介结构金属膦酸盐杂合材料的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔膦酸盐材料由于可裁剪的有机基团和多样化的金属元素,造成了其特有的骨架结构,同时具有高的比表面积、可调的孔径及固有的酸性和骨架中含有有机膦的配位特性,在催化、吸附分离、及主客体化学中具有很重要的应用前景。本论文选用不同配齿的有机膦为磷源,合成出一系列介结构锆基、铝基、锡基、钛基和钨基膦酸盐杂化材料,并将它们应用于酸催化、C02化学转化,重金属离子吸附和染料吸附等领域。主要包括以下几个方面:
     1.以CTAB表面活性剂为模板剂,H20为溶剂,羟基亚乙基二膦酸(HEDP)为磷源,ZrOCl2为锆源,通过改变ZrOCl2的加入量,经水热途径合成得到一系列具有不同P/Zr摩尔比的介结构膦酸锆ZrHEDP-x-24(比表面积为702-970m2/g,孔径为3.4-3.6nm和孔容为0.74-0.86cm3/g);其次,为了调变有机膦酸锆孔道表面的憎疏水性,通过选择具有不同有机链长的有机膦HEDP,氨基三亚甲基膦酸(ATMP)和乙二胺四亚甲基膦酸钠(EDPMTS)为磷源,合成得到高比表面积且孔径均一的介孔膦酸锆ZrHEDP, ZrATMP和ZrEDTMPS(比表面积为310-749m2/g,孔径为3.4-4.2nm,孔容为0.42-0.74cm3/g);最后,在合成体系中加入乙醇,通过控制合成参数,得到由1-羟基乙基桥联的微孔膦酸锆(E-ZrHEDP-8-y)和有序二维六方介孔膦酸锆(E-ZrHEDP-4-24)。在合成过程中,通过控制晶化时间,可以对微孔膦酸锆的物理结构参数进行调节,包括孔径(0.87nm-2.50nm),微孔比表面积(116-509m2/g)和孔容(0.11-0.35cm3/g)。
     紧接着对上述合成得到的多孔膦酸锆材料的性能进行了考察,将它们分别用在酸催化,催化CO2化学转化和染料吸附等方面。ZrHEDP-x-24系列样品作为固体酸催化剂,催化合成甲基-2,3-异亚丙基-D-呋喃核糖苷的反应中,显示了很好的催化活性和重复使用性能。其次,将具有不同有机基团链长的介孔膦酸锆ZrHEDP, ZrATMP和ZrEDTMPS作为酸催化剂,在催化乙酸乙酯的水解和乙酸与乙酸的酯化反应时,与传统的固体酸催化剂相比(NKC-9和ZrPO4),介孔膦酸锆固体酸催化剂显示出更好的酸催化活性,而且三种膦酸锆的催化活性顺序为ZrHEDP介孔膦酸锆催化剂仍然保留着很好的催化活性,表明介孔膦酸锆对于有水参与的反应是一类重要的且潜在的良好固体酸催化剂。当ZrHEDP,ZrATMP和ZrEDTMPS用作催化剂催化CO2化学固载时,在温和的条件下能够催化一系列的氮杂丙叮衍生物和CO2反应,得到的产率为60-96%,选择性为93-98%。整个反应过程在无溶剂、无助催化剂、无卤素参与下进行,同时反应过程经济、安全、环保。
     当E-ZrUEDP-x-y样品作为吸附剂吸附CV,MO和RhB染料时,介孔E-ZrHEDP-4-24(2.41nm)在染料吸附测试中比具有相同组成但较小孔径的微孔膦酸锆E-ZrHEDP-8-1(0.87nm)和超微孔膦酸锆E-ZrHEDP-8-24(1.62nm)的吸附量高且吸附速率快。另外,RhB-loaded E-ZrHEDP-4-24复合物表现出了与RhB类似的荧光强度。本研究表明有机-无机杂合多孔膦酸锆可调的孔径尺寸,可观的比表面积以及酸量,使得这一材料在色谱、吸附分离、离子交换和异相催化等多方面存在着潜在的应用。
     2.分别以Al(NO3)3,AlC13和Al2(SO4)3为铝源,CTAB为表面活性剂,HEDP为磷源,以水/醇为混合溶剂通过溶剂挥发自组装途径合成得到孔壁结晶的层状结构膦酸铝,二维六方结构膦酸铝和纳米颗粒有序堆积得到的膦酸铝材料;这三种不同的无机铝源,作为无机阴离子添加剂,对最终产物的形貌也产生了很大的影响,分别得到了花状、块状和小细粒堆积的颗粒形貌。不同形貌和不同介观相的形成主要原因是溶液中四种Hofmeister阴离子被不同程度的水化,其水化顺序为NO3-     3.以CTAB为表面活性剂,HEDP为二膦酸,SnCl4·5H2O为锡源,在水热条件下合成得到二维六方有序介观结构膦酸锡材料。这在有序介观结构膦酸锡材料的合成上属于首次合成。
     4.以CTAB为表面活性剂,TEOS为硅源,TiCl4为钛源,EDTMPS为磷源,在微乳体系中,合成得到由亚微米级颗粒堆积而成的蠕虫孔介观材料二氧化钛-二氧化硅-有机膦三组分体系(TSP-χ)。在二氧化钛-膦酸盐材料中掺入硅有利于提高介观结构的规则性及材料比表面积、孔容和孔径的提高。并将该材料用于气体CO2吸附和水溶液中重金属离子吸附。
     5.以HEDP为磷源,Na2WO4为钨源,合成得到一种新颖的Keggin-type有机膦钨酸阴离子和CTA阳离子组成的介结构杂合材料HOPW-CTA。 HOPW-CTA是颗粒尺寸在10-30nm的纳米粒子。通过红外,拉曼,紫外可见和固体31P核磁表征手段证明HOPW-CTA具有十二磷钨酸的Keggin结构。当HOPW-CTA作为催化剂催化苯乙烯的氧化反应时,以水为反应溶剂,得到苯基乙二醇的产率为77.7%,α-羟基苯乙酮的产率为15.5%。
Porous metal phosphonates, possessing unique hybrid frameworks owing to tailoring organic groups and various metals, and high specific surface, tunable pore sizes and intrinsic acidic property as well as the coordinating characteristics, make them have potential applications in the fields of catalysis, adsorption and separation, host-guest chemistry, et al. In this thesis, a series of mesostructured metal phosphonats including zirconium, aluminum, tin, titanium and tungsten, were fabricated. These materials were further applied as solid acid catalysts, heterogenous catalyst for CO2chemical fixation, adsorbents for heavy metal adsorption and dye removal, et al. The main contents are as follows:
     1. A series of mesostructured zirconium organophosphonates were successfully synthesized via hydrothermal route with CTAB as surfactant template and ZrOCl2as zirconium source. With1-hydroxy ethylidene-1,1'-diphosphonic acid (HEDP) as phosphorus, mesoporous zirconium organophosphonates (ZrHEDP-x-24) were obtained with different P/Zr molar ratios, which have high specific surface areas (702-970m2/g), uniform pore sizes (3.4-3.6nm) and large pore volumes (0.74-0.86cm3/g); When HEDP was replaced by amino trimethylene phosphonic acid (ATMP) or sodium salt of ethylene diamine tetra (methylene phosphonic acid)(EDTMPS), another two mesoporous zirconium organophosphonates ZrATMP and ZrEDTMPS were synthesized with much longer organic groups integrated in the hybrid framework; When ethanol, acting as cosurfactant, was added in the synthetic aqueous solution, microporous zirconium phosphonates (E-ZrHEDP-8-y) and ordered mesoporous zirconium phosphonate (E-ZrHEDP-4-24), bridged with1-hydroxyethylidene groups in the hybrid framework were prepared by controlling synthetic parameters. The pore sizes for E-ZrHEDP-8-y. can be tuned from small micropore (0.87nm) to mid-meso (2.50nm) range, in combination of microporous surface area from116to509m2/g and pore volume from0.11to0.35cm3/g.
     Above prepared hybrid porous zirconium organophosphonates were applied to multiple applicantions including as solid acid catalyst, as catalyst to catalyze CO2chemical fixation and as adsorbent for dye removal. E.g. ZrHEDP-x-24samples were used as solid acid catalysts for preparation of methyl-2,3-O-isopropylidene-β-D-ribofuranoside from D-ribose, and exhibited robust catalytic activity with high product yield and good reusability with desirable stability, due to their high specific surface area and abundant porosity. Besides, mesoporous hybrid zirconium organophosphonates ZrHEDP, ZrATMP and ZrEDTMPS exhibited high catalytic activities per proton acid active site in hydrolysis of acetyl acetate and high TOFs for esterification of acetic acid with ethanol, due to the combination of the larger specific surface area, abundant mesoporosity and hydrophobicity of pore surfaces created by the embedded organic groups in the framework, when compared with NKC-9and ZrPO4. In the esterification of acetic acid with cyclohexanol, all the three hybrid catalysts showed superior recyclability. As a new type of chemical CO2fixation catalysts, those three hybrids were served as efficient heterogeneous solid to catalyze the cyclization of aziridines with green and sustainable CO2as C1building block under mild conditions without co-catalysts and solvents. The whole preparation process was non halogen-contained, economic, safe and environmentally benign, along with the high yields (60-96%) and excellent regio-selectivity (93-98%) for the reactions of various aziridines with CO2.
