高含H_2S、CO_2油气田缓蚀剂的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H_2S、CO_2腐蚀是世界石油工业中常见的腐蚀类型,对我国石油工业的发展也产生了非常大的影响。在H_2S、CO_2腐蚀防护中,使用缓蚀剂是国内外腐蚀防护的一种重要手段。目前所报道的缓蚀剂中抗高浓度H_2S和高浓度CO_2腐蚀的不多,并且价格较高,针对性很强,有待进一步研究开发。本文选取油田常用的15种十一烷基咪唑啉类缓蚀剂为研究对象,将应用在药物分子设计方面的定量构效关系方法移用到缓蚀剂分子设计上,通过分子动力学模拟和量子化学方法对设计出的新分子可能具有的缓蚀性能进行了理论预测,并采用实验方法对设计结果进行验证。通过系统的分析研究得到如下结果:
     采用量子化学密度泛函理论(DFT)和多元回归分析方法对15种十一烷基咪唑啉衍生物缓蚀剂的反应活性及微观结构与其抗H_2S、CO_2缓蚀效率之间的关系进行了研究,建立了缓蚀剂缓蚀性能预测的QSAR模型,结果表明,分子的反应活性区域和活性位点主要集中在咪唑啉分子的头部,咪唑环和亲水取代基上的杂原子是分子的主要活性位点,而烷基尾链对活性几乎不产生影响;电子转移参数ΔN、咪唑环上非氢原子净电荷之和ΣQring及分子极化率α对咪唑啉类缓蚀剂的缓蚀性能有很大的贡献,增加分子的ΔN和α值、降低ΣQring能显著改善缓蚀剂的缓蚀效率。在QSAR研究的基础上,结合软硬酸碱(SHAB)理论和分子内协同效应,通过改变取代基R2上的基团或原子来改变缓蚀剂分子结构参数值如ΔN,ΣQring、α,设计了4个烷基链长为11的新缓蚀剂分子。QSAR模型预测结果表明所设计的4个缓蚀剂分子都具有较好的抗H_2S、CO_2腐蚀性能。
     根据前人的研究结果,对所设计的四种新型咪唑啉缓蚀剂分子的烷基链长度进行了修正,并采用分子动力学模拟(MD)和量子化学计算(QC)相结合的方法对所设计的新缓蚀剂分子进行理论筛选和评价。MD结果表明,当亲水官能团相同时,烷基链长为15的分子较烷基链长为11、17的分子具有更大的吸附能。烷基链长为15的四种新缓蚀剂分子A、B、C、D与金属界面发生吸附时,分子上的咪唑环和亲水支链优先吸附,烷基长链以一定的倾角远离金属表面,形成一层疏水膜,阻碍腐蚀介质向金属表面迁移;分子在Fe表面的吸附稳定性按D、C、A、B的顺序逐渐减弱。QC结果显示,A、B、C、D分子的反应活性主要分布在咪唑环和亲水支链上,具有多个反应活性位点,能在金属表面形成多中心吸附。D分子具有最强的反应活性,C、A、B分子的反应活性依次减弱。
     采用溶剂法对所设计的前三种分子进行了合成,并采用失重法和电化学极化曲线及交流阻抗等方法对其在H_2S/CO_2共存的盐溶液中对Q235钢的缓蚀性能进行了评价,结果表明三种缓蚀剂都具有较好的缓蚀性能,其平均最佳缓蚀效率分别为92.96%、90.72%、94.36%,最佳缓蚀剂添加浓度为100mg/L,验证了计算机模拟方法进行分子设计的正确性。
     最后,采用失重法研究了1-(2-甲基-硫脲乙基)-2-十五烷基-咪唑啉(B)与2-氨基噻唑(AT)复配对Q235钢在CO_2/H_2S共存盐溶液中缓蚀协同作用,结果表明,相同条件下复配缓蚀剂的缓蚀性能较复配前有了较大的提高,在含有50mg/L缓蚀剂B的腐蚀溶液中加入AT的浓度达到200mg/L时其缓蚀效率为97.63%,并通过两者复配的协同参数证明了协同效应的存在。B+AT的加入能够显著增加腐蚀反应的表观活化能,其在Q235钢表面的吸附符合Langmiur吸附等温式,吸附过程为自发的放热过程,也是熵减小的过程,吸附方式为以化学吸附为主的混合吸附。
H_2S and CO_2 corrosion, is a common corrosion type in the world oil industry, also is one of the prominent problems which plagued the development of petroleum industry of China. In the H_2S and CO_2 corrosion protection, the use of inhibitor is a significant measure at home and abroad. At present, the inhibitor which resists high concentration of H_2S and CO_2 is reported rarely, and highly priced, and also has high pertinence, depending on the further development. In this paper, 15 kinds of undecyl imidazoline corrosion inhibitors commonly used in oil field were chosen to be research objects.
