黄土高原主要造林树种苗木根系对干旱的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了系统了解根系与水分的相互作用机制,科学地指导黄土高原地区造林树种选择和造林实践,本文以油松(Pinus tabulaeformis)、刺槐(Robinia pseudoacacia)、侧柏(Platycladus orientalis)、沙棘(Hippophae rhamnoides)等4个黄土高原主要造林树种2年生苗木为材料,通过人为控制土壤水分(按土壤田间持水量的70%、50%、35%设干旱处理水平,各水平持续处理时间均设7 d、14 d和21 d),研究了苗木根系生物量、细根(Φ<2 mm)形态特征(表面积、根长、根尖数)对不同程度、不同持续时间的干旱的反应,并分析了各部分物质分配格局的变化;同时分析了干旱条件下4个树种根尖可溶性蛋白含量以及各组分含量的变化。研究结果表明:
     (1)随着胁迫程度和处理时间的增加,油松根生物量和细根指标显著增加;刺槐根生物量总体上有增加,细根指标保持稳定;侧柏根生物量在中度干旱增加,重度干旱减少,两水平处理随着处理时间的延长均有减少的趋势,细根指标仅在重度干旱(21 d)明显减少;沙棘根生物量、细根指标在中度干旱条件下明显增加,但随着处理时间的延长,增加量逐渐减少,重度干旱条件不能存活。
     (2)干旱条件下,根、茎、叶的物质分配格局除油松外,均发生了变化,树种之间差异很大。随着干旱程度和处理的增加,油松各部分生物量按照稳定的比例增加;刺槐在中度干旱21 d和重度干旱条件下,有机合成呈负增长,物质由叶向根和茎集中;侧柏在重度干旱条件下,有机物质合成受阻,并由根向茎集中;沙棘中度干旱条件光合产物主要向叶分配。
     (3)刺槐根尖可溶性蛋白含量在中度干旱7d减少,较长期(14d、21d)中度干旱和较短期(7d)重度干旱下增加,较长期(21d)重度干旱下减少;侧柏在较短期(7d)中度干旱和重度干旱下增加,较长期中度干旱(21d)和重度干旱(14d、21d)下减少;随着胁迫程度和处理时间的增加,油松总体增加,沙棘则减少。可溶性蛋白组分无变化,大多数蛋白含量变化与总蛋白含量变化趋于一致。苗木根尖的可溶性蛋白含量的变化在不同程度和时间的干旱以及树种之间差异较大,其对干旱的响应是通过大部分蛋白组分较一致地变化而实现的。
     (4)在利用常规SDS-PAGE方法分离刺槐根系可溶性蛋白的过程中,发现其分离效果不好。将样品处理液中SDS、β-巯基乙醇、丙三醇的含量均增加了50%。改进后的方法得到了分离效果明显较常规方法好的电泳图谱。经分析得出:常规SDS-PAGE方法中样品处理液的SDS和β-巯基乙醇浓度不足以充分溶解刺槐根系中的可溶性蛋白,丙三醇的浓度也不足以将样品很好地沉聚于点样槽底部。试验为植物组织可溶性蛋白的SDS-PAGE分离提供了一套效果较好的参考方法。
For systemic researching the interreaction mechanism between root and water,guiding the choosing of sivilculture species and sivilculture practice scientifically,the study choosed 2 year-old seedlings of Pinus tabulaeformis,Robinia pseudoacacia,Platycladus orientalis and Hippophae rhamnoides which are the main tree species on Loess Plateau as material. An artificial controlling soilmoisture(70%, 50% and 35%WHC three levels, time of each treatment level is 7 d, 14 d and 21 d)test was made to observe responses of root biomass, aboveground biomass,fine roo(tΦ<2 mm)indexes(surface area,length and tips quantity),and the mass allocation pattern of each part to varying stress degree and dealing time of drought condition;Besides,a analysis was made to study the changes of contents and components for soluble protein in their roots tips. The result showed that:
     (1)With the increasing stress degree and dealing time,the root biomass and fine root indexes of Pinus tabulaeformis augment markedly;The root biomass of Robinia pseudocacia increases totally,but fine root indexes maintain stable;The root biomass of Platycladus orientalis increases on moderate drought but decreases on severe drought,and the two levels have the decreasing trend with the increasing dealing time,and fine root indexes reduce significantly only on severe drought(21 d);The root biomass and fine root indexes of Hippophae rhamnoides increase obviously on moderate drought condition but the increasing amount decreases for longer dealing time,and it can not survive on severe drought condition.