     When E-ZrHEDP-x-y was used as adsorbent to removal dyes, E-ZrHEDP-4-24with mesopore size of2.41nm exhibited higher adsorption capacity and more rapid adsorption rate for the organic dyes removal than the identical compositional materials with smaller pore sizes (0.87nm and1.62nm). Besides, RhB-loaded ZrHEDP-4-24composite exhibited a comparable fluorescence to RhB in ethanol. All above suggest the potential of microporous and mesoporous hybrid zirconium organophosphonates in the field of solid acid catalysts, adsorbents and as host to load luminescent dyes to be used as solid-state dye lasers and optical devices.
     2. Aluminum phosphonates in the form of lamellar mesostructure with crystalline pore wall,2D-hexagonal and particle-aggregated mesophase, as well as their corresponding flower-like, block-like and granule-aggregated particle morphologies, have been synthesized with the use of Al(NO3)3, AICl3and Al2(SO4)3as aluminum source via surfactant-templating solvent-evaporation method. The influences of counteranions both on the mesostructure and the morphology of organic-inorganic hybrid materials have been discussed and the present work extended the effect of inorganic additives from inorganic silica to organic-inorganic hybrid materials.
     3.2-D hexagonal mesostructured tin phosphonate with HEDP as phosphorus and SnCl4·5H2O as tin source was prepared with the assistance of CTAB as template through hydrothermal route. It was the first time for the successful preparation of periodic mesostructured hybrid tin phosphonates.
     4. Surfactant-templating strategy was used to synthesize mesoporous titania-silica-phosphonate triconstituent hybrid materials (TSP) in the form of submicrometer-sized particles with disordered wormhole-like mesostructure, in microemulsion system by utilizing CTAB as surfactant, TEOS, TiCl4and EDTMPS as the silica, titania and P sources, respectively. The integration of silica in the TSP framework could be in favor of the improvement of the regularity of mesostructure, as well as the enlargement of the specific surface area, pore volume and pore diameter. TSP materials were used to adsorb CO2in gas phase and heavy metal ion Cd (II) in aqueous solution.
     5. A new mesostructured hybrid assembly consisting of Keggin-type organophospho-tungstate anions and cetyltrimethylammonium cations (HOPW-CTA) was prepared with HEDP as phosphorus, and Na2WO4as tungsten source. The obtained hybrid had crystallized nanoparticles in size of10-30nm possessing elliptical and round shapes. The organophospho-tungstate anion clusters for this material are Keggin type, which were characterized by FT-IR, UV-vis, Raman and31P MAS NMR. When HOPW-CTA was used to catalyze the oxidation of styrene, a moderate yield of77.7%for phenyl glycol was generated with another useful byproduct a-hydroxyacetophenone (15.5%) in "Green" aqueous solution.
引文
[1]K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al. Pure Apply. Chem.,1985,57,603-608.
    [2]R.M. Barer, Syntheses and reactions of mordenite. J. Chem. Soc.,1948,10,2158-2163.
    [3]F.S. Xiao, S.L. Qiu, W.Q. Pang, New developments in microporous materials. Adv. Mater., 1999,11,1091-1099.
    [4]K. Kunnii, K. Narahara, S. Yamanaka, Template-free synthesis of AlPO4-H1-H2 and H3 by microwave heating. Micropor. Mesopor. Mater.,2002,52,159-167.
    [5]R. Dawson, A.I. Cooper, D.J. Adams, Nanoporous organic polymer networks. Progress in polymer science.,2012,37,530-563.
    [6]A.P. Cote, A.I. Benin, N.W. Ockwig, et al. Porous crystalline covalent organic frameworks. Science,2005,310,1166-70.
    [7]M. Mastalerz, The next generation of shape-persistant zeolite analogues:covalent organic frameworks. Angew Chem. Int. Ed.,2008,47,445-447.
    [8]K. Severin, Boronic acids as building blocks for molecular nanostructures and polymeric materials. Dalton Trans.,2009,5254-5264.
    [9]V.A. Davankov, M.P. Tsyurupa, Structure and properties of hypercrosslinked polystyrene-the 1st representative of a new class of polymer networks. React. Polym.,1990,13,27-42.
    [10]M.P. Tsyurupa, V.A.Davankov, Hypercrosslinked polymers:basic principle of preparing the new class of polymeric materials. React. Funct. Polym.,2002,53,193-203.
    [11]N. Fontanals, P. Manesiotis, D.C. Sherrington, et al. Synthesis of spherical ultra-high-surface-area monodisperse amphipathic polymer sponges in the low-micrometer size range. Adv. Mater.,2008,20,1298-1302.
    [12]R. Chinchilla, C. Najera, The sonogashira reaction:a booming methodology in synthetic organic chemistry. Chem. Rev.,2007,107,874-922.
    [13]A. Li, R.F. Lu, Y. Wang, et al. Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew Chem. Int. Ed.,2010,49,3330-3333.
    [14]R. Dawson, A. Laybourn, R. Clowes, Y.Z. Khimyak, D.J. Adams, A.I. Cooper, Functionalized conjugated microporous polymers. Macromolecules,2009,42,8809-8816.
    [15]N.B. McKeown, S. Makhseed, P.M. Budd, Phthalocyanine-based nanoporous network polymers. Chem. Commun.,2002,2780-2781.
    [16]N.B. McKeown, S. Hanif, K. Msayib, et al. Porphyrin-based nanoporous network polymers. Chem. Commun.,2002,2782-2783.
    [17]N.B. McKeown., P.M. Budd, K.J. Msayib, et al. Polymers if intrinsic microporosity (PIMs). Chem. Eur. J.,2005,11,2610-2620.
    [18]K. Song, J.Q. Guan, Z.Q. Wang, et al. Post-treatment of mesoporous material with high temperature for synthesis super-microporous materials with enhanced hydrothermal stability. Appl. Surface Sci.,2009,255,5843-5846.
    [19]M. J. Frisch, G.W. Trucks, H.B. Schlegel, et al. Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh, PA,2003.
    [20]R. Ryoo, I. Park, S. Jun, et al. Synthesis of ordered and disordered silicas with uniform pores on the border between micropore and mesopore regions using short double-chanin surfactants.Am. Chem. Soc.,2001,123,1650-1657.
    [21]R. L. Wang, S.H. Han, W.G. Hou, et al. Highly ordered supermicroporous silica. J. Phys. Chem. C,2007,111,10955-10958.
    [22]S.S. Wang, S.H. Han, X.Y. Cui, et al. Effects of the spacer length of Gemini surfactants on the ordered pore of silica. J. Porous Mater.,2012,19,243-249.
    [23]G.(?)ye, J. Sjoblom, M. Stocker, Synthesis, characterization and potential applications of new materials in the mesoporous range. Adv. Colloid Interface Sci.,2001,89-90,439-466.
    [24]D.Y. Zhao, Q.S. Huo, J.L. Feng, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc.,1998,120,6024-6036.
    [25]Y. Muto, K. Esumi, K. Meguro, et al. Aggregation behavior of mixed fluorocarbon and hydrocarbon surfactants in aqueous-solutions.J. Colloid Interface Sci.,1987,120,162.
    [26]Y. Han, D. Li, L. Zhao, et al. High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures. Angew. Chem. Int. Ed.,2003,42,3633.
    [27]Y. Di, X.J. Meng, L.F. Wang, et al. Ultralow temperature synthesis of ordered hexagonal smaller supermicroporous silica using semifluorinated surfactants as template. Langmuir, 2006,22,3068-3072.
    [28]T.W. Davey, W.A. Ducker, A.R. Hayman, Aggregation of w-hydroxy quaternary ammonium bolaform surfactants. Langmuir,2000,16,2430.
    [29]S.A. Bagshaw, A.R. Hayman, Novel super-microporous silicate templating by w-hydroxyalkylammonium halide bolaform surfactants. Chem. Commun.,2000,533-534.
    [30]S. A. Bagshaw, A. R. Hayman, Super-microporous silicate molecular sieves. Adv. Mater., 2001,13,1011-1013
    [31]徐如人,庞文琴等.分子筛与多孔材料化学。北京:科学出版社,2004,619-633。
    [32]L.T. Kresge, M. E. Leonomicz, W. J. Roth, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,395,710.
    [33]D.Y. Zhao, J.L. Feng, Q.S. Huo, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science,1998,2,548-552.
    [34]S.S. Kim, W.Z. Zhang, T.J. Pinnavaia, Ultrastable mesoporous silica vesicles. Science,1998, 282,1302-1305.
    [35]S.S. Kim, T.R. Pauly, T.J. Pinnavaia, Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates. Chem.Commun.,2000,1661-1662.
    [36]F. Kleitz, S.H. Choi, R. Ryoo, Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun.,2003, 2136-2137.
    [37]F. Kleitz, D. Liu, G. M. Anilkumar, et al. Large cage face-centered-cubic Fm3m mesoporous silica:synthesis and structure. J. Phys. Chem. B,2003,107,14296-14300
    [38]J. Fan, C.Z. Yu, T. Gao, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem. Int. Ed.,2003,42,3146-3150.
