.
    [114]Xu L. C., Chan K. Y., Fang H. H. P. Application of atomic force microscopy in the study of microbiologically influenced corrosion [J]. Materials Characterization,2002,48:195-203.
    [115]Sadowski A. R., Chen G. A scanning auger microprobe analysis of corrosion products associated with SRB [M]. Houston TX:NACE,1995:218.
    [116]Clayton R. Investigation to the susceptibility of corrosion resistant alloys to biocorrosion [M].1997:AD2 A281066.
    [117]Gaylarde C. C. Advances in detection of microbiologically induced corrosion [J]. International Biodeterioration,1990,26(1):11-22.
    [118]Yuan S. J., Choong A. M. F., Pehkonen S. O. The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy [J]. Corrosion Science,2007, 49:4352-4385.
    [119]Maotil K., Carpen L., Hakkarainen T., et al. Biofilm Development During Ennoblement of Stainless Steel in Baltic Sea Water:A Microscopic Study [J]. Internnrional Biodeterioration & Biodegradation,1997,40(1):1-10.
    [120]Walker A. L., Walker J. C. W.. Biological fuel cell and an application as a reserve power source [J]. Journal of Power Sources,2006,160:123-129.
    [121]Ma L. M., Ding Z. G., Gao T. Y., et al. Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system [J]. Chemosphere,2004,55:1207-1212.
    [122]Iwona B. B.. Corrosion of technical materials in the presence of biofilms-current understanding and state-of-the art methods of study [J]. International Biodeterioration & Biodegradation,2004,53:177-183.
    [123]Dexter C. S., Lafontaine P. J. Effect of natural marine biofilms on galvanic corrosion [J]. Corrosion,1998,54(1):122-128.
    [124]Mansfeld F., Little B. Electrochemical techniques applied to microbiologically induced corrosion [J]. Corrosion Science,1991,32(3):247-272.
    [125]Dubey S. R., Upadhyay N. S. A review of electrochemical techniques applied to microbiologically influenced corrosion in recent studies [J]. Indian Journal of Chemical Technology,1996,4:207.
    [126]吴建华.海洋微生物腐蚀的电化学研究方法[C].1998年全国腐蚀电化学及测试方法学术讨论会论文集.长沙:中国腐蚀与防护学会,1998.
    [127]Hhassissene S., Cigunet E., Ngwen B. Corrosion potential analysis during electrochemical cementation experiments [J]. Electrochimica Acta,1994,39(1):151-153.
    [128]Gabriele R. Some considerations on the polarization resistance method [J]. Corrosion Science,1999,41(12):2353-2367.
    [129]于辉,董飒英,徐海波,等.不同阳极电位下铝青铜的电化学阻抗谱研究[J].电 化学,2004,10(1):35-40.
    [130]贺鸿珠,范立础,史美伦.海水对不同强度混凝土中钢筋锈蚀的影响[J].建筑材料学报,2004,7(3):291-294.
    [131]Veleva L., Chin J., Amo B. Del. Corrosion electrochemical behavior of epoxy anticorrosive paints based on zinc molybdenum phosphate and zinc oxide [J]. Progress in Organic Coatings,1999,36:211-216.
    [132]隋静,范国梁,王庆飞.多种电化学技术联合分析研究海洋微生物对钢铁的腐蚀作用[J].现代仪器,2002,3:29-32.
    [133]Behpour M., Ghoreishi S. M., Soltani N., et al. The inhibitive effect of some bis-N, S-bidentate Schiff bases on corrosion behaviour of 304 stainless steel in hydrochloric acid solution [J]. Corrosion Science,2009,51:1073-1082.
    [134]Lengyel B., Meszros L., Meszaros G., et al. Electrochemical methods to determine the corrosion rate of a metal protected by a paint film [J]. Progress in Organic Coatings,1999, 36:11-14.
    [135]唐晓.海洋环境中碳钢腐蚀速度软测量方法研究[D]:[硕士论文].青岛:中国科学院海洋研究所,2003.