     The quantitative structure-activity relationship (QSAR) of undecyl imidazoline corrosion inhibitors for anti-corrosion behavior towards hydrogen sulfide and carbon dioxide was studied using density functional theory (DFT) and regression analysis methods. A stepwise regression analysis was used to determine the main independent factors that affect the activity of the compounds and a QSAR model was established. We found that the electron transfer parameter (ΔN), the electrostatic charge of non-hydrogen atoms in the imidazole ring (ΣQring) and the mean molecular polarizability (α) were the main independent factors that contribute to corrosion inhibition. Based on the QSAR model, combination of hard and soft acid-base theory and intramolecular synergistic effect, via modifying substituent R2 structures to improve the values of the three parameters, such asΔN,ΣQring, andα, we have theoretically designed 4 new compounds. The predicted results by QSAR model show that the four inhibitors all have excellent anti-corrosion of hydrogen sulfide and carbon dioxide The method of quantitative structure-activity relationship which used for design drug molecules was applied to the inhibitor molecular designing, through theoretical and experimental methods to verify the design results . The systemic research results are as follows: activities.
     According to the results of previous studies, alkyl chain lengths of four new imidazoline corrosion inhibitor molecules were revised, and its inhibition performance was theorectically filtered and evaluated using molecular dynamic simulations (MD) and quantum chemistry calculations (QC). MD result shows that the corrosion inhibitor molecule with alkyl chain length of 15 has better adsorption energy than the molecules whose alkyl chain length is 11 or 17 when hydrophilic groups are the same. When the adsorption process occurs, the ring of imidazole and the hydrophilic chain were firstly adsorbed to the metal surface, and the non-polar alkyl chain deviated from the surface and self-assemblies into a compactly-arranged hydrophobic membrance. The adsorption stability weakens gradually in the order of D, C, A and B. Quantum chemistry calculation results indicated that the reaction activity sites mainly concentrated in the imidazole ring and heteroatoms. D bore the highest reaction activity among the four molecules. The reaction activity weakens gradually in the order of D, C, A and B.
     The first three molecules we designed were synthesized by solvent method and the corrosion inhibition performance for mild steel corrosion under the condition of H_2S and CO_2 coexistence were investigated by weight loss method, polarization curve and electrochemical impedance spectroscopy (EIS). The results indicated that the three inhibitors all have excellent corrosion inhibition performance. The average highest inhibition efficiencies of the three corrosion inhibitors are 92.96%, 90.72% and 94.36%, respectively. The best added concentration is 100mg/L, which verified the correctness of molecular design by computer simulation method.
     The synergetic adsorption and corrosion inhibition properties of 1-(2-methyl- thioureaethyl)-2-pentadecyl-imidazoline (B) and 2-aminothiazole (AT) for Q235 steel corrosion under H_2S and CO_2 coexistence were investigated by weight loss method. Results showed that the combined inhibitor strongly inhibited the corrosion of Q235 steel. The corrosion inhibition efficiency using 50mg/L B was 97.63%. The inhibition efficiency increases with increasing in inhibitor concentration but decrease with the temperature, and it has good and high temperature performance. Adsorption obeyed Langmuir isotherm. It was spontaneous and exothermic, and belonged to mix-type adsorption which mainly dominated by chemisorptions.
引文
[1]刘同春.一种油井酸化缓蚀剂及制备方法, CN: 1163301A, 1997-10-29.
    [2] Martin J, Valone F. Nonionic surfactants on inhibition of corrosion of carbonsteel in acid environments[J]. Corrosion, 1985,41(5): 281.
    [3] Charles M, Webster G, et al. Processes for Preventing Corrosion and Corrosion Inhibitors[p]. US2466517.1949.
    [4]黄魁元.缓蚀剂科技发展历程的回顾与展望[M].北京:化学工业出版社,1999.
    [5]杨小平,李再东.磨溪气田的腐蚀与复合缓蚀剂CZ3-1+CZ3-3的研制与应用[J].油田化学,1998,15(1):132-136.
    [6]杨怀玉,祝英剑. IMC系列缓蚀剂研究及在我国油气田的应用[J].油田化学,1999,16(3):273-277.
    [7]露殿珍,杨怀玉. IMC-80缓蚀剂的研究和应用[J].高等学校化学学报, 1997,18(4): 595-599.
    [8]颜红侠,张秋禹.咪唑啉缓蚀剂的合成及其抑制CO2腐蚀性能的研究[J].石油与天然气化工, 2002, 31(6): 319-320.
    [9]杨昌柱,朱志平,周琼花,等. OF-15与酸性介质缓蚀剂的协同效应研究[A].第十届全国缓蚀剂学术研讨会论文集[C].华中理工大学,中国腐蚀与防护学会缓蚀剂专业委员会, 1997, 176-183.
    [10]赵雯,张秋禹,王杰良.一种新型CO2缓蚀剂的制备与评价[J].石油与天然气化工, 2003, 32(4): 230-237.
    [11]张玉芳,路民旭.咪唑啉及其衍生物在CO2腐蚀介质中的缓蚀行为研究进展[J].精细石油化工, 2001, 6(5): 49-52.
    [12]艾俊哲,贾红霞.油气田二氧化碳腐蚀及防护技术[J].湖北化工, 2002, (2):3-5.
    [13]高延敏,陈佳坚,雷良才.软硬酸碱理论在缓蚀技术上的应用进展[M].北京:化学工业出版社, 1999.
    [14] Eanabary A. Preparation and Evaluation of Some New Corrosion Inhibitors in Varnishes[J]. Anti-corrosion Methods and Materials,2001,48(1):47.
    [15]熊楚才.井下串管缓蚀技术研究和影响缓蚀剂性能因素[J].油田化学, 1993, 10(2):150-152.
    [16] Florida I. Inhibition Effect of Some Organic N-containing Compounds in Acidic Corrosion of Carbonized Steel [J]. Anti-corrosion Methods and Materials, 2001, 48(1): 18-20.
    [17] A1-sabbagh A. Organic Corrosion Inhibitors for Steel Pipelines in Oilfield[J]. Anti-corrosion Methods and Materials,1996,43(1):11-13.
    [18]邸静,马洁.用电化学方法研究咪唑啉类缓蚀剂对碳钢的缓蚀性能[J].师范大学学报,1997,8(3):60-63.
    [19]张颖.抗H2S腐蚀的咪唑啉类缓蚀剂的研究[A],第十一届全国缓蚀剂学术讨论会论文集[C].华中理工大学,中国腐蚀与防护学会缓蚀剂专业委员会, 1999,359.
    [20]杨小平,陆伟. CA3-1E气/液双效缓蚀剂的研制与应用[J].油田化学, 1999,16(4):317-319.
    [21]张大全,陆飞.各类缓蚀剂开发和应用过程中环境影响的探讨[J].腐蚀与防护, 1999,20(3):99-102.
    [22]杨小平,贺泽元,向伟.磨溪气田的腐蚀与防腐[J].天然气工业, 1998,18(5):68-72.
    [23]陈洪,范晓静,景洪信.沉降型油井缓蚀剂IMC-3的研究与运用[J].断块油气田, 1998,5(5):67-72.
    [24] Bernardus A. Preparation of dihydrothiazoles[P]. US:4477674,1984-12-2.
    [25] Martin J A, Valone F W. Corrosion, 2001, 41(5):281.
    [26] Wang D, Yong S, Wang M, et al. Theoretical and Experimental Studies of Structure and Inhibition Efficiency of Imidazoline Derivatives [J]. Corros Sci, 1999, 41(10) : 1911-1919.
    [27]方云.两性表面活性剂[M].中国轻工业出版社, 2001.
    [28] Edwards A, Osborne C,Webster S, et al. Mechanistic Studies of the Corrosion Inhibitor Oleic Imidazoline[J]. Corros Sci, 1994, 36 (2) : 315-325.
    [29] Martin J A, Valone F W. Corrosion, 2001, 41(8):465.
    [30]吕战鹏,彭芳明.新型咪唑啉缓蚀剂的合成结构表征及缓蚀性能[J].油田化学, 1994, 11 (2):163.
    [31]黄红兵,杨仲熙. CT2-4水溶性油气井缓蚀剂的合成与应用研究[J].石油与天然气化工, 1996, 25(4) : 231-235.
    [32]张玉芳,路民旭.一种油田用新型抗CO2腐蚀缓蚀剂[P].中国专利: 00109687. 7,2000 - 12 - 20.
    [33]张玉芳,路民旭,李爱兰. TG100缓蚀剂的缓蚀行为研究[J].油气储运,2001,20(9): 44-46.
    [34]张蕴强.户部寨气田腐蚀分析及腐蚀防护[J].石油与天然气化工, 2003,32(3): 173-175.