    [39]J. Fan, C.Z. Yu, J. Lei, et al. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J. Am Chem. Soc.,2005,127,10794-10795.
    [40]S.D. Shen, A.E. Garcia-Bennett, Z. Liu, et al. Three-dimensional low symmetry mesoporous silica structures templated from tetra-headgroup rigid bolaform quaternary ammonium surfactant. J. Am Chem. Soc.,2005,127,6780-6787.
    [41]B.Z. Tian, X.Y. Liu, B. Tu, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nat. Mater.,2003,2,159-163.
    [42]Y. Wan, Y.F. Shi, D.Y. Zhao, Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem. Commun.,2007,897-926.
    [43]J.S. Beck, J.C. Vartuli, W.J. Roth, et al. A new family of mesoporous molecular sieves prepared with liquid crystal template. J. Am. Chem. Soc.,1992,114,10834.
    [44]Q.S. Huo, D.I. Margolese, U. Ciesla, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase array. Chem. Mater,1994,5,1176.
    [45]A. Monnier, F. Shuth, Q. Huo, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of siiicate mesostructure. Science,1993,261,1299-1303.
    [46]Q.S. Huo, D.I. Margolese, G.D. Stucky, Surfactant control of phase in the synthesis of mesoporous silica-based materials. Chem. Mater,1996,8,114.
    [47]S.A. Che, S. Lim, M. Kaneda, et al. The effect of the counteranion on the formation of mesoporous materials under the acidic synthesis process. J. Am. Chem. Soc.,2002,124, 13962-13963.
    [48]H.P. Lin, C.P. Kao, C.Y. Mou, et al. Counterion effect in acid synthesis of mesoporous silica materials. J. Phys. Chem. B,2000,104,7885-7894.
    [49]K. Flodstrom, V. Alfredsson, N. Kallrot, Formation of a New la3d cubic meso-structured silica via triblock copolymer-assisted synthesis. J. Am. Chem. Soc.,2003,125,4402-3303.
    [50]C.Z. Yu, B.Z. Tian, J. Fan, et al. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J. Am. Chem. Soc.,2002,124, 4556-4557.
    [51]D.Y. Yuan, J.Y. Sun, Q.Z. Li, et al. Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater.,2000,12,275-279.
    [52]S.Z. Qiao, C.Z. Yu, Q.H. Hu, et al. Control of ordered structure and morphology of large-pore periodic mesoporous organosilicas by inorganic salt. Micro. Meso. Mater.,2006, 91,59-69.
    [53]C.Z. Yu, B.Z. Tian, J. Fan, et al. Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers. Chem. Commun.,2001,2726-2727'.
    [54]H.P. Lin, C.P. Kao, C.Y. Mou, Counterion and alcohol effect in the formation of mesoporous silica. Micro. Meso. Mater.,2001,48,135-141.
    [55]A. Okabe, T. Fukushima, K. Ariga, et al. Tetrafluoroborate salts as site-selective promoters for sol-gel synthesis of mesoporous silica. J. Am. Chem. Soc.,2004,126,9013-9016.
    [56]J. Yu, J.L. Shi, H.R. Chen, et al. Effect of inorganic salt addition during synthesis on pore structure and hydrothermal stability of mesoporous silica. Micro. Meso. Mater.,2001,46, 153-162.
    [57]E. Leontidis, Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr. Opin. Colloid Interface. Sci.,2002,7,81-91.
    [58]D. Nguyen, G.L. Bertrand, Calorimetric observation of the sphere-rod transition of tetradecyltrimethylammonium bromide and sodium dodecyl sulfate:effects of electrolytes and non-electrolytes at 25 and 45℃. J. Colloid Int. Sci.,1992,150,143-157.
    [59]S. Berr, R.M.R. Jones, J.J. Johnson, Effect of counterion on the size and charge of alkyltrimethylammonium halide micelles as a function of chain length and concentration as determined by small-angle neutron scattering. J. Phys. Chem.,1992,96,5611-5614.
    [60]A.S. Poyraz, C. Albayrak, O. Dag, The effect of cationic surfactant and some organic/inorganic additives on the morphology of mesostructured silica templated by pluronics. Micro. Meso. Mater.,2008,115,548-555.
    [61]J.C. Eriksson, G. Gillerg, NMR studies of the solubilization of aromatic compounds in cetyltrimethylammonium bromide solution. H,Acta Chem. Scand.,1966,20,2019-2027.
    [62]J.L. Blin, C. Otjacques, G. Herrier, et al. Pore size engineering of mesoporous silicas using decane as expander. Langmuir,2000,16,4229-4236.
    [63]L. Huang, M. Kruk, Synthesis of ultra-large-pore FDU-12 silica using ethylbenzene as micelle expander. J. Colloid Interface Sci.,2012,365,137-142.
    [64]J. Sun, H. Zhang, D. Ma, et al. Alkanes-assisted low temperature formation of highly ordered SBA-15 with large cylindrical mesopores. Chem. Commun.,2005,5343-5345.
    [65]L. Cao, M. Kruk, Synthesis of large-pore SBA-15 silica from tetramethyl orthosilicate using triisopropylbenzene as micelle expander. Colloids and Surfaces A:Physicochem. Eng. Aspects,2010,357,91-96.
    [66]A. Shimojima, M. Sakurai, K. Kuroda, et al. Effect of organic additives on the formation of alkylsiloxane mesophase. J. Colloid Interface Sci.,2010,350,155-160.
    [67]F. Kleitz, J. Blanchard, B. Zibrowius, et al. Influence of Cosurfactants on the properties of mesostructured materials. Langmuir,2002,18,4963.
    [68]H.P. Lin, Y.R. Cheng, S.B. Liu, et al. The effect of alkan-1-ols addition on the structural ordering and morphology of mesoporous silicate MCM-41. J. Mater. Chem.,1999,9, 1197-1201.
    [69]S.Q. Liu, P. Cool, O. Collart, et al. The influence of the alcohol concentration on the structural ordering of mesoporous silica:cosurfactant versus cosolvent. J. Phys. Chem. B, 2003,107,10405-10411.
    [70]G. Zhou, Y. Chen, J. Yang, et al. From cylindrical-channel mesoporous silica to vesicle-like silica with well-defined multilamella shells and large inter-shell mesopores.J. Mater. Chem., 2007,17,2839-2844.
    [71]H.M. Kao, C.C. Cheng, C.C. Ting, et al. Phase control of cubic SBA-1 mesostructures via alcohol-assisted synthesis. J. Mater. Chem.,2005,15,2989-2992.
    [72]N.P. Wickramaratne, M. Jaroniec, Phenolic resin-based carbons with ultra-large mesoporous prepared in the presence of poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer and trimethyl benzene. Carbon,2013,51,45-51.
    [73]M.B. Dines, R.E. Cooksey, P.C. Griffith, et al. Formation of a new nitride cluster from coordinated isocyanate. Inorg. Chem.,1983,22,1004-1006.
    [74]A. Clearfield, Layered phosphates, phosphites and phosphonates of groups 4 and 14 metals. Comm. Inorg. Chem.,1990,10,89-128.
    [75]G. Alberti, U. Costantino, J. Kornyei, et al. Derivatives of a-zirconium phosphate with two different functional groups. React. Polym.,1985,4,1-10.
    [76]J.D. Wang, A. Clearfield, Mater. Chem. Phys.,1993,35,208-219.
    [77]L.A. Vermeulen, M.E. Thompson, Synthesis and photochemical properties of porous zirconium viologen phosphonate compounds. Chem. Mater.,1994,6,77-81.
    [78]Z.K.. Wang, J.M. Heising, A. Clearfield, Sulfonated microporous organic-inorganic hybrids as strong bronsted acids.J. Am. Chem. Soc.,2003,125,10375-10383.
    [79]A. Bhaumik, S. Inagaki, Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc.,2001,123,691-696.
    [80]T.Y. Ma, Z.Y. Yuan, Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. Chem. Commun.,2010,46,2325-2327.
    [81]T.Y. Ma, X.Z. Lin, Z.Y. Yuan, Cubic mesoporous titanium phosphonates with multifunctionality. Chem. Eur. J.,2010,16,8487-8494.
    [82]N. Ren, Y. Tang, Y.J. Wang, et al. Mesoporous zirconium phosphate-phenylphosphonate and its functionalization. Chem. Lett.,2002,1035-1037.
    [83]X. Shi, J. Liu, C.M. Li, et al. Pore-size tunable mesoporous zirconium orgaophosphonates with chiral L-proline for enzyme adsorption. Inorg. Chem.,2007,46,7944-7952.
    [84]X. Shi, J.P. Li, Y, Tang, et al. pH-sensitive mesoporous zirconium diphosphonates for controllable colon-targeted delivery. J. Mater. Chem.,2010,20,6495-6504.
    [85]H.P. Perry, J. Law, J. Zon, et al. Porous zirconium and tin phosphonates incorporating 2.2'-bipyridine as supports for palladium nanoparticles. Micro. Meso. Mater.,2012,149, 172-180.
    [86]T. Kimura, Synthesis of novel mesoporous aluminu organophophonate by using organically bridged diphosphonic acid. Chem. Mater.,2003,15,3742-3744.
    [87]T. Kimura, Synthesis of mesostructured and mesoporous aluminum organophophonates prepared by using diphosphonic acid with alkylene groups. Chem. Mater.,2005,17,337-344.
    [88]T. Kimura, Oligomeric surfactant and triblock copolymer synthesis of aluminum organophophonates with ordered mesoporous structures. Chem. Mater.,2005,17,5521-5528.
    [89]T. Kimura, K. Kato, Simple removal of oligomeric surfactants and triblock copolymers from mesostructured p recursors of ordered mesoporous aluminum organophosphonates. Micro. Meso. Mater.,2007,101,207-213.
    [90]T. Kimura, K. Kato, Mesostructural control non-silica-based hybrid mesoporous film composed of aluminum ethylenediphosphonate using triblock copolymers and their TEM observation. New J. Chem.,2007,31,1488-1492.
    [91]J. EI Haskouri, C. Guillem, J. Latorre, et al. The first pure mesoporous aluminium phosphonatesand diphosphonates new hybrid porousmaterials. Eur J. Inorg. Chem.,2004,9, 1804-1807.
    [92]J. EI Haskouri, C. Guillem, J. Latorre, et al. S+I- ionic formation mechanism to new mesoporous aluminum phosphonates and diphosphonates. Chem. Mater.,2004,16, 4359-4372.
    [93]N.K. Mal, M. Fujiwara, M. Matsukata, Synthesis of organic-inorganic hybrid mesoporous tin oxophosphate in the presence of anionic surfactant. Chem. Commun.,2005,41,5199-5201.
    [94]A. Dutta, M. Pramanik, A. K. Patra, et al. Hybrid porous tin (Ⅳ) phosphonate:an efficient catalyst for adipic acid synthesis and a very good adsorbent for CO2 uptake. Chem. Commun., 2012,48,6738-6740.
    [95]M. Vasylyev, R. Neumann, Preparation,characterization, and catalytic aerobic oxidation by a vanadium phosphonate mesoporous material constructured from a dendritic tetraphosphonate. Chem. Mater.,2006,18,2781-2783.
    [96]F. Bellezza, A. Cipiciani, U. Costantino, et al. Adsorption of myoglobin onto porous zirconium phosphate and zirconium benzenephosphonate obtained with template synthesis. Langmuir,2006,22,5064-5069.
    [97]M.V. Vasylyev, E.J. Wachtel, R. Popovitz-Biro, et al. Titanium phosphonate porous materials constructed from dendritic tetraphosphonates. Chem. Eur. J.,2006,12,3507-3514.
    [98]T.Y. Ma, X.Z. Lin, Z.Y. Yuan, Periodic mesoporous titanium phosphonate hybrid materials. J. Mater. Chem.,2010,20,7406-7415.
    [99]T.Y. Ma, L. Liu, Q.F. Deng, et al. Increasing the H+ exchange capacity of porous titanium phosphonate materials by protecting defective P-OH groups. Chem. Commun.,2011,47, 6015-6017.
    [100]T. Kimura, K. Kato, Synthesis of ordered mesoporous aluminium alkylenediphosphonates with integrated inorganic-organic hybrid frame-works. J. Mater. Chem.,2007,17,559-566.
    [101]T. Kimura, N. Suzuki, P. Gupta, et al. Effective mesopore tuning using aromatic compounds in the aerosol-assisted system of aluminium organophosphonate spherical particles. Dalton Trans.,2010,39,5139-5144.□□□
    [102]C. Yu, B. Tian, D. Zhao, Recent advances in the synthesis of non-siliceous mesoporous materials. Curr. Opin. Solid State Mater. Sei.,2003,7,191-197.
    [103]Y. Wan, H. Yang, D. Zhao, "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Acc. Chem. Res.,2006,39,423.
    [104]Y. Wan, Y. Shi, D. Zhao, Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem. Commun.,2007,897.
    [105]D.L. Wilcox, M. Berg, T. Bernat, et al. Hollow and solid spheres and microspheres:Science and technology associated with their fabrication and application. Materials Research Society Proceeding, MRS, Pittsburgh, PA,1995,372.
    [106]S.W. Kim, M. Kim, W.Y. Lee, et al. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupliing reactions. J. Am. Chem. Soc.,2002,124,7642-7643.
    [107]H.H. Yang, S.Q. Zhang, X.L. Chen, et al. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparation. Anal. Chem.,2004,76,1316-1321.
    [108]T. Kimura, K. Kato, Y. Yamauchi, Temperature-controlled and aerosol-assisted synthesis of aluminium organophosphonate spherical particles with uniform mesopores. Chem. Commun., 2009,4938-4940.
    [109]T.Y. Ma, Z.Y. Yuan, Periodic mesoporous titanium phosphonate spheres for high dispersion of CuO nanoparticles. Dalton Trans.,2010,39,9590-9578.
    [110]T. Kimura, Y. Sugahara, K. Kuroda, Synthesis of mesoporous aluminophosphates using surfactant with long alkyl chain lengths and triisopropylbenzen as a solubilizing agent. Chem. Commun.,1998,559.
    [111]D. Lanari, F. Montanari, F. Marmottini, et al. New zirconium hydrogen phosphate alkyl and/or aryl phosphonates with high surface area as heterogeneous Bronsted acid catalysts for aza-Diels-Alder reaction in aqueous medium. J. Catal.,2011,277,80-87.
    [112]S. Calogero, D. Laneri, M. Orru, et al. Supported L-proline on zirconium phosphates methyl and/or phenyl phosphonates as heterogeneous organocatalysts for direct asymmetric aldol addition. J. Catal,2011,282,112-119.
    [113]H.P. Perry, J. Law, J. Zon, A. Clearfield, Porous zirconium and tin phosphonates incorporating 2.2'-bipyridine as supports for palladium nanoparticles. Micro. Meso. Mater., 2012,149,172-180.
    [114]G. Alberti, M. Casciola, R. Palombari, Inorgano-organic proton conducting membranes for fuel cells and sensors at medium temperatures. J. Membrane Sci.,2000,172,233-239.
    [115]Y.G. Jin, S.Z. Qiao, Z.P. Xu, et al. Phosphonic acid functionalized silicas for intermediate temperature proton conduction. J. Mater. Chem.,2009,19,2363-2372.
    [116]Y.G. Jin, S.Z. Qiao, Z.P. Xu, et al. Porous silica nanospheres funtionalized with phosphonic acid as intermediate-temperature proton conductors. J. Phys. Chem. C,2009,113, 3157-3163.
    [117]A.A. Marti, J.L. Colon, Direct ion exchange of tris(2,2'-bipyridine) ruthenium (Ⅱ) into an a-zirconium phosphate framework. Inorg. Chem.,2003,42,2830.
    [118]K.M. Parida, B.B. Sahu, D.P. Das, A comparative study on textural characterization: cation-exchange and sorption properties of crystalline a-zirconium (Ⅳ), tin (Ⅳ), and titanium (IV) phosphates. J. Colloid Interf. Sci.,2004,270,436.
    [119]C.V. Kumar, A. Chaudhari, Proteins immobilized at the galleries of layered a-zirconium phosphate:structure and activity studies. J. Am. Chem. Soc.,2000,122,830.
    [120]U. Costantino, M. Nocchetti, R. Vivani, Preparation, characterization, and structure of zirocnium fluoride alkylamino-N, N-bis methylphosphonates:A new design for layered zircnoum diphosphosnates with a poorly hindered interlayer region. J. Am. Chem. Soc.,2002, 124:8428.
    [121]E. Rodriguez-Castellon, J. Jimenez-Jimenez, A. Jimenez-Lopez, et al. Proton conductivity of mesoporous MCM type of zirconium and titanium phosphates. Solid State Ionics,1999, 125,407.
    [122]G. Alberti, M. Casciola, Solid state protonic conductors, present main applications and future prospects. Solid State Ionics,2001,145,3.
    [123]I.O. Benitez, B. Bujoli, L.J. Camus, et al. Monolayers as models for supported catalysts: Zirconium phosphonate films containing manganese (Ⅲ) porphyrins. J. Am. Chem. Soc., 2002,124,4363.
    [124]I.C. Marcu, I. Sandulescu, J.M.M. Millet, Oxidehydrogenation of n-butane over tetravalent metal phosphates based catalysts. Appl. Catal. A gen.,2002,227,309.
    [125]GO. Rocha, R.A.W. Johnstone, B.F. Hemming, et al. Rates of formation of peroxyacetic acid from hydrogen peroxide and acetic acid in the presence of metal (Ⅳ) phosphates. J. Mol. Catal. A,2002,186,127.
    [126]M. Curini, F. Montanari, O. Rosati, et al. Layered zirconium phosphate and phosphonate as heterogeneous catalyst in the preparation of pyrroles. Tetrahedron Lett.,2003,44,3923.
    [1]P. Barbaro, F. Liguori, Ion exchange resins:catalyst recovery and recycle. Chem. Rev.,2009, 109,515.
    [2]S.T. Wilson, B.M. Lok, C.A. Messina, et al. Aluminophosphate molecular sieve-A new class of microporous crystalline inorganic solids. J. Am. Chem. Soc.,1982,104,1146.
    [3]G. Alberti, M. Casciola, U. Costantino, et al. Layered and pillared metal (IV) phosphates and phosphonates. Adv. Mater.,1996,8,291-303.
    [4]X.J. Zhang, T.Y. Ma, Z.Y. Yuan, Titania-phosphonate hybrid porous materials:preparation, photocatalytic activity and heavy metal ion adsorption. J. Mater. Chem.,2008,18, 2003-2010.
    [5]T.Y. Ma, X.Z. Lin, Z.Y. Yuan, Cubic mesoporous titanium phosphonates with multifunctionality. Chem. Eur.J.,2010,16,8487-8494.
    [6]T.Y. Ma, H. Li, A.N. Tang, et al. Ordered, mesoporous metal phosphonate materials with microporous crystalline walls for selective separation techniques. Small,2011,7,1827-1837.
    [7]T.Y. Ma, Z.Y. Yuan, Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. ChemSusChem,2011,4,1407-1419.
    [8]S.J. Brickner, D.K. Hutchinson, M.R. Barbachyn, et al. Synthesis and antibacterial activity of U-100592-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant Gram-positive bacterial infections. J. Med. Chem.,1996,39,673-679.
    [9]T.M. Makhtar, G.D. Wright, Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem. Rev.,2005,105,529-542.
    [10]L. Aurelio, R.T.C. Brownlee, A.B. Hughus, Synthetic preparation of N-methyl-alpha-amino acids. Chem. Rev.,2004,104,5823-5846.
    [11]R.J. Watson, D. Batty, A.D. Baxter, et al. An enantioselective synthesis of sulphonamide hydroxamic acids as matrix metalloproteinase inhibitors. Tetrahedron Lett.,2002,43, 683-685.
    [12]A. Sudo, Y. Morioka, F. Sanda, et al. N-tosylaziridine, a new substrate for chemical fixation of carbon dioxide via ring expansion reaction under atmospheric pressure. Tetrahedron Lett., 2004,45,1363-1365.
    [13]M.T. Hancock, A.R. Pinhas, A convenient and inexpensive conversion of an aziridine to an oxazolidinone. Tetrahedron Lett.,2003,44,5457-5460.
    [14]F. Bellezza, A. Cipiciani, U. Costantino, et al. Adsorption of myoglobin onto porous zirconium phosphate and zircocnium benzenephosphonate obtained with template synthesis. Langmuir,2006,22,5064-5069.
    [15]X. Shi, J. Liu, C.M. Li, et al. Pore-size tunable mesoporous zirconium organophosphonates with chiral L-proline for enzyme adsorption. Inorg. Chem.,2007,46,7944-7952.
    [16]X. Shi, J.P. Li, Y.Tang, et al. pH-Sensitive mesoporous zirconium diphosphonates for controllable colon-targeted delivery. J. Mater. Chem.,2010,20,6495-6504.
    [17]X.B. Ma, Y.H. Wang, W. Wang, et al. Synthesis and characterization of mesoporous zirconium phosphonates:a novel supported cinchona alkaloid catalysts in asymmetric catalysis. Catal. Commun.,2010,11,401-407.
    [18]G.B. Hix, A. Turner, B.M. Kariuki, et al. Strategies for the synthesis of porous metal phosphonate materials. J. Mater. Chem.,2002,12,3220-3227.
    [19]J. Li, L. Meng, Z.G. Sun, et al. Synthesis, crystal structure and characterization of a new 3D porous zinc phosphonate:Zn6[(O3PCH2)2NHC6H11]4·6H2O. Inorg. Chem. Commun.,2008, 11,211-214.
    [20]C. Serre, J.A. Groves, P. Lightfoot, et al. Synthesis, structure and properties of related microporous N,N'-piperazinebismethylenephosphonates of aluminum and titanium. Chem. Mater.,2006,18,1451.
    [21]K. Maeda, Y. Kiyozumi, F. Mizukami, Characterization and gas adsorption properties of aluminum methylphosphonates with organically lined unidimensional channels.J. Phys. Chem. B,1997,101,4402-4412.
    [22]T. Kimura, Synthesis of mesostructured and mesoporous aluminum organophosphonates prepared by using diphosphonic acids with alkylene groups. Chem. Mater.,2005,17, 337-344.
    [23]T.Y. Ma, Z.Y. Yuan, Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. Chem. Commun.,2010,46,2325-2327.
    [24]X. Shi, J. Yang, Q.H. Yang, Mesoporous aluminium organophosphonates functionalized with chiral L-proline groups in the pore. Eur. J. Inorg. Chem.,2006,1936-1939.
    [25]M.V. Vasylyev, E.J. Wachtel, R. Popovitz-Biro, et al. Titanium phosphonate porous materials constructured from dendritic tetraphosphonates. Chem. Eur. J.,2006,12,3507-3514.
    [26]Z.Y. Yuan, B.L. Su, Insights into hierarchically meso-macroporous structured materials. J. Mater. Chem.,2006,16,663-677.
    [27]G.J.A.A. Soler-Illia, E.L. Crepaldi, D. Grosso, et al. Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci.,2003,8,109-126.
    [28]G.J.A.A. Soler-Illia, C. Sanchez, B. Lebeau, et al. Chemical strategies to design textured materials:from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev.,2002,102,4093-4138.
    [29]A. Bhaumik, S. Inagaki, Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc.,2001,123,691.
    [30]M.M. G6mez-Alcantara, A. Cabeza, P. Olivera-Pastor, et al. Layered microporous tin (IV) bisphosphonates. Dalton Trans.,2007,2394-2404.
    [31]A. Subbiah, D. Pyle, A. Rowland, et al. A family of microporous materials formed by Sn (IV) phosphonate nanoparticles. J. Am. Chem. Soc.,2005,127,10826-10827.
    [32]Z.K. Wang, J.M. Heisng, A. Clearfield, Sulfonated microporous organic-inorganic hybrids as strong Bronsted acids. J. Am. Chem. Soc.,2003,125,10375-10383.
    [33]N.K. Mal, M. Fujiwara, Y. Yamada, et al. Synthesis of surfactant-assisted microporous layered tin phenylphosphonate. Chem. Lett.,2003,32,292-293.
    [34]N.K. Mal, M. Fujiwara, Y. Yamada, et al. Synthesis of a microporous layered titanium phenylphosphonate in presence of sodium dodecylsulfate. J. Ceram. Soc. Jpn..,2003,111, 219-221.
    [35]P. Sairam, R. Puranik, B.S. Rao, et al. Synthesis of 1,2,3-tri-O-acetyl-5-deoxy-D-ribofuranose from D-ribose. Carbohyd. Res.,2003,338, 303-306.
    [36]Y. Kamiya, S. Sakatab, Y. Yoshinaga, et al. Zirconium phosphate with a high surface area as a water-tolerant solid acid. Catal. Lett.,2004,94,45-47.
    [37]A. Corma, Solid acid catalysts. Curr. Opin. Solid State Mater. Sci.,1997,2,63-75.
    [38]X.J. Zhang, T.Y. Ma, Z.Y. Yuan, Nanostructured titania-diphosphonate hybrid materials with a porous hierarchy. Eur. J. Inorg. Chem.,2008,2721-2726.
    [39]T.Y. Ma, X.J. Zhang, Z.Y. Yuan, Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. J. Phys. Chem. C,2009,113,12854-12862.
    [40]W.R. Leenstra, J.C. Amicangelo, Synthesis, characterization and interlayer distance study of zirconium phosphonates with stoichiometric variation of methyl and p-aminobenzyl pendant groups. Inorg. Chem.,1998,37,5317-5323.
    [41]P. Wu, Y. Liu, M. He, et al. Postsynthesis of hexagonally packed porous zirconium phosphate through a novel anion exchange between zirconium oxide mesophase and phosphoric acis. Chem. Mater.,2005,17,3921.
    [42]T.Z. Ren, Z.Y. Yuan, B.L. Su, Thermally stable macroporous zirconium phosphates with supermicroporous walls:a self-formation phenomenon of hierarchy. Chem. Commun.,2004, 2730-2731.
    [43]M. Kruk, M.'Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater.,2001,13,3169-3183.
    [44]D.R. Jansen, J.R. Zeevaart, Z.I. Kolar, et al.31P NMR study of the valence stability of tin in its 1-hydroxyethylene-diphosphonate (HEDP) and N,N,N-trimethylenephosphonate-polyethyleneimine (PEI-MP) complexes. Polyhedron,2008, 27,1779-1786.
    [45]W.A. Schafer, P.W, Carr, E.F. Funkenbusch, et al. Physical and chemical characterization of a porous phosphate-modified zirconia substrate. J. Chromatogr.,1991,587,137.
    [46]J. Jimenez-Jimenez, P. Maireles-Torres, P. Olivera-Pastor, et al. Surfactant-assisted synthesis of a mesoporous form of zirconium phosphate with acidic properties. Adv. Mater.,1998,10, 812-815.
    [47]W. Gao, L. Dickinson, C. Grozinger, et al. Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir,1996,12,6429-6435.
    [48]X.J. Zhang, T.Y.Ma, Z.Y. Yuan, Nanostructured titania-diphosphonate hybrid materials with a porous hierarchy. Eur. J. Inorg. Chem.,2008,2721-2726.
    [49]Z.Y. Yuan, T.Z. Ren, A. Azioune, et al. Marvelous self-assembly of hierarchically nanostructured porous zirconium phosphate solid acids with high thermal stability. Catal. Today,2005,105,647-654
    [50]M. Salavati-Niasari, M. Dadkhah, F. Davar, Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron,2009,28,3005-3009.
    [51]A. Cabeza, M.M. Gomez-Alcantara, P. Olivera-Pastor, et al. From non-porous crystalline to amorphous microporous metal (IV) bisphosphonates. Micro. Meso. Mater,2008,114, 322-336.
    [52]B. Adolphi, E. Jahne, G. Busch, et al. Characterization of the adsorption of w-(thiophene-3-yl alkyl) phosphonic acid on metal oxides with AR-XPS. Anal. Bioanal. Chem.,2004,379,646.
    [53]U. Ciesla, M. Froba, G. Stucky, et al. Highly ordered porous zirconias from surfactant-controlled syntheses:zirconium oxide-sulfate and zirconium oxo phosphate. Chem. Mater.,1999,11,227-234.
    [54]P.T. Tanev, T.J. Pinnavaia, Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating:a comparison of physical properties. Chem. Mater.,1996,8,2068.
    [55]M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater.,2001,13,3169-3183.
    [56]T.Z. Ren, Z.Y. Yuan, B.L. Su, Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2. Chem. Phys. Lett.,2003,374,170.
    [57]E.V. Bakhmutova-Albert, N. Bestaoui, V.I. Bakhmutov, et al. A novel cadmium aminophosphonate:X-ray powder diffraction structure, solid state IR and NMR spectroscopic determination of the fine structure of the organic moieties. Inorg. Chem.,2004, 43,1264-1272.
    [58]F. Odobel, B. Bujoli, D. Massiot, Zirconium phosphonate frameworks covalently pillared with a bipyridine moiety. Chem. Mater.,2001,13,163-173.
    [59]C. Jacopin, M. Sawicki, G. Plancque, et al. Investigation of the interaction between 1-hydroxyethane-1,1'-diphosphonic acid (HEDP) and uranium (VI). Inorg. Chem.,2003,42, 5015-5022.
    [60]J.D. Kim, T. Mori, I. Honma, Anhydrous proton conductivity of a lamella-structured inorganic-organic zirconium-monododecyl phosphate crystalline hybrid. J. Power Sources, 2007,172,694-697.
    [61]J.D. Kim, T. Mori, I. Honma, Organic-inorganic hybrid membranes for a PEMFC operation at intermediate temperatures. J. Electrochem. Soc.,2006,153, A508.
    [62]W. Gao, L. Dickinson, C. Grozinger, et al. Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir,1996,12,6429-6435.
    [63]C.S. Griffith, M.D.L. Reyes, N. Scales, et al. Hybrid inorganic-organic adsorbents part 1: synthesis and characterization of mesoporous zirconium titanate frameworks containing coordinating organic functionalities. ACSAppl. Mater. Interfaces,2010,2,3436-3446.
    [64]X. Mo, D.E. Lopez, K. Suwannakan, et al. Activatioin and deactivation characteristic of sulfonated carbon catalysts. J. Catal,2008,254,332.
    [65]H. Nur, L.C. Guan, S. Endud, et al. Quantitative measurement of a mixture of mesophases cubic MCM-48 and hexagonal MCM-41 by 13C CP/MAS NMR. Mater. Lett.,2004,58, 1971-1974.
    [66]H.P. Lin, Y.R. Cheng, S.B. Liu, et al. The effect of alkal-1-ols addition on the structural ordering and morphology of mesoporous silicate MCM-41. J. Mater. Chem.,1999,9, 1197-1201.
    [67]C.C. Landry, S.H. Tolbert, K.W. Gallis, et al. Phase transformations in mesostructured silica/surfactant composites. Mechanisms for change and applications to materials synthesis. Chem. Mater,2001,13,1600-1608.
    [68]S.Q. Liu, P. Cool, O. Collart, et al. The influence of the alcohol concentration on the structural ordering of mesoporous silica:cosurfactant versus cosolvent. J. Phys. Chem. B, 2003,107,10405-10411.
    [69]H.M. Kao, C.C. Cheng, C.C. Ting, et al. Phase control of cubic SBA-1 mesostructures via alcohol-assisted synthesis. J. Mater. Chem.,2005,15,2989-2992.
    [70]M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposte materials. Chem. Mater.,2001,13,3169-3183.
    [71]P. Wu, Y. Liu, M. He, et al. Postsynthesis of hexagonally packed porous zirconium phosphate through a novel anion exchange between zirconium oxide mesophase and phosphoric acid. Chem. Mater.,2005,17,3921.
    [72]H. Nur, C.G. Lau, S. Endud, et al. Quantitative measurement of a mixture of hexagonal MCM-41 and cubic MCM-48 mesophases by 13C CP/MAS NMR. Mater. Lett.,2004,58, 1971-1974.
    [73]J.A. Wang, M.A. Valenzuela, J. Salmones, et al. Methanol decomposition on electrospun zirconia nanofibers. Catal. Today.,2001,68,21-30.
    [74]J.M. Hernandez Enriquez, L.A. Cortez Lajas, R. Garcia Alamilla, et al. Synthesis and characterization of mesoporous and nano-crystalline phosphate zirconium oxides. J. Alloys Compd.,2009,483,425-428.
    [75]A. Vantomme, Z.Y.Yuan, B.L. Su, One-pot synthesis of a high-surface-area zirconium oxide material with hierarchically three-length scaled pore structure. New J. Chem.,2004,28, 1083-1085.
    [76]G.S. Herman, E.P. McDaniel, S. A. Joyce, Interaction of D2O with the Fe3O4 (111) and the biphase ordered structures on a-Fe2O3 (0001). J. Electron Spectrosc.,1999,101-103, 433-438.
    [77]G.D. Zhang, X. Chen, Y. Zhao, et al. Effects of alcohols and counterions on the phase behavior of 1-octyl-3-methylimidazolium chloride aqueous solution, J. Phys. Chem. B,2007, 111,11708-11713.
    [78]W.Q. Wang, J.G. Wang, P.C. Sun, et al. Effect of alcohol on morphology and mesostructure control of anionic-surfactant-templated mesoporous silica (AMS),J. Colloid. Interface Sci., 2009,331,156-162.
    [79]M. Ogawa, A simple sol-gel route for the preparation of silica-surfactant mesostructured materials. Chem. Commun.,1996,1149-1050.
    [80]M. Ogawa, T. Kikuchi, Preparation of self-standing transparent films of silica-surfactant mesostructured materials and the conversion to porous silica films. Adv. Mater.,1998,10, 1077-1080.
    [81]S.M. Coman, G. Pop, C. Stere, et al. New heterogeneous catalysts for greener routes in the synthesis of fine chemicals. J. Catal,2007,251,388-399.
    [82]J.H. Clark, D.J. Macqquarrie, Environmentally friendly catalytic methods. Chem. Soc. Rev., 1996,25,303.
    [83]M.G. Clerici, Zeolites for fine chemicals production. Topics in Catal,2000,13,373-386.
    [84]F. Figueras, Pillared clays as catalysts. Catal. Rev. Sci. Eng.,1988,30,457.
    [86]A. Corma, M. Renz, A general method for the preparation of ethers using water-resistant solid Lewis acids. Angew. Chem. Int. Ed.,2007,46,298-300.
    [86]A. Corma, M.E. Domine, S. Valencia, Water-resistant solid Lewis acid catalysts: Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite. J. Catal., 2003,215,294-304.
    [87]K. Manabe, S. Limura, X.M. Sun, et al. Dehydration reactions in water. Bronsted acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc.,2002,124,11971-11978.
    [88]M. Kimura, T. Nakato, T. Okuhara, Water-tolerant solid acid catlysis of Cs2.5H0.5PW12040 for hydrolysis of esters in the presence of excess water. Appl. Catal. A:Gen.,1997,165, 227-240.
    [89]T. Okuhara, Water-tolerant solid acid catalyst. Chem. Rev.,2002,102,3641-3666.
    [90]S.X. Song, R.A. Kydd, Activation of sulfated zirconia catalysts effect of water content on their activity in n-butane isomerization.J. Chem. Soc. Faraday Trans.,1998,94,1333-1338.
    [91]D.E. Lopez, J.G. Goodwin Jr., D.A. Bruce, Transesterification of triacetin with methanol on Nafion acid resins. J. Catal.,2007,245,381-391.
    [92]H. Chiang, A. Bhan, Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J. Catal.,2010, 271,251-261.
    [93]I.V. Kozhevnikov, Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev.,1998,98,171.
    [94]I.V. Kozhevnikov, K.R. Kloetstra, A. Sinnema, et al. Study of catalysts comprising heteropoly acid H3PW12O40 supported on MCM-41 molecular sieve and amorphous silica. J. Mol. Catal. A:Chem.,1996,114,287.
    [95]P. Madhusudhan Rao, A. Wolfson, S. Kababya, et al. Immobilization of molecular H3PW12O40 heteropolyacid catalyst in alumina-grafted silica-gel and mesostructured SBA-15 silica matrices. J. Catal,2005,232,210-225.
    [96]M. Curini, O. Rosati, U. Costantino, Heterogeneous catalysts in liquid phase organic synthesis, promoted by layered zirconium phosphates and phosphonates. Curr. Org. Chem., 2004,8,591-606.
    [97]K. Segawa, T. Ozawa, Two-dimensional composte zirconium phosphonates:preparation and catalytic activities. J. Mol. Catal A:Chem.,1999,141,249-255.
    [98]K. Segawa, N.Kihara, H. Yamamoto, Catalyst design of two-dimensional zirconium phosphonates. J. Mol Catal,1992,74,213-221.
    [99]D. Lanari, F. Montanari, F. Marmottini, et al. New zirconium hydrogen phosphate and/or aryl phosphonates with high surface area as heterogeneous Bronsted acid catalysts for aza-Diels-Alder reaction in aqueous medium. J. Catal,2011,277,80-87.
    [100]S. Calogero, D. Lanari, M. Orru, et al. Supported L-proline on zirconium phosphates methyl and/or phenyl phosphonates as heterogeneous organocatalysts for direct asymmetric aldol addition.J. Catal,2011,282,112-119.
    [101]F. Klepper, E.M. Jahn, V. Hickmann, et al. Synthesis of the transfer-RNA nucleosidc queuosine by using a chiral allyl azide intermediate. Angew. Chem. Int. Ed.,2007,46,2325-2327.
    [102]A.G.M. Barrett, S.A. Lebold, (Phenylthio) nitromethane in the total synthesis of polyoxin C. J. Org. Chem.,1990,55,3853-3857.
    [103]C. Vogel, J. Meier-Haack, A. Taeger, et al. On the stability of selected monomeric and polymeric aryl sulfonic acids on heating in water (Part 1). Fuel cells,2004,4,320-327.
    [104]F. Kucera, J. Jancar, Homogeneous and heterogeneous sulfonation of polymers:a review. Polym. Eng. Sci.,1998,38,783-792.
    [105]N. Shibuya, R.S. Porter, Kinetics of PEEK sulfonation in concentrated sulfuric acid. Macromolecules,1992,25,6495-6499.
    [106]F.J. Liu, X.J. Meng, Y.L. Zhang, et al. Efficient and stable solid acid catalysts synthesized from sulfonation of swelling mesoporous polydivinylbenzenes. J. Catal,2010,271,52-58.
    [107]L. Li, Y. Yoshinaga, T. Okuhara, Water-tolerant catalysis by Mo-Zr mixed oxides calcined at high temperataure. Phys. Chem. Chem. Phys.,1999,1,4913.
    [108]R.L. Paddock, S.T. Nguyen, Chemical CO2 fixation:Cr (Ⅲ) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J. Am. Chem. Soc.,2001,123, 11498-11499.
    [109]R. Zevenhoven, S. Eloneva, S. Teir, Chemical fixation of CO2 in carbonates:routes to valuable products and long-term storage. Catal. Today 2006,115,73-79.
    [110]K.M.K. Yu, I. Curcic, J. Gabriel, et al. Recent advances in CO2 capture and utilization. ChemSusChem 2008,893-899.
    [111]T. Sakakura, J.C. Choi, H. Yasuda, Transformation of carbon dioxide. Chem. Rev.,2007,107, 2365-2387.
    [112]M.R. Barbachyn, C.W. Ford, Oxazolidinone structure-activity relationships leading to linezolid. Angew. Chem. Int. Ed,.2003,42,2010-2023.
    [113]D.B. Hoellman, G. Lin, L.M. Ednie, et al. Antipneumococcal and antistaphylococcal activities of ranbezolid (RBX 7644), a new oxazolidinone, compared to those of other agents. Antimicrob. Agents Chemother.,2003,47,1148-1150.
    [114]T.M. Makhtar, G.D. Wright, Streptogramins, oxazolidinones and other inhibitors of bacterial protein synthesis. Chem. Rev.,2005,105,529-542.
    [115]R.J. Watson, D. Batty, A.D. Baxter, et al. An enantioselective synthesis of sulphonamide hydroxamic acids as matrix metalloproteinase inhibitors. Tetrahedron Lett.,2002,43, 683-685.
    [116]A. Sudo, Y. Morioka, F. Sanda, et al. N-tosylaziridine, a new substrate for chemical fixatioin of carbon dioxide via ring expansion reaction under atmospheric pressure. Tetrahedron Lett., 2004,45,1363-1365.
    [117]M.T. Hancock, A.R. Pinhas, A convenient and inexpensive conversion of an aziridine to an oxazolidine. Tetrahedron Lett,2003,44,5457-5460.
    [118]H. Kawanami, H. Matsumoto, Y. Ikushima, Effective scCO2-ionic liquid reaction system based on symmetricc aliphatic ammonium salts for the rapid CO2 fixation with aziridine to 2-oxazolidinone. Chem. Lett.,2005,34,60-61.
    [119]H.F. Jiang, J.W. Ye, C.R. Qi, et al. Naturally occurring a-amino acid:a simple and inexpensive catalyst for the selective synthesis of 5-aryl-2-oxazolidinones from CO2 and aziridines under solvent-free conditions. Tetrahedron Lett.,2010,51,928-932.
    [120]A. Sudo, Y. Morioka, E. Koizumi, et al. Highly efficient chemical fixations of carbon dioxide and carbon disulfide by cycloaddition to aziridine under atmospheric pressure. Tetrahedron Lett.,2003,44,7889-7891.
    [121]Y. Du, Y. Wu, A.H. Liu, et al. Quaternary ammonium bromide functionalized polyethylene glycol:a highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. J. Org. Chem.,2008,73,4709-4712.
    [122]Y. Wu, L.N. He, Y. Du, et al. Zirconyl chloride:an efficient recyclable catalyst for synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Tetrahedron,2009,65,6204-6210.
    [123]X.Y. Dou, L.N. He, Z.Z. Yang, et al. Catalyst-free process for the synthesis of 5-aryl-2-oxazolidinones va cycloaddition reaction of aziridines and carbon dioxide. Synlett., 2010,14,2159-2163.
    [124]X.B. Lu, J.H. Xiu, R. He, et al. Chemical fixation of CO2 to ethylene carbonate under supercritical conditions:continuous and selective. Appl. Catal. A,2004,275,73.
    [125]W.G. Lu, D.Q. Yuan, J.L. Sculley, et al. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J. Am. Chem. Soc.,2011,133,18126-18129.
    [126]R. Dawson, D.J. Adams, A.I. Cooper, Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem. Sci.2011,2,1173.
    [127]M. Sevilla, P. Valle-Vigon, A.B. Fuertes, N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Fund. Mater.2011,21,2781-2787.
    [128]A. Torrisi, R.G. Bell, C. Mellot-Draznieks, Functionalized MOFs for enhanced CO2 capture. Cryst. Growth Des.,2010,10,2839.
    [129]R. Babarao, S. Dai, D.E. Jiang, Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation:a molecular simulation study. Langmuir,2011,27,3451-3460.
    [130]Z.Z. Yang, Y.N. Li, Y.Y. Wei, et al. Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinons from aziridines and CO2under mild conditions. Green Chem.,2011, 13,2351-2353.
    [131]A. Ramila, B. Munoz, J. Perez-Pariente, et al. Mesoporous MCM-41 as drug host system. J. Sol-Gel Sci. Technol.,2003,26,1199-1202.
    [132]P. Horcajada, A. Ramila, J. Perez-Pariente, et al. Influence of pore size of MCM-41 matrices on drug delivery rate. Micro. Meso. Mater.,2004,68,105-109.
    [133]S. Wang, H. Li, Structure directed reversible adsorption of organic dye on mesoporous silica in aqueous solution. Micropor. Mesopor. Mater.,2006,97,21-26.
    [134]M. Ugurlu, Adsorption of a textile dye onto activated sepiolite. Micro. Meso. Mater.,2009, 119,276-283.
    [135]M. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, et al. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite:A kinetic study. J. Colloid Interface Sci.,2005,286,101-109.
    [136]A. Khaled, A.E. Nemr, A. El-Sikaily, et al. Removal of direct N blue-106 from artificial textile dye effluent using activated carbon from organge peel. J.Harzard. Mater.,2009,165, 100-110.
    [137]V. Vimones, S. Lei, B. Jin, et al. Adsorption of congo red by three Australian kaolins. Appl. Clay. Sci.,2009,43,465-472.
    [138]S. Senthilkumaar, P. Kalaamani, C.V. Subburaam, Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree. J. Hazard. Mater. B,2006, 136,800-808.
    [139]C.K. Lee, S.S. Liu, L.C. Juang, et al. Application of MCM-41 for dyes removal from wastewater. J. Hazard Mater,2007,147,997-1005.
    [140]E. Eren, Investigation of a basic dye removal from aqueous solution onto chemically modified unye bentonite.J. Hazard Mater.,2009,166,88-93.
    [141]S. Wu, C. Zhu, All-solid-state UV dye laser pumped by XeCl laser. Opt. Mater.,1999,12, 99.
    [142]D.E. Wetzler, D. Garcia-Fresnadillo, G. Orellana, A clean, well-defined solid system for photosensitized'O2 production measurements. Phys. Chem. Chem. Phys.,2006,8, 2249-2256.
    [143]C. McDonagh, B.D, MacCraith, A.K. McEvoy, Tailoring of sol-gel films for optical sensing of oxygen in gas and aquesous phase. Anal. Chem.,1998,70,45-50.
    [144]M. Gratzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev.,2003, 4,145-153.
    [145]M.E. Thompson, Use of layered metal phospohonates for the design and construction of molecular materials. Chem. Mater,1996,6,1168-1175.
    [146]L.F. Vieira Ferreira, A.R.Garcia, M. Rosario Freixo, et al. Photochemistry on surfaces: solvent-matrix effect on the swelling of cellulose. An emission and absorption study of adsorbed auramine O. J. Chem. Soc. Faraday Trans.,1993,89,1937-1944.
    [147]J.M. McKiernan, S.A. Yamanaka, B. Dunn, et al. Spectroscopy and laser action of rhodamine 6G doped aluminosilicate xerogels. J. Phys. Chem.,1990,94,5652.
    [148]Z. Grauer, D. Avnir, S. Yariv, Adsorption characterization of rhodamine 6G on montmorillonite and laponite, elucidated from electronic absorption and emission spectra. Can. J. Chem.,1984,62,1889.
    [149]X.Yang, L. Hong, G. Ma, et al. Optical holographic recording properties of l-(2-pyridylazo)-2-naphthol thin film Opt. Commun.,2007,272,521-524.
    [150]E. Yariv, S. Schultheiss, T. Saraidarov, et al. Efficiency and photostability of dye-doped solid-state lasers in different hosts. Opt. Mater.,2001,16,29-38.
    [151]G. Wirnsberger, P.D. Yang, H.C. Huang, et al. Patterned block-copolymer-silica mesostructured as host media for the laser dye rhodamine 6G. J. Phys. Chem. B,2001,105, 6307-6313.
    [152]D. Li, J. Zhang, M. Anpo, et al. Transparent carbon films as electrodes in organic solar cells. Mater. Lett.,2005,59,2120-2123.
    [153]A.V. Deshpande, E.B. Namdas, Lasing action of rhodamine B in polyacrylic films. Appl. Phys.B,1997,64,419-422.
    [154]F. Amat-Guerri, A. Costela, J.M. Figuera, et al. Laser action from rhodamine 6G poly (2-hydroxylethylmethacrylate) matrices with different crosslinking degrees. Chem. Phys. Lett.,1993,209,352.
    [155]S. Popov, Dye photodestruction in a solid-state dye laser with a polymeric gain medium. Appl. Opt.,1998,37,6449.
    [1]M.A. Carreon, V.V. Guliants, Ordered meso-and macroporous binary and mixed metal oxides. Eur. J. Inorg. Chem.,2005,27-43.
    [2]J.Y. Ying, C.P. Mehnert, M.S. Wong, Synthesis and application of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed.,1999,38,56-77.
    [3]T.Y. Ma, Z.Y. Yuan, Metal phosphonate hybrid mesostructures:environmentally friendly multifunctional materials for clean energy and other applications. ChemSusChem,2011,4, 1407-1419.
    [4]T.Y. Ma, X.Z. Lin, Z.Y. Yuan, Periodic mesoporous titanium phosphonate hybrid materials. J. Mater. Chem.,2010,20,7406-7415.
    [5]T.Y. Ma, X.Z. Lin, Z.Y. Yuan, Cubic mesoporous titanium phosphonates with multifunctionality. Chem. Eur. J.,2010,16,8487-8494.
    [6]T. Kimura, Synthesis of mesostructured and mesoporous aluminum organophosphonates prepared by using diphosphonic acid with alkylene groups. Chem. Mater.,2005,17,337-344.
    [7]X. Shi, J. Yang, Q.H. Yang, Mesoporous aluminium organophosphonates functionalized with chiral L-proline groups in the pores. Eur. J. Inorg. Chem.,2006,1936-1939.
    [8]X. Shi, J.P. Li, Y. Tang, et al. pH-Sensitive mesoporous zirconium diphosphonates for controllable colon-targeted delivery. J. Mater. Chem.,2010,20,6495-6504.
    [9]A. Dutta, M. Pramanik, A.K. Patra, et al. Hybrid porous tin(Ⅳ) phosphonate:an efficient catalytst for adipic acid synthesis and a very good adsorbent for CO2 uptake. Chem. Comm., 2012,2012,48,6738-6740.
    [10]N.K. Mal, M. Fujiwara, M. Matsukata, Synthesis of organic-inorganic hybrid mesoporous tin oxophosphate in the presence of anionic surfactant. Chem. Commun.,2005,5199-5201.
    [11]J.P. Wilcoxon, Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters. J. Phys. Chem. B,2000,104,7334.
    [12]S. Gubbala, V. Chakrapani, V. Kumar, et al. Band-edge engineered hybrid structures for dye sensitized solar cells based on SnO2 nanowires. Adv. Funct. Mater,2008,18,2411.
    [13]E.J. Kim, D. Son, T.G Kim, et al. A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries. Angew. Chem. Int. Ed.,2004,43, 5987-5990.
    [14]G Derrien, J. Hassoun, S. Panero, et al. Nanostructured Sn-C composites as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater.,2007,19,2336-2340.
    [15]X.G. Han, M.S. Jin, S.F. Xie, et al. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy{221} facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed.,2009,48,1-5.
    [16]C. Serre, A. Auroux, A. Gervasini, et al. Hexagonal and cubic thermally stable mesoporous Tin(IV) phosphates with acidic and catalytic properties. Angew. Chem. Int. Ed.,2002,41, 1594-1597.
    [17]S. Kirumakki, S. Samarajeewa, R. Harwell, et al. Sn (Ⅳ) Phosphonates as catalysts in solvent-free Baeyer-Villiger oxidations using H2O2. Chem. Commun.,2008,5556-5558.
    [18]A.E.C. Palmqvist, Synthesis of ordered mesoporous materials using surfactant liquid crystals or micellar solutions. Curr. Opin. Colloid. Interface. Sci.,2003,8,145-155.
    [19]GD. Zhang, X. Chen, Y.R. Zhao, et al. Effects of alcohols and counterions on the phase behavior of 1-octyl-3-methylimidazolium chloride aquesous solution. J. Phys. Chem. B,2007, 111,11708-11713.
    [20]E. Leontidis, Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr. Opin. Colloid. Interface. Sci.,2002,7,81-91.
    [21]A. Berggren, A.E.C. Palmqvist, K. Holmberg, Surfactant-templated mesostructured materials from inorganic silica. Soft Matter,2005,1,219-226.
    [22]S.Z. Qiao, C.Z. Yu, Q.H. Hu, et al. Control of ordered structure and morphology of large-pore periodic mesoporous organosilicas by inorganic salt. Micro. Meso.Mater,2006, 91,59-69.
    [23]K. Flodstrom, V. Alfredsson, N. Kallrot, Formation of a new laid cubic meso-structured silica via triblock copolymer-assisted synthesis. J. Am. Chem. Soc,2003,125,4402-4403.
    [24]S.R. Zhai, S.S. Park, M. Park, et al. Role of inorganic salts in the formation of ordered mesoporous organosilicas (PMOs) without extra acids. Micro. Meso. Mater.,2008,113, 47-55.
    [25]H.P. Lin, Y.R. Cheng, S.B. Liu, et al. The effect of alkan-1-ols addition on the structural ordering and morphology of mesoporous silica MCM-41.J. Mater. Chem.,1999,9, 1197-1201.
    [26]H.M. Kao, C.C. Cheng, C.C. Ting, et al. Phase control of cubic-SBA-1 mesostructures via alcohol-assisted synthesis. J. Mater. Chem.,2005,15,2989-2992.
    [27]W.Q. Wang, J.G. Wang, P.C. Sun, et al. Anionic surfactant-templated mesoporous silica (AMS) nano-spheres with radically oriented mesopores. J. Colloid. Interface Scl.,2009,331, 156-162.
    [28]C.S. Griffith, M. De Los Reyes, N. Scales, et al. Hybrid inorganic-organic adsorbents part 1: synthesis and characterization of mesoporous zirconium titanate frameworks containing coordinating organic functionalities. Appl. Mater. Interface,2010,2,3436-3446.
    [29]S. Calogero, D. Lanari, M. Orru, et al. Supported L-proline on zirconium phosphates methyl and/or phenyl phosphonates as heterogeneous organocatalysts for direct asymmetric aldol addition.J.Catal.,2011,282,112-119.
    [30]G.S. Shao, F.Y. Wang, T.Z. Ren, et al. Hierarchical mesoporous phospohrus and nitrogen doped titania materials:synthesis, characterization and visible-light photocatalytic activity. Appl. Catal. B,2009,92,61-67.
    [31]Z.Y.Yuan, T.Z. Ren, A. Vantomme, et al. Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials. Chem. Mater.,2004, 16,5096-5106.
    [32]Y.Z. Li, S.J. Kim, Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability, J. Phys. Chem. B,2005,109,12309-12315.
    [33]J. Li, S. Liu, Y. He, et al. Adsorption and degration of the cationic dyes over Co doped amorphous mesoporous titania-silica catalyst under UV and visible light irradition. Micro. