海岛棉高产群体生长分析及水分生理指标空间变异规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大田条件下,以南疆主栽海岛棉(Gossypium barbadense L.)品种(系)为材料,分析了整个生育期的生长发育、同化物积累动态及水分生理指标的空间变异规律和生理生化特征,通过相关分析和回归分析等统计方法进行分析,得出了如下主要研究结果:
     1、海岛棉棉株生长过程自身调节能力较强,单株成铃数较高。叶面积空间变化特征为:中部>上部>下部,各品种表现为:YX-193 >AC-599> XH-21> XH-28。单位叶面积载荷量随生育期推进呈增大趋势。叶面积指数、光合势均呈抛物线型,叶面积比率、叶干重比和相对生长率随生育期的推进均呈下降趋势,比叶面积和净同化率呈多峰曲线。
     2、海岛棉同化物积累随时间变化呈“S”型曲线,用Logistic方程进行拟合均达到极显著水平。总同化物积累达最大值所需时间表现为:AC-599>XH-28>XH-21>YX-193,AC-599分别比XH-28、XH-21和YX-193晚4d、17d和23d,快速积累持续时间YX-193、AC-599、XH-21和XH-28分别是58d、83d、64d、74d,并且分别在出苗后第83d、94d、86d、93d进入旺盛生长期。生殖器官同化物积累速率最大的时刻t0点,YX-193、AC-599、XH-21和XH-28分别出现在出苗后120d、135d、124d、130d,同化物快速积累持续时间分别是43~44d、63~64d、48~49d、54~55d。
     3、海岛棉叶水势随叶位的上升不断增大,且正常植株大于受旱植株。受旱棉株叶片细胞液浓度较正常灌溉提高了2.0 %~4.0%,达到1%或5%的显著、极显著水平,叶片细胞液浓度随叶位的升高逐渐减小,早晨叶片细胞液浓度普遍较低,中午14:00~16:00达到最大值,16:00后随气温的下降也逐渐降低。正常灌溉的棉株其体内组织含水量、相对含水量明显高于受旱棉株,相对含水量和临界饱和亏低时,水分自然饱和亏和需水程度就大。蒸腾速率日变化呈现单峰或双峰趋势,气孔导度与蒸腾速率呈正相关,叶片温度、大气温度、气孔导度与蒸腾速率的相关性均达到显著或极显著水平,气孔导度与蒸腾速率的空间变化表现为:花铃期以倒2或倒3叶(打顶前)最高,以此为分界点,随叶位上升逐渐减小,随叶位下降急剧降低。
     4、叶片SPAD值随生育期的推移呈先上升后下降的变化趋势,盛铃期达到峰值,之后又随植株的衰老,SPAD值开始下降。SPAD值随叶位的上升,其变化可用二次多项式的函数关系进行描述,同节位叶片不同时期SPAD值存在极显著差异。
To study the growth and development、assimilates accumulation dynamic changes、Water Physiology of spatial distribution rules and physio-biochemical characteristics at all developing stages, field experiments were conducted in Alaer, Xinjiang Province in 2009-2010 by using four Island Cotton (Gossypium barbadense L.) varieties. correlation analysis and regression analysis were used to analyze data,The main results are as follows:
     1. Self-regulation ability of Island Cotton is stronger in plant growth process, higher number of bolls per plant. Spatial Variation characteristics of leaf area as follows:the middle>the upper>the bottom, each variety show is:YX-193 >AC-599>XH-21 >XH-28. Unit leaf area load capacity increasing with the growth trend of advancing. Leaf area index, photosynthetic potential showed a parabolic curve, leaf area ratio, leaf dry weight ratio and relative growth rate with advancing growth period showed a decreasing trend, specific leaf area and net assimilation rate showed a multi-peak curve.
     2. Island Cotton assimilate accumulation over time showed an“S”type-curve and could be simulated with a Logistic equation to achieve a significant level. Reached the maximum of total assimilation accumulation time showed: AC-599> XH-28> XH-21>YX-193,AC-599 respectively compared with XH-28、XH-21and YX-193 late 4d、17d、and 23d, the duration of the rapid accumulation of YX-193、AC-599、XH-21 and XH-28 respectively is 58d、83d、64d and 74d, and after emergence respectively in the 83d、94d、86d、93d into the exuberant growth period. Assimilation accumulation rate of genital largest point of time t0, YX-193、AC-599、XH-21 and XH-28 after emergence respectively 120d、135d、124d、130d,the duration of the rapid accumulation of assimilation respectively were 43 ~ 44d、63 ~ 64d、48 ~ 49d、54 ~ 55d.
     3. Island Cotton leaf water potential increased with increasing leaf position, and the normal plants than drought plants. Cotton leaf cells concentration affected by drought than the normal concentration of irrigation increased 2.0% to 4.0% to 1% or 5% significant、very significant level, concentration of leaf cells reduce gradually with leaf position increased,in the morning leaf cell concentration is generally low, reached the maximum at noon 14:00 ~ 16:00, with the temperature drop after 16:00 also gradually reduced. Normal irrigation of cotton in vivo tissue water content、relative water content was significantly higher than the drought-hit cotton, relative water content and critical saturated deficit low, Moisture natural saturated deficit and water-demand degree are big. Daily variation in Tr showed a single peak or a bimodal trend, Cond was positively related with Tr, leaf temperature, atmospheric temperature, Cond was significant or very significant level with Tr correlation, Cond and Tr of spatial variation as follows: during the blooming period to fall down 2 or 3 leaves (topping ago) the highest, for this boundary, with the increase leaf position gradually decreased,with leaf position decreased dramatically lower.
     4. Leaf SPAD values with the growth period increased and then decreased over the trend, boll period reached peak, and later SPAD values begin to decline with the plant aging. SPAD value increased with leaf position increased, the change function of a quadratic polynomial can be described, SPAD values in different periods there were significant difference with the leaf nodes.
引文
[1]崔建平.新疆棉花生产现状及持续发展建议[J].新疆农业科学,2008,45(S1):46~48.
    [2]张炎,毛端明,王讲利,等.新疆棉花平衡施肥技术的发展现状[J].土壤肥料,2003(4):7~10.
    [3]李尔文,周永莲,邰红忠,等.新疆海岛棉全面替代进口埃及棉的条件已成熟[C]//中国棉花学会2007年年会论文汇编.安阳:中国棉花杂志社,2007:491~492.
    [4]王荣栋,尹经章.作物栽培学[M].北京:高等教育出版社,2005.
    [5]王志贤,李新裕,贺志强,等.海岛棉不同密度下干物质积累及分配动态研究[J].江西棉花,2005,27(2):9~11.
    [6]倪金柱.棉花栽培生理[M].上海科学技术出版社,1985.
    [7]郑泽荣,倪晋山.棉花生理[M].北京:科学出版社,1980.
    [8]张权中,唐勇,徐利民,等.不同密度棉花干物质积累分配及蕾铃消长规律研究[J].新疆农业大学学报,1997,20(增刊):51~53.
    [9]陈学贞.棉花干物质积累和氮磷吸收动态的研究初报[J].湖南农学院学报,1980(4):19~23.
    [10]张旺锋,李蒙春,张煜星,等.北疆高产棉花(2250kg皮棉/hm2)栽培生理模式探讨[J].石河子大学学报(自然科学版),1998,增刊:58~64.
    [11]王克如,李少昆,宁光杰,等.新疆超高产棉花生育规律的初步研究[J].石河子大学学报(自然科学版),1998,增刊:77~80.
    [12]叶欣,王永东,李瑞雪,等.不同品种棉花干物质积累差异对比研究[J].西南农业大学学报,2004,26(6):750~752.
    [13]郑德明,姜益娟.陆地棉与海岛棉干物质累积分配特性[J].中国棉花,1996,23(4):8~9.
    [14]肖荧南,谢光辉,郭向东,等.不同栽培密度下棉花干物质累积的模拟[J].北京农业大学学报,1993,19(1):17~25.
    [15]张旺峰,李蒙春,勾玲等.不同开花期棉铃干物质积累规律研究[J].农业气象,1986,(1):14~19.
    [16]张晓锋,勾玲,杜亮,等.北疆高产棉花生长分析.棉花学报,2000,12(1):27~31
    [17]张旺锋,王振林,余松烈,等.膜下滴灌对新疆高产棉花群体光合作用冠层结构和产量形成的影响[J],中国农业科学,2002,35(6):632~63.
    [18]张立桢,曹卫星,张思平.棉花干物质分配和产量形成的动态模拟[J].中国农业科学,2004,37(11):1621~1627.
    [19] Grimes,D.W.and Yamada,H.,Relation of cotton growth and yield to minimum leaf water potential .Crop Science,1982,22:134-139.
    [20]陈亚新,康绍忠.非充分灌溉原理[M].水利电力出版社.1995.
    [21]康绍忠,熊运章.作物缺水状况的判别方法及灌水指标的研究[J].水利学报,1991(1).
    [22]杨培园.汪宗立.灌溉农业生物学基础[M].科学出版社,1961.
    [23]康绍忠,刘小明.农田节水调控中的几个基本理论问题[J].农业工程学报.1994.
    [24]陕西省棉花研究所.棉花[M].科学技术出版社,1977.
    [25]江苏省农业科学院经济作物研究所编著.棉花的一生[M].上海科学技术出版社,1981.
    [26]康绍忠,熊运章.作物缺水状况的判别方法及灌水指标的研究[J].水利学报,1991(1).
    [27]王广兴.节水灌溉与产量构成因素的关系[J].灌溉排水,1990(2).
    [28]高谬,马克浓.棉花的产量形成及其诊断[M].上海科学技术出版社.1981.
    [29]李文祥.棉花需水量试验总结[M].科学出版社,1957.
    [30]杜红梅,王德利,孙伟.松嫩草地全叶马兰夏季与秋季光合及蒸腾作用的比较[J].应用生态学报,2002,13(12):1600~1604.
    [31]潘瑞炽,懂愚得.植物生理学(第三版)[M].北京:高等教育出版社,1993:21~23.
    [32]王梦本,李洪建,才宝峰,等.树种蒸腾作用、光合作用和蒸腾速率的比较研究[J].植物生态学报,1999 ,23(5):401~410
    [33]康绍忠,党育红.作物水分生产函数与经济用水灌溉制度研究[J].西北水利科技,1987(1).
    [34]王新元,赵昌盛,陈宏恩.节水型农业与节水技术的研究[M].气象出版社.1993.
    [35]蒋进,王周琼,马健.棉花的水分状况及草炭处理后的变化[J].干旱区研究,2002,19(2):22~24.
    [36] Jordan, W.R.,Growth of coton seedlings in relation to maximum daily plantwater potential .Agron.J.,1970,62:699~701
    [37]谢小立,王凯荣.湘北红壤坡地土壤水分特征及其水分运移[J].水土保持学报,2004,18(5):105~110.
    [38]李英能.我国节水灌溉的现状和发展[J].水利水电科技进展.1998(1).
    [39]李少昆,张旺锋,马富裕.北疆超高产棉花(皮棉2000kg.hm-2)生理特性研究[J].作物学报,2000,26(4):508~812.
    [40]张旺锋,勾玲,杜亮.北疆高产棉花(1800kg·hm-2)生长分析[J].棉花学报,2000,12(1):2~31.
    [41]陈布圣.棉花群体光能利用的研究[C]//湖北植物生理学会第二届年会论文集.武汉:湖北省植物生理学会编,1981.
    [42]余渝,陈冠文,林海.北疆棉田叶面积系数变化动态的研究[J].棉花学报,2001 ,13(5).300~303
    [43]张旺锋,王振林,余松烈.膜下滴灌对新疆高产棉花群体光合作用冠层结构和产量形成的影响[J],中国农业科学,2002,35(6):632~63.
    [44]孙莉,陈曦,包安明.棉花各生育期高光谱数据与叶片生物物理生物化学量的相关分析[J],干旱区地理,2004,27(1):125~129.
    [45]王康,沈荣开,唐友生.用叶绿素测值(SPAD)评估夏玉米氮素状况的实验研究[J].灌溉排水,2002,21(4):1~3.
    [46]单明珠,胡必德.夏玉米叶片叶绿素含量与产量的关系[J].陕西农业科学,1991,2:15~16.
    [47]童淑媛,宋凤斌,徐洪文.玉米不同叶位叶片SPAD值的变化及其与生物量的相关性[J].核农学报,2008,22(6):869~874.
    [48] Krasichkova G.V.(苏).棉叶中质体色素含量与产量形成过程的关系[J]摘,1988,(2):20.
    [49]Idso,S.B.,Reginato,R.J.,Reicosky,D.C.,etal.,Determiningsoil-inducde plant water potential depressions in alfalfa by means of infrared thermometry.Agron.J.,1981,73:826~830
    [50]王娟,韩登武,任岗,等.SPAD值与棉花叶绿素和含氮量关系的研究[J].新疆农业科学,2006,43(3):167~170
    [51]张巨松,杜永猛.棉花叶片叶绿素含量消长动态的分析,新疆农业大学学报[J],2002,25(3):7~9.
    [52]董钻,沈秀瑛.作物栽培学总论[M].中国农业出版社,2004:78~80.
    [53]王信理.在干物质模拟中如何合理应用Logistic方程[J].农业气象,1986,(1):14~19.
    [54]张以顺,黄霞,陈云凤.植物生理学实验教程(第一版) [M].北京:高等教育出版社,2009(2):56~57.
    [55]张志良.植物生理学实验指导(第二版)[M].北京:高等教育出版社,1990,1~3.
    [56]盖钧镒.试验统计方法[M].北京:中国农业出版社,2000.
    [57]裴喜春,薛河儒.SPSS及应用[M].中国农业出版社,1997.
    [58]冀雅珍.一种新型玉米叶面积估算方法[J].科技情报开发与经济,2008,18(11):214~215.
    [59]周可金,裴训武,江厚旺.不同开花期棉铃干物质积累规律研究[J].棉花气象,1986,(l):14~19.
    [60]范君华,刘明.不同叶型零式果枝海岛棉叶片光合色素特性比较[J].中国棉花,2006,33(4):11~12.
    [61]张荣铣,高忠.小麦种和品种间叶片展开后光合特性的差异及其机理[J].作物高产生理学研究进展,1996,35~45.
    [62]左宝玉,段续川.冬小麦不同层次叶片中叶绿素超微结构及其功能的研究[J].植物学报,1978,20(8):223~228.
    [63]黄见良,李合松,李建辉,等.不同杂交水稻吸氮特性与物质生产的关系[J].核农学报,1998,12(2):89~94.
    [64] ScottC Chapman, Hector JBarreto. Using a chlorophyllmeter to estimatespecific leaf nitrogen of tropical maize during vegetative growth[J]. Agron Journal ,1997 , 89 :557~662.
    [65]涂璟,王克勤.干旱地区造林树种的水分生理生态的研究进展)[J].西北林学院学报,2003,18(3):26~30。
    [66]邹琦.干旱条件下大豆水分状况与渗透调节[J].大豆科学,1994,13(4):312~320。
    [67]李绍家,侯开卫,刘凤书,等.几种紫胶虫优良寄主树的自然分布概况及耐早性与水分生理[J].林业科学研究,1997,10(5):519~524.
    [68]邓雄,李小明,张希明等.4种荒漠植物气体交换特征的研究[J].植物生态学报,2002,26(5):605~612.
    [69]赵平,曾小平,彭少麟,等.海南红豆夏季叶片气体交换、气孔导度和水分利用效率的日变化)[J].热带亚热带植物学报,2000,8(1):35~42
    [70]杨盛昌,林鹏.5℃夜间低温对红树幼苗光合速率和蒸腾速率的影响[J].植物研究2001,21(4):587~591
    [71]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004.
    [72]李少昆,马富裕,王克如.北疆棉花光合、蒸腾作用基本特性与测试技术的探讨[J].石河子大学学报,1997,1(2):92~97.
    [73]徐邦发.高产棉花光合特性的初步研究[J].塔里木农垦大学学报,1997,9(1):5~9.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.