    [35]李酽,郭英,才华,邹云玲.缓蚀剂构效关系的量子化学研究[J].腐蚀与防护, 2007,28(8):392-395.
    [36]任呈强,刘道新,白真权,等.咪唑啉衍生物在含H2S/CO2油气井环境中的缓蚀行为研究[J].天然气工业, 2004, 24 (8) : 53-55.
    [37]梅平,艾俊哲,陈武,等.抑制二氧化碳腐蚀的缓蚀剂及其缓蚀机理研究[J].石油学报, 2004, 25(5) : 104-107.
    [38]张学元,马利民,杜元龙,等.咪唑啉酰胺在含CO2溶液中的缓蚀机理[J].应用化学, 1998, 15 (6) : 21-24.
    [39]苏俊华,张学元,王凤平,等.饱和CO2的高矿化度溶液中咪唑啉缓蚀机理的研究[J].材料保护, 1999, 32 (5) : 32-33.
    [40]黄金营,魏慧芳,张利嫱,等.咪唑啉油酰胺的合成及在油气井产出液中的缓蚀性能[J].油田化学, 2004, 21 (3) : 230-233, 236.
    [41]王业飞,等.一种新型咪唑啉复配缓蚀剂对A3钢在饱和CO2盐水溶液中的缓蚀性能[J].石油学报, 2006, 22(3): 74-78.
    [42] Dewar M J S著,戴树珊,刘有德译.有机化学分子轨道理论[M],北京:科学出版社,977,28-91.
    [43] Dewar M.J.S. Molecular Photoelectron Spectroscopic Studies of Some Trifluoromethyl- Substituted Phosphines and Chlorophosphines[J]. Amer.Chem.Soc. 1975,97(13): 3653.
    [44] Vosta J,Eliasek J. A Quantum Chemical Study of the Corrosion Inhibition of Iron by means of Aniline Derivatives in Hydrochloric Acid[J]. Corrosion. 1976, 32(5): 183-185.
    [45] Ramon S, Miguel G, Costa J M. On the Use of Quantum Chemical Methodsin Studying Corrosion Inhibitor Substances[J]. Corrosion Science. 1986, 26 (11):342-345.
    [46] Costa. J. M and J. M. Luch. The Use of Quantum Mechanics Inhibitors[J]. Corrosion Science. 1984,24(11): 929-931.
    [47] Gladius L. Quantum Chemical Parameters and Corrosion Inhibition Efficiency of Some Organic Compounds[J]. Corrosion Nace. 1982,38(1): 60-62.
    [48] G. Bereket, E. Hür, C. ?gretir. Quantum chemical studies on some imidazoline derivatives as corrosion inhibitors for iron in acidic medium [J], Journal of Molecular Structure (Theochem), 1999,488:223-231.
    [49] C. ?gretir, B. Mih?i, G. Bereket. Quantum chemical studies of some pyridine derivatives as corrosion inhibitors[J], Journal of Molecular Structure (Theochem), 1999,488:223-231.
    [50]王大喜,肖鹤鸣.取代基咪唑啉与铁原子化学吸附作用能的量子化学计算[J].分子科学学报,2000,16(2):102-105.
    [51]宁世光,石明理.咪唑啉衍生物对钢在酸中的缓蚀作用与电子密度和前线轨道能量的关系[J].中国腐蚀与防护学报, 2003, 10 (4): 383.
    [52]张士国.用量子化学密度泛函理论研究环状含氮化合物分子结构与缓蚀性能的关系[J].中国腐蚀与防护学报, 2004, 24: 240-244.
    [53]毕刚.异喹啉及羟基、羧基衍生物缓蚀作用的量子化学研究[J].腐蚀科学与防护技术, 2002,14(1):27-31.
    [54] Y. Xiao-Ci, Z. Hong, L Ming-Dao, Corrosion Science, 2000,44: 645-653.
    [55]胡芳,石鲜明,屈定荣,李志良.苯胺及其衍生物缓蚀性能与结构参数关系的神经网络研究[J].中国腐蚀与防护学报, 1999, 19(1): 33-38.
    [56]张敬畅,曹维良,王作新.有机磷缓蚀剂分子结构与缓蚀性能的量子化学研究[J].中国腐蚀与防护学报, 2002, 04: 217-221.
    [57] Sayos R, Conzalez M, Costa.J.M. On the Use of Quantum Chemical Methods as an Additional Tool in Studying Corrosion Inhibitor Substances[J].Corrosion Science, 1986, 26: 927.