    [136]Berkeley R. C. W. Microbial adhesion to surfaces [M]. London:society of chemical industry,1980:95.
    [137]Otero E., Pardo A., Pkrze F. J., et al. A high temperature corrosion kinetic study of HK-40 superalloy surface treated, in contact with eutectic mixture 82%K2S2O7-18%V2O5 [J]. Corrosion Science,1997,39(1):133-145.
    [138]He X. Y., Li N., Mineev M.. A kinetic model for corrosion and precipitation in non-isothermal LBE flow loop [J]. Journal of Nuclear Materials,2001,297:214-219.
    [139]Rainha V. L., Fonseca I. T. E. Kinetic studies on the SRB influenced corrosion of steel:a first approach [J]. Corrosion Science,1997,39(4):807-813.
    [140]Pena J., Torres E., Turrero M. J., et al. Kinetic modelling of the attenuation of carbon steel canister corrosion due to diffusive transport through corrosion product layers [J]. Corrosion Science,2008,50:2197-2204.
    [141]Aagaard P., Helgeson H. C. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; Ⅰ, Theoretical considerations [J]. American Journal of Science,1982,282:237-285.
    [142]Hsu J. P., Wang H. H.. Kinetics of bacterial adhesion--A stochastic analysis [J]. Journal of Theoretical Biology,1987,124(4):405-413.
    [143]Liu Y., Capdeville B. Specific activity of nitrifying biofilm in water nitrificaation process [J]. Water Research,1996,30(7):1645-1650.
    [144]Liu Y., Yang S. F., Tay J. H. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria [J]. Journal of Biotechnology,2004,108(2):161-169.
    [145]程莎Vibrio natriegens对海洋金属腐蚀的影响及抗点蚀方法研究[D]:[博士论文].青岛:中国海洋大学,2009.
    [146]Albert M., Friedrich J. O., Adhikari N. K., et al. Utility of Gram stain in the clinical management of suspected ventilator-associated pneumonia:Secondary analysis of a multicenter randomized trial [J]. Journal of Critical Care,2008,23(1):74-81.
    [147]Rombaut G., Dhert P., Vandenberghe J., et al. Selection of bacteria enhancing the growth rate of axenically hatched rotifers Brachionus plicatilis [J]. Aquaculture,1999,176: 195-207.
    [148]Coyert J. A., Cabellopasinit A., Swift H., et al. Biochemistry n2 fixation in marine heterotrophic bacteria:dynamics of environmental and molecular regulation [J]. Proceedings of the National Academy of Sciences,1996,93:3575-3580.
    [149]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.
    [150]Fuente D. L. D., Huerta E. O., Morcillo M. Studies of long term weathering of aluminium in the atmosphere [J]. Corrosion Science,2007,49(7):3134-3148.
    [151]孙霜青,郑弃非,李德富等.带包铝层的LC4铝合金长期大气腐蚀行为研究[J].稀有金属,33(14):515-520.
    [152]Buchanan R.E伯杰细菌鉴定手册[M].北京:科学出版社,1984.
    [153]Unell M., Nordin K., Jernberg C., et al. Degradation of mixtures of phenolic compounds by Arthrobacter chlorophenolicus A6 [J]. Biodegradation,2008,19:495-505.
    [154]张大全,高立新.苯并三氮唑和8-羟基喹啉对铜缓蚀作用的研究[J].材料保护2002,35(4):10-11.
    [155]李永梅,马瑞娜,曹晓明,等.纯铁和Fe-Al金属间化合物在液锌中的腐蚀研究[J].热 加工工艺,2009,8:1-6.
    [156]匡尹杰,周琼花,王名浩.有机缓蚀剂对钢筋的缓蚀作用[J].长沙理工大学学报(自然科学版),2008,5(2):97-102.
    [157]Wang F., Li C. R., Lv Y. Z. et al. Ice accretion on superhydrophobic aluminum surfaces under low temperature conditions [J]. Cold Regions Science and Technology, In Press, Accepted Manuscript.