     (2)The mass allocation pattern of root,stem and leaf changes on drought,and there are significant difference among tree species. With the increasing stress degree and dealing time,every part biomass of Pinus tabulaeformis increases by a stable proportion;Robinia pseudocacia’s organic synthesis presents negative growth on moderate(21 d)and severe drought,and material centralizes to root and stem from leaf;Platycladus orientalis’organic synthesis is blocked on severe drought,and material centralizes to stem from root;Hippophae rhamnoides’photosynthetic product is mainly distributed to leaf.
     (3)Content of soluble protein in root tips of Robinia pseudoacacia decreases on moderate drought for 7d,and increases in longer time (14d,21d) moderate drought and shorter time(7d)severe drought,and decreases on longer(21d)severe drought;Platycladus orientalis increased in shorter time(7d)moderate and severe drought,and decreases on longer time moderat(e21d)and sever(e14d,21d)drought;With the increasing of stress degree and treatment time,the content of soluble protein in Pinus tabulaeformis generally increased while Hippophae rhamnoides decreases.The soluble protein components in root tips of four trees do not change on drought,and the variation of content in most kinds of protein have the similar trends to the total.The soluble protein content in seedings root tips changing are big difference among degrees,treatment time of drought and tree species,and its responses to drought are realized by coincident change of the most of proteins components.
     (4)In the course of using the regular SDS-PAGE method to separate the soluble protein of Robinia Pseudoacacia root tips,the result was found not very good. The experiment increased the content of SDS,β-mercaptoethanol and glycerine in treating solution for sample by 50% and the separating effect in improved method is much better. After analysis,in treating solution for sample,the deficiency of SDS andβ-mercaptoethanol content which resulted in the insufficient dissolution of soluble protein of Robinia Pseudoacacia root and the deficiency of glycerine content which resulted in inferior sinking and congregating when supplied samples are the reasons of bad separating effect. The experiment supplys a better reference method of SDS-PAGE for separating soluble protein of plant tissue.
引文
白景文,罗承德,李西,宫渊波.2005.两种野生岩生植物的抗旱适应性研究.四川农业大学学报, 23(3):290~294
    蔡新玲,王繁强,吴素良. 2007.陕北黄土高原近42年气候变化分析.气象科技,35(1):45~48
    曹扬,赵忠,渠美,成向荣,王迪海. 2006.刺槐根系对深层土壤水分的影响.应用生态学报,17(5):765~768
    柴成武,徐先英,唐卫东,王方琳,王龙. 2009.石羊河流域荒漠区主要固沙植物根系研究.西北林学院学报,24(4):21~26
    单长卷,梁宗锁. 2007.土壤干旱对冬小麦幼苗根系生长及生理特性的影响.中国生态农业学报,15(5):38~41
    樊小林,史正军,吴平. 2002.水肥(氮)对水稻根构型参数的影响及其基因型差异.西北农林科技大学学报,30:1~5
    范敏,金黎平,刘庆昌,屈冬玉. 2008.马铃薯PPR蛋白家族基因SoDIPPR的克隆及其在干旱条件下的表达特征分析.中国农业科学,41(8):2249~2257
    冯广龙,刘昌明,王立. 1996.土壤水分对作物根系生长及分布的调控作用.中国生态农业学报,4(3):5~9
    高俊凤. 2000.植物生理学实验技术.北京:世界图书出版社:137~138
    高志红,陈晓远. 2009.聚乙二醇造成的水分胁迫对水稻根系生长的影响.华北农学报,24(2):128~133
    郭红彦,谭鹏鹏,吴青霞,彭方仁. 2007.银杏营养贮藏蛋白质的SDS-聚丙烯酰胺凝胶电泳研究. 山西农业大学学报(自然科学版),27(01): 16~20
    郭红彦,吴青霞,彭方仁. 2009.银杏枝条营养贮藏蛋白质的组分及动态变化.林业科学,45(3):24~28
    郭银,周丹. 2008.林木细根的研究进展.防护林科技,2:50~52
    韩建民. 1990.抗旱性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系.河北农业大学学报,13(1):17~21
    韩蕊莲,李丽霞,梁宗锁.2003.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究.西北植物学报,23(1):23~27
    何永涛,郎海玲. 2009.植被建设在黄土高原水土保持中的意义及其对策.水土保持研究,16(4):30~38
    何忠效. 2004.生物化学实验技术.北京:化学工业出版社:204~205
    贺学礼. 2008.植物学.北京:科学出版社:101,150~152
    江福英,李延,翁伯崎.2002.植物低温胁迫及其抗性生理.福建农业学报,17(3):190~195
    靳铁治,王开锋,王永奇. 2009.陕北黄土高原植被建设现状分析.陕西林业科技,1:105~107
    康俊梅,杨青川,樊奋成. 2005.干旱对苜蓿叶片可溶性蛋白的影响.草地学报,13(03):199~202
    孔艳菊,孙明高,胡学俭,苗海霞. 2006.干旱胁迫对黄栌幼苗几个生理指标的影响.中南林学院学报,26(4):42~46
    李博,田晓莉,王刚卫,潘飞,李召虎. 2008.苗期水分胁迫对玉米根系生长杂种优势的影响. 作物学报,34(4):662~668
    李德全,邹琦,程炳嵩. 1992.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报,18(1):37~43
    李合生. 2006.现代植物生理学.高等教育出版社:193~242
    李话,张大勇. 1999.半干旱地区春小麦根系形态特征与生长冗余的初步研究.应用生态学报,10(1):26~30
    李林锋,刘新田. 2004.干旱胁迫对桉树幼苗的生长和某些生理生态特性的影响.西北林学院学报,19(1):14~17
    李文华,刘建军,康博文. 2010.叶面喷施ALA对几种苗木根系形态的影响.西北林学院学报,25(1): 90~94
    李秧秧,邵明安. 2003.玉米单根木质部水势与径向水力导度的轴向变化.土壤学报, 40(2):200~204
    梁宗锁,韩蕊莲,刘淑明,勒爱仙,王俊峰. 2008.黄土高原树木水分生理生态学特征.北京:中国林业出版社:45,106
    林秀琴,袁坤,王真辉,邓军,杨礼富. 2009.干旱胁迫下橡胶树叶片差异表达蛋白的鉴定与功能解析.热带作物学报,30(12):1782~1788
    刘恩斌,董水丽. 1997.黄土高原主要土壤持水性能及抗旱性的评价.水土保持通报,17(7):20~26
    刘灵娣,李存东,高雪飞.2008.干旱对不同铃重棉花不同区位果枝叶可溶性蛋白及脯氨酸含量的影响.华北农学报,23(5):165~169
    马长明,翟明普,刘春鹏. 2009.单作与间作条件下核桃根系分布特征研究.北京林业大学学报,31(6):181~186
    慕自新,张岁岐,梁爱华,梁宗锁. 2005.玉米整株根系水导与其表型抗旱性的关系.作物学报,31(2):203~208
    齐伟,张吉旺,王空军,刘鹏,董树亭. 2010.干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响.应用生态学报,21(1):48~52
    任东涛,赵松岭. 1997.水分胁迫对半干旱地区春小麦旗叶蛋白质代谢的影响.作物学报,23(4):468~473
    尚晓颍,刘化冰,张小全,林娟,段旺军,杨铁钊. 2010.干旱胁迫对不同烤烟品种根系生长和生理特性的影响.西北植物学报,30(2):357~361
    邵世光,阎斌伦,许云华,张雷,郑霞,李廷友.2006. Cd2+对条斑紫菜的胁迫作用.河南师范大学学报(自然科学版),34(2):113~116
    师晨娟,刘勇,荆涛. 2006.植物激素抗逆性研究进展.世界林业研究,19(5):21~26
    史玉炜,李文兵,王燕凌. 2007.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响.新疆农业大学学报,30(2):5~8
    宋海鹏,刘君,李秀玲,赵海明,杨志民. 2010.干旱胁迫对5种景天属植物生理指标的影响.草业科学,27(1):11~15.
    孙彩霞,沈秀瑛. 2002.作物抗旱性鉴定指标及数量分析方法的研究进展.中国农学通报,181:49~51
    孙长忠,黄宝龙,陈海滨,刘增文,温仲明. 1998.黄土高原人工植被与其水分环境相互作用关系研究.北京林业大学学报,20(3):7~14
    孙立平,吴学友,刘丽霞,李德全. 2007.渗透胁迫下水杨酸对玉米幼苗根系63.5kD热稳定蛋白的调控作用.西北植物学报,27(7):1389~1393
    王秋菊,李明贤,赵宏亮,迟力勇. 2008.控水灌溉对水稻根系生长影响的试验研究.中国农学通报,24(8):206~208
    王晓冬,叶生欣,沈海龙,李长海. 2008.不同土壤水分条件对真桦幼苗形态特征、生物量及光合生理特征的影响.东北林业大学学报,36(5):31~33
    王延华,邹晓莉. 2005.蛋白质理论与技术.科学出版社:108~110
    卫星,王政权,张国珍,陈海波,王婧. 2009.水曲柳苗木不同根序对干旱胁迫的生理生化反应.林业科学,6:16~21
    卫星,张国珍. 2008.树木细根主要研究领域及展望.中国农学通报,24(5):143~147
    吴安慧,张岁岐,邓西平,山仑. 2006.水分亏缺条件下玉米根系PIP2-5基因的表达.植物生理学通讯, 42(3):457~460
    徐彩霞,赵忠,陈明涛. 2009.水分胁迫对5个树种苗木根系部分生理指标的影响.西北农林科技大学学报(自然科学版),37(8):109~114
    徐民俊,刘桂茹,杨学举,王丽军. 2002,冬小麦品种干旱诱导蛋白的研究.河北农业大学学报,25(4):11~15
    许晓岗,王俊,,童丽丽,李志文. 2008.垂丝海棠插穗生根与可溶性蛋白和激素变化的关系.北方园艺,1:107~111
    荀俊杰,李俊英,陈建文,史建伟王孟本. 2009.幼龄柠条细根现存量与环境因子的关系.植物生态学报,33(4):764~771
    闫映宇,赵成义,盛钰,李菊艳,彭冬梅,李子良,冯省利. 2009.膜下滴灌对棉花根系、地上部分生物量及产量的影响.应用生态学报,20(4):970~976
    闫志利,轩春香,牛俊义,席玲玲,刘建华,赵天武. 2009.干旱胁迫及复水对豌豆根系内源激素含量的影响.中国生态农业学报,17(2):297~301
    杨建雄. 2002.生物化学与分子生物学.北京:科学出版社:137
    杨亚军,郑雷英,王新超. 2004.冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响.茶叶科学, 24 ( 3 ):177~182
    张爱慧,朱士农,刘广勤,戚亚仙,张岩. 2009.模拟干旱胁迫对黄瓜幼苗生长及生理特性影响的研究.江苏农业科学,6:200~202
    张承林,付子轼. 2005.水分胁迫对荔枝幼树根系与梢生长的影响.果树学报,22(4):339~342
    张宏一,朱志华. 2004.植物干旱诱导蛋白研究进展.植物遗传资源学报,5(3):268~270
    张明生,谢波,谈锋,张启堂. 2003.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究.中国农业科学,36(1):13~16
    赵忠,李鹏. 2002.黄土高原主要造林树种根系分布特征及抗旱性研究.水土保持学报,16(1):96~107
    赵领军,赵善仓. 2007.干旱胁迫下苹果根系内源激素含量的变化.山东农业科学,2:48~49
    赵天宏,沈秀瑛,杨德光,马秀芳. 2002.水分胁迫对不同抗旱性玉米幼苗叶片蛋白质的影响,沈阳农业大学学报, 33(6):408~410
    周桂,李杨瑞. 2007.植物干旱诱导蛋白研究进展.广西农业科学,38(4):379~385
    周海光,刘广全,焦醒,王鸿喆,李红生. 2008.黄土高原水蚀风蚀复合区人工植被土壤水分状况.水土保持学报,22 (5):194~203
    周云龙. 1999.植物生物学.北京:高等教育出版社:88
    朱维琴,吴良欢,陶勤南. 2002.作物根系对干旱胁迫逆境的适应性研究进展.土壤与环境,11(4):430~433
    Adrienn G, Irma T, Agnes G, Jolan C, Attila P, Laszlo C, Laszlo E. 2009. Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: changes in flag leaf photosynthetic activity, ABA levels,and grain yield. J Plant Growth Regul, 28: 167~176
    Ali G M, Komatsu S.2006. Proteomic analysis of rice leaf sheath during drought stress.J Proteome Res, 5(2): 396~403
    Christmann A, Weiler, EW, Steudle E, Grill, E. 2007. A hydraulic signal in root-to-shoot signaling of water shortage. The Plant Journal, 52: 167~174
    Costa P, Bahrman N, Frigerio J M.1998. Water-deficit-responsive proteins in Maritime Pine. Plant Mol Biol, 38(4): 587~596
    Davies W J, Zhang J H. Root signals and the regulation of growth and developmen t of plants in drying soil. Annu RevPlant Physiol Mol Biol, 1991, 42: 55~76
    Davies W J, Metcalfe J, Lodget A. 1986. Plant growth substances and the regulation of growth under drought. Aust. J. Plant Physical, 13: 105~125
    Dickmann D I, Nguyen P V, Pregitzer K S. 1996. Effects of irrigation and coppicing on above_ground growth, physiology, and fine root dynamics of two field grown hybrid poplar clones. Forest Ecology and Management, 80: 163~174
    Dodd I C. 2005. Root-to-shoot signaling: Assessing the roles of up in the up and down world of long-distance signaling in Planta. Plant and Soil, 274: 251~270
    Erik A, Laure F, Sara S L, Sofia G, Maria K, Urban J, Per K. 2005. Whole gene family expression and drought stress regulation of aquaporins. Plant Molecular Biology, 59: 469~484
    Fan W, Zhang Z L, Zhang Y L. 2009. Cloning and molecular characterization of fructose- 1,6-bisphosphate aldolase gene regulated by high-salinity and drought in sesuvium portulacastrum. Plant Cell Rep, 28: 975~984
    Gazal R M,Kubiske M E. Influence of initial root length on physiological responses of Cherrybark Oke and Shumard Oke seedlings to field drought conditions. Forest Ecology Management, 2004, 189: 295~305
    Gongd Z,Kang S Z,Lu Z. 2006. A 2-d model of root water uptake for single apple trees and its verification with sap flow and water content measurements. Agricultural Water Management, 83: 119~129
    Green S R, B E. 1995. Root water uptake by kiwifruit vines following partial wetting of the root zone. Clothier. Plant and Soil, 173: 317~328
    Hajheidari M, Eivazi A, Buchanan B B.2007. Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res, 6(4): 1451~1460
    Hu X L, Liu R X, Li Y H, Wang W, Tai F J, Xue R L, Li C H. Heat shock protein 70 regulates the abscisic acid-induced Antioxidant response of maize to combined drought and heatstress. Plant Growth Regul, 2010, 60: 225~235
    Kang S Z, Zhang F C, Zhang J H. 2001. A Simulation model of water dynamics in winter wheat field and its application in a semiarid region. Agricultural Water Management, 49(2): 115~129
    Kummerow J, Kummerow M, Souza D S W. 1982. Fine root growth dynamics in cacao (Theobroma cacao). Plant and Soil, 65: 193~201
    Laura R, Christoph L, Benjamin K. 2009. Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? Eur J Forest Res, 128: 335~343
    Li P, Zhao Z, Li Z B. 2004. Vertical root distribution characters of Robinia pseudoacacia on the Loess Plateau in China. Journal of Forestry Research, 15(4): 87~92
    Liu H Z, Zhang H J, Yang Y Y, Li G J, Yang Y X, Wan X O, VindhyaS Basnayake B M, Li D Y, Song F M. 2008. Functional analysis reveal spleiotropic effects of rice RING-H2 Finger protein gene OsBIRF1 on regulation of growth and defense Responses against abiotic and biotic stresses. Plant Mol Biol, 68: 17~30
    Liu W G, Shan L. 2003. Aquaporin activities in sunflower root system increased with increasing seedling age. Acta Botanica Boreali-Occidentalia Sinica, 23(10): 1663~1668
    Magnani F, Mencuccini M, Grace J. 2000. Age related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant, Cell and Environment, 23: 251~263
    Meng C M, Zhang T Z, Guo W Z. 2009. Molecular Cloning and Characterization of a Novel Gossypium hirsutum L.bHLH Gene in Response to ABA and drought stresses. Plant Mol Biol Rep, 27: 381~387
    Nadelhoffer K J. 2000. The potential effects of nitrogen deposition on fine root production in forest ecosystems. New Phytologist, 147: 131~139
    Patrick J O, Mahony, Melvin J O. 1999. Characterization of adesiccation-responsive small GTP-binding protein(Rab2)from the desiccation-tolerant grass Sporobolus stapfianus, Plant Molecular Biology, 39: 809~821
    Reynolds M P, Mujeeb-Kazi A, Sawkins M. Prospects for utilizing plant-adaptive mechanisms to improve wheat and other crops in drought and salinity prone environment. Annals of Applied Biology, 2005, 146(2): 239~259
    Riccardo V, Francesco S, Dorothea B. 1998. Gene structure and expression analysis of the drought and abscisicacid responsive CDeT11-24 gene family From the resurrection plant Craterostigma plantagineum Hochst. Planta, 204: 459~471
    Richard M K Y, Minnie M L W, Ralph W J, Richard Y C K. 2005. Structure, evolution and expression of a second subfamily of protein Phosphatase 2A catalytic subunit genes in the rice plant(Oryza sativa L.) Planta, 222: 757~768
    Roberto T, Silvio S, Maria C S, Marco M, Silvia G, Pierangelo L. 2003. Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plantand Soil, 255: 35~54
    Roman T, Jordi C, Alberto V. 2006. Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.) . Trees-Structure and Function, 20(3): 334~339
    Salekdeh G H, Siopongco J, Wade L J. 2002. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2(9): 1131~1145
    Sotirios A K, Alexandros A, Michael G L, Elias E, Spyros T, Pantouses J K. 2006. Solation and characterization of drought-related trehalose Gene from cultivated cotton 6-phosphate-synthase gene(Gossypium hirsutum L.) Planta, 223: 329~339
    Stella A, Christoph L. 2006. Genotypic variation in drought response of silver birch(Betula pendula Roth): leaf and root morphology and carbon. Trees-Structure and Function, 20(1): 42~52
    Tjeerd J, Bouma, David R B. 2000. On the assessment of root and soil respiration for soils of different textures:interactions with soil moisture contents and soil CO2 concentrations. Plant and soil, 227: 215~221
    Toorchi M, Shashidhar HE, Hittalmani S, Gireesha TM. Rice root morphology under contrasting moisture regimes and contribution of molecular marker heterozygosity. Euphytica, 2002, 126(2): 251~257
    Vydehi K, Aditya K G. 2008. Over expression of OsiSAP8, a member of stress associated protein(SAP) gene family of rice confers tolerance to salt, drought And cold stress in transgenic tobacco and rice. Plant Mol Bio, l66: 445~462
    Wang C R, Yang A F, Yue G D, Gao Q, Yin H Y, Zhan J R. 2008. Enhanced expression of phospholipase C1 (ZmPLC1) improves drought tolerance in transgenic maize, Planta, 227: 1127~1140
    Wang H F, Zhang J H, Liang J S, Yin W L. 1999. Root and xylem ABA changes in response to soil drying in two woody plants. Chinese Science Bulletin, 44(24): 2236~2241
    Wison J B. 1988. Shoot competition and root competition. Ecology, 25: 279~296
    Wright R A, Wein R A, Dancik B P. 1992. Population differentiation in seedling root size between adjacent stands of Jack Pine. Forest Science, 38: 777~785
    Zhang J, Davies W J. 1989. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant cell Environ, 12: 73~81
    Zobel R W. 2003. Sensitivity analysis of computer based diameter measurement from digital images. Crop Sci. 43: 583~591
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.