    [58] Corowcock F. B. Inhibition of Steel Corrosion in HCl by Derivatives of Cinnamaldehyde [J]. Corrosion, 1989, 45: 1003-1004.
    [59] Ei Sayed H. Ei Ashry, Ahmed Ei Nemr, Sami A. Esawy, et al. Corrosion inhibitors Part II: Quantum chemical studies on the corrosion inhibitions of steel in acidic medium by some triazole, oxadiazole and thiadiazole derivatives [J]. Electrochimica Acta, 2006, 51: 3957-3968.
    [60]赵永生,庞正智,李顺来.咪唑及其衍生物作为铜的盐酸酸洗缓蚀剂的量子化学研究[J].北京化工大学学报, 2002, 29(5): 53-55.
    [61]夏文斌,欧阳礼,颜肖慈,等.芳香酸的电子结构与缓蚀性能关系的研究[J].华中师范大学学报, 2002, 36(3): 333-334.
    [62]颜肖慈,赵红,罗明道,等.呋喃及其衍生物对铝缓蚀机理的量子化学研究[J].中国腐蚀与防护学报, 1999, 19(6): 372-376.
    [63]李酽,郭英,才华.缓蚀剂构效关系的量子化学研究[J].腐蚀与防护, 2007, 28(8): 392-395.
    [64] S. Ramachandran, V. Jovancicevic. Molecular modeling of the inhibition of mild steel carbon dioxide corrosion by imidazolines[J]. Corrosion, 1999, 55: 259-276.
    [65] J. Bartley, N. Huynh, et. al., Computer simulation of the corrosion inhibition of copper in acidic solution by alkyl esters of 5- carboxybenzotriazole [J]. Corrosion Science, 2003,45: 81-96.
    [66] Yurko Duda, Roberto Govea-Rueda, Monica Galicia, et al. Corrosion inhibitors: Design, performance, and computer simulations[J]. J. Phys. Chem. B , 2005, 109(47): 22674-22684.
    [67] Susan Fitzwater. Computer simulation of polyelectrolyte adsorption on mineral surfaces[J]. Computer-Aided Molecular Design, 1995:316-325.
    [68] Cruz J., Pandiyan T., Garc?a-Ochoa E. A new inhibitor for mild carbon steel: Electrochemical and DFT studies[J]. J. Electroanal. Chem., 2005, 583(1): 8-16.
    [69] Gómez B., Likhanova N. V., Domínguez Aguilar M. A. Theoretical Study of a New Group of Corrosion Inhibitors [J]. J. Phys. Chem. A., 2005, 109(39): 8950 -8957.
    [70] Rodriguez-Valdez L. M., Martinez-Villafane A., Glossman-Mitnik D. Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties[J]. Journal of Molecular Structure: THEOCHEM, 2005, 713(1-3): 65-70.
    [71] Lashkari M., Arshadi M. R. DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate, and electric field effects[J]. Chemical Physics, 2004, 299(1): 131-137.
    [72] Cruz J., Martínez-Aguilera L. M. R., Salcedo R., et al. Reactivity properties ofderivatives of 2-imidazoline: an ab initio DFT study[J]. International Journal of Quantum Chemistry, 2001, 85(4-5): 546-556.
    [73] Wang D., Li S., Ying Y. Theoretical and experimental studies of structure an d inhibition efficiency of imidazoline derivatives[J]. Corrosion Science, 1999, 41(10): 1911-1919.
    [74] Martin J. A., Valone F. W. The existence of imidazoline corrosion inhibitors[J]. Corrosion, 1985, 41(5): 281-287.
    [75] Bereket G., Hur E., Ogretir C. Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium[J]. Journal of Molecular Structure: THEOCHEM, 2002, 578(1-3): 79-88.
    [76]方健,李杰.有机膦酸化合物阻垢缓蚀性能的量子化学研究[J].同济大学学报, 2002, 30(4): 522-529.
    [77] Yang,W.; Parr,R. G. Proc. Nati. Acad. Sci.USA, 1985, 82: 6723
    [78] Gómez, B.; Likhanova, N. V.; Domínguez Aguilar, M. A.;Olivares, O.; Hallen, J. M.; Martínez-Magadán, J. M. Theoretical study of a new group of corrosion inhibitors[J]. J. Phys. Chem. A, 2005, 109(39): 8950-8957.
    [79] Bereket G, Hur E, Ogretir C. Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium [J]. Journal of Molecular Structure (Theochem), 2002 , 578: 79 - 88.