    [158]Mccarthy T. J., Lei G. D., Sachtler W. M. Methylcyclopentane Conversion Catalysis over Zeolite-Y EncagedRhodium:A Test for the Metal-Proton Adduct Model [J]. Journal of Catalysis,1996,159(1):90-98.
    [160]Rao T. S., Nair K. V. Microbiologically influenced stress corrosion cracking failure of admiralty brass condenser tubes in a nuclear power plant cooled by freshwater [J]. Corrosion Science,1998,40(11):1821-1836.
    [161]柳俊哲,太星镐,野口贵文.掺防冻剂混凝土中亚硝酸盐的长期阻锈效果[J].混凝土,2004(9):14-17.
    [162]李嘉,尹衍升,刘强等.压痕-淬冷技术表征氧化锆/铁铝复合材料的抗热震性能[J].复合材料学报,2004,21(4):50-56.
    [163]Garc A. M., Lee M. F., Escudero M. L., et al. Corrosion behaviour of an Fe3Al-type intermetallic in a chloride containing solution [J]. Intermetallics,1999,7(2):185-191.
    [164]赵振国等.界面化学基础[M].北京:化学化工出版社,1996:205-234.
    [165]董泽华,郭兴蓬,郑家木等.碳钢在生物膜和硫化物膜下的电化学腐蚀行为[J].电化学,2001,7(2):173-179.
    [166]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [167]常雪婷.海洋微生物附着腐蚀铁铝金属间化合物的机制研究[D]:[硕士论文].济南:山东大学,2007.
    [168]Starosvetsky J., Starosvetsky D., Armon R. Identification of microbiologically influenced corrosion (MIC) in industrial equipment failures [J]. Engineering Failure Analysis,14(8): 1500-1511.
    [169]Linhardt P. MIC of stainless steel in freshwater and the cathodic behaviour of biomineralized Mn-oxides [J]. Electrochimica Acta,2006,51(27):6081-6084.
    [170]Magalh F. C., Sobrinho E. G., Andrade C. A., et al. Microorganism influenced corrosion (MIC) process in petrob refinery water cooling system [J]. International Biodeterioration & Biodegradation,1996,37(1-2):125-126.
    [171]Fowler H. W., Mckay A. J. The measurement of microbial adhesion [M]. Adsorption of microorganisms to surface, New York:A Wiley Interscience Publication,1980,174.
    [172]Hwang M. J., Stockfisch T. P., Hagler A. T. Derivation of Class Ⅱ Force Fields.2. Derivationand Characterization of a Class Ⅱ Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules [J]. Journal of the American Chemical Society,1994,116: 2515-2525.
    [173]Liu Y. Adhesion kinetics of nitrifying bacteria on various thermoplastic supports [J]. Colloids and Surfaces B:Biointerfaces,1995,5(5):213-219.
    [174]Byers J., Choracklis W. Early fouling biofilm formation in a turbulent flow system [J]. Material Research,1981,15:483-491.
    [175]Bird R. B., Stewart W. E., Lightfoot E. N. transport phenomena [M]. New York:John Wiley & Sons, Inc,1960.
    [176]Evens R. U. Mechanism of rusting [J]. Corrosion Science,1969,9:813-821.
    [177]Eashwar H. M. Microbiologically Influenced Corrosion of steel during putrefaction of seawater:evidence for a new mechanism [J]. Corrosion,1993,49(2):108-113.
    [178]刘学文,柏其亚,李国朝.氧化铝-氧化锆烧结陶瓷的耐海水腐蚀性能[J].腐蚀与防护,2009,30(7):459-461.
    [179]王伟.海洋环境中微生物膜与金属电化学状态相关性研究[D]:[博士论文].青岛:中国科学院海洋研究所,2003.
    [180]王佳,李相波,王伟.海水环境中微生物附着对钝性金属开路电位的影响[J].中国腐蚀与防护学报,2004,24(5):262-266.
    [181]项民,张琦,骆军华.常温酸性腐蚀对热障涂层性能的影响[J].装备环境工程,2005,2(5):59-62.
    [182]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社,1998:187.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.