    [80] Sastri, V. S.; Perumareddi, J. R. Corro. Sci., 1997,53(18):617
    [81] Martínez, S. Mater. Chem. Phys., 2002, 77(2):97
    [82] Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soci., 1977,99: 4899
    [83] Cheng L., Bocarsly A. B., Bernasek S. L. Coadsorption of Ethanethiol with Sulfur, Oxygen, and Water on the Fe(100) Surface[J]. Langmuir, 1996, 12(2): 392-401.
    [84] Fam Nigr, Wlson L Y. Using theoretical descriptors in quantitative structure activity relationships: application to partition properties of alkyl (1-phenylsulfony) cycloalkane- carboxylates[J].Chemosphere, 1997, 35 : 2417- 2447
    [85]王鹏.定量构效关系及研究方法[M].哈尔滨工业大学出版社,2004
    [86] Schaper K J. Free-Wilson-type analysis of non-additive substituent effects on THPB dopamine receptor affinity using artificial neural network[J]. Quant Struct Act Relat,1999, 18: 354-360
    [87] Clark M, Cramer R D. The probability of chance correlation using partial least squares (PLS). Quant Struct Act Relat,1993,12:137-145.
    [88] Chen Jincan, Qian Li, Shen Yong, Chen Lanmei, Zhang Kangcheng. QSAR study and molecular design of benzothiazole derivatives as potent anticancer agents[J]. Science in China Series B: Chemistry, 2008, 51(2): 111-119.
    [89] Rogg R V, Craig A T. An introduction to mathematical statistics[M]. Beijing: Higher Education Press, 2004
    [90] Dietrich S W, Dreyer N D, Hansch C, Bentley D L. Confidence interval estimators of parameters associated with quantitative structure-activity relationship[J]. J Med Chem, 1980, 23: 1201-1205
    [91] Lukovits, I.; Kálmán, E.; Zucchi, F. Corros., 2001, 57 (1): 3.
    [92] Ramachandran S, Tsal B L, Blanco M. Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines [J ]. Langmuir , 1996 , 12 (26) :6419 - 6428.
    [93] Duda Y, Govea-Rueda R, Galicia M. Corrosioninhibitors: Design, performance, and computer simulation[J]. J Phys Chem , 2005, 109 (47): 22674- 22683.
    [94] EI Sayed H.EI Ashry, Ahmed EI Nemr, Samy A.Essawy, et al. Quantum chemical studies on the efficiencies of some aromatic hydrazides and Schiff bases as corrosion inhibitors of steel in acidic medium[J]. Electrochimica Acta, 2006, 51: 3957-3968
    [95] N.Khalil. Quantum chemical approach of corrosion inhibition[J].Electrochimica Acta,2003, 48:2635-2640.
    [96] Fatma Kandemirli, Seda Sagdinc. Theoretical study of corrosion inhibition of amides and thiosemicarbazones[J]. Corrosion Science,2007, 49: 2118-2130.
    [97] Luz Maria Rodriguez-Valdez, Alberto Martinez-Villafane, Daniel Glossman-Mitnik. Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties[J]. Journal of Molecular Structure: THEOCHEM, 2005,713:65-70.
    [98] S. G. Zhang, W. Lei, M. Z. Xia, F. Y. Wang. QSAR study on N-containing corrosion inhibitors: Quantum chemical approach assisted by topological index[J]. Journal ofMolecular Structure: THEOCHEM, 2005, 732:173-182.
    [99]万其进,朱建群,刘建国.分析化学中的软硬酸碱原则.松辽学刊(自然科学版)[J], 1994, 2: 11- 15.
    [100]董俊华,林海潮,曹楚南,等.硬软酸碱原理与缓蚀剂设计[J].抚顺石油学院学报, 1995,15(4): 42- 46.
    [101]刘瑞斌,辛剑,王慧龙.软硬酸碱理论在绿色缓蚀剂中的应用[J].辽宁化工, 2004, 33(2): 103-108.
    [102]陈立庄,高延敏,缪文桦.有机缓蚀剂与金属作用的机理[J].全面腐蚀控制, 2005, 19(2) : 24-28.
    [103]张军平,张秋禹,颜红侠.高效气-液双相CO2缓蚀剂的研究[J].腐蚀科学与防护技术, 2003, 15(4): 241-243.
    [104]高延敏.酸碱理论在金属腐蚀和缓蚀技术上的应用.腐蚀科学与防护技术, 2000, 12 (6):319- 322.
    [105] Masahiko Yamahuchi, et al. The Inhibition of Passive Film Breakdown on Iron in a Borate Buffer Solution Containing Chloride Ions Organic Anion Inhibitors .Corrosion Science, 1994, 36 (2): 241– 258.
    [106]王媛媛,陈善华.铜缓蚀剂的缓蚀协同效应[J].广东化工, 2009, 2: 241-243.
    [107]张大全,徐群杰.苯并三唑和咪唑分子内缓蚀协同作用研究[J].中国腐蚀与防护学报, 1999, 5:256-258.
    [108]代振宇.噻二唑衍生物结构性能关系及其在铜(111)表面成膜机理的分子模拟研究[C],硕士学位论文,石油化工科学研究院.
    [109] Yurko Duda, Roberto Govea-Rueda, Minca Galicia, et al. Corrosion Inhibitors: design, Performance, and Computer Simulations[J]. J. Phys. Chem. B, 2005, 109(47): 22674-22684.
    [110]张军,胡松青,王勇,等. 1-(2-羟乙基)-2-烷基-咪唑啉缓蚀剂缓蚀机理的理论研究[J].化学学报, 2008,66(22): 2469-2475.
    [111]杨怀玉,陈家坚,曹楚南,等. H2S水溶液中的腐蚀与缓蚀作用机理的研究[J].中国腐蚀与防护学报, 2001,21(6):321-327.
    [112] Sunder Ramachandran, Bao-Liang Tsai, Mario Blanco, et al. Self-Assembled Monolayer Mechanism for Corrosion Inhibition of Iron by Imidazolines[J]. Langmuir,1996, 12(26): 6419-6428.
    [113]张军,李中谱,赵卫民.咪唑啉缓蚀剂缓蚀性能的理论研究[J].石油学报(石油加工), 2008, 24(5): 994-1001.
    [114]王矜奉.固体物理教程[M].山东:山东大学出版社, 2004: 13-14.
    [115]周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社, 2005:136-146.
    [116] Nayak S. K., Nooijen M., Bernasek S. L. Electronic Structure Study of CO Adsorption on the Fe(001) Surface[J]. J. Phys. Chem. B, 2001, 105(1): 164-172.
    [117] Ramachandran S., Jovancicevic V., Ward M. B. Understanding interactions between corrosion inhibitors and iron carbonate films using molecular modeling[J]. Houston: NACE International, 1999: 62.
    [118] Heermann D. W.理论物理学中的计算机模拟方法[M].秦克成译.北京:北京大学出版社, 1996: 7-56.
    [119] Materials Studio 4.0, Discover/Accelrys, San Diego, CA, U.S.A. 2005.
    [120] Andersen H. C. Molecular dynamics simulations at constant pressure and/ or temperature[J]. J. Chem. Phys., 1980, 72(4): 2384-2393.
    [121] Allen M. P., Tildesley D. J. Computer simulation of liquids[M]. Oxford: Clarendon Press, 1987: 85-97.
    [122] Prathab B., Aminabhavi Tejraj M., Parthasarathi R. Molecular modeling and atomistic simulation strategies to determine surface properties of perfluorinated homopolymers and their random copolymers[J]. Polymer, 2006, 47(19): 6914-6924.
    [123] Maitland G. C., Rigby M., B. S. E. Intermolecular forces: Their origin and determination[M]. London: Oxford University Press, 1987: 78-89.
    [124]张军,赵卫民,郭文跃.苯并咪唑类缓蚀剂缓蚀性能的理论评价[J].物理化学学报, 2008, 24(7): 1239-1244.
    [125] Kornherr A., Tortschanoff A., Erwin P. C. Modelling of aqueous salvation of eosin Y at the rutile TiO2 (110)/ water interface[J]. Chem. Phys. Lett., 2006, 430(4-6): 375-379.
    [126]范洪波.新型缓蚀剂的合成与应用[M].北京:化学工业出版社, 2004: 9-14.
    [127]张曙光,王风云,雷武.水溶性聚合物与硬石膏晶体相互作用的分子动力学模拟[J].化学学报, 2007, 65(20): 2249-2256.
    [128] Khaled, K. F., Al-Qahtani, M. M. The inhibitive effect of some tetrazole derivatives towards Al corrosion in acid solution: Chemical, electrochemical and theoretical studies[J]. Mater. Chem. Phys., 2009, 113:150-158.
    [129] Geerlings, P. F.; Proft, D.; Langenaeker, W. Conceptual Density Theory, Chemical Review, 2003, 103:1793.
    [130]张士国,杨频.用量子化学密度泛函理论研究环状含氮化合物分子结构与缓蚀性能的关系[J].中国腐蚀与防护学报, 2004, 24, 240.
    [131] B. Gmez, N. V. Likhanova, M. A. Domnguez Aguilar. Theoretical study of a new group of corrosion inhibitors[J]. The Journal of Physical Chemistry A. 2005, 109(39): 8950-8957.
    [132] Jian Fang, Li Jie. Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amide[J]. Journal of Molecular Structure -Theochem, 2002, 593, 179.
    [133] Raafat M. Issa, Mohamed K. Awad, Faten M. Atlam. Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils[J].Appl. Surf. Sci., 2008,155,1.
    [134] Luz María Rodríguez-Valdez, W. Villamisar, M. Casales, et al. Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl imidazolines inhibitors[J]. Corrosion Science, 2006, 48, 4053-4046.
    [135]胡松青,胡建春,张军,等.咪唑啉衍生物缓蚀作用的密度泛函理论和分子动力学研究[J].石油学报(石油加工),2010, 26(2): 250-256.
    [136] Yang, W.; Parr, R. G. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis[J]. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 6723-6726.
    [137]徐海波,余家康,董俊华,等.硫酸溶液中硫脲对铁缓蚀作用的电化学和SERS研究[J].中国腐蚀与防护学报, 1998,18(1): 15.
    [138]王慧龙,辛剑,范洪波,等.新型硫基三唑化合物对HCl介质中碳钢的缓蚀作用研究[J].中国腐蚀与防护学报, 2004, 24(5): 306-310.
    [139]王献群,刘瑞泉,朱丽琴,等.碱性介质中BIT, BIOHT和BIMMT对铜的缓蚀性能和吸附行为[J].物理化学学报, 2007, 23(1): 21-26.
    [140] Hong H G, Park W. A study of adsorption kinetics and thermodynamics ofω-mercaptoalkylhydroquinone self-assembled monolayer on a gold electrode[J]. Electrochim Acta, 2005, 51(4): 579-587.
    [141] Zhang X Y, Wang F P, He Y F, et al. Study of the inhibition mechanism of imidazoline amide on CO2 corrosion of Armco iron[J]. Corros. Sci., 2001,43: 1417-1431.
    [142]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社, 2004.
    [143] Mu G N, Li X M, Liu G H. Synergistic inhibition between tween 60 and NaCl on the corrosion of cold rolled steel in 0.5M sulfuric acid[J]. Corros. Sci., 2005, 47: 1932-1952.
    [144] Bouklah M, Hammouti B, Lagrene M. Thermodynamic properties of 2,5-bis (4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium[J]. Corros Sci, 2006, 48(9): 2831-2842.
    [145] Tang L, Mu G N, Liu G H. The effect of neutral red on the corrosion inhibition of cold rolled steel in 1.0 M hydrochloric acid[J]. Corros Sci, 2003; 45(10): 2251-2262.
    [146]张胜涛,陶志华,李伟华,等.新型三氮唑化合物在1 mol/L HCl中对Q235钢的缓蚀性能[J].中国腐蚀与防护学报, 2009,29(6): 487-492.
    [147]王静,汤兵,陈欣义.酸洗缓蚀协同机理研究与进展[J].腐蚀与防护, 2007, 28(5): 217-220.
    [148] K. Aramaki, N. Hackerman. Inhibition mechanism of medium-sized polymethyleneimine[J]. J. Electrochem. Soc., 1969,116: 568.
    [149] Xianghong Li, Shuduan Deng, Hui Fu, et al. Synergistic inhibition effect of rare earth cerium (IV) ion and sodium oleate on the corrosion of cold rolled steel in phosphoric acid solution[J]. Corrosion Science, 2010, 52:1167-1178.
    [150] Lingguang Qiu, Yun Wu, Yimin Wang, et al. Synergistic effect between cationic Gemini surfactant and chloride ion for the corrosion inhibition of steel in sulphuric acid[J]. 2008,50: 576-582.
    [151] Xianghong Li, Shuduan Deng, Guannan Mu, et al. The synergistic inhibition effect of rare earth cerium (IV) ion and iso-wanillin on the corrosion of cold rolled steel in 1.0 M H2SO4 solution[J]. 2007,61: 2514-2517.
    [152] Libin Tang, Xueming Li, Guannan Mu, et al. Synergistic effect between4-(2-pyridylazo) resircin and chloride ion on the corrosion of cold rolled steel in 1.0 M phosphoric acid[J]. 2006,253: 2367-2372.
    [153]张士国,杨频.用量子化学密度泛函理论研究环状含氮化合物分子结构与缓蚀性能的关系[J].中国腐蚀与防护学报, 2004, 24(4): 240-244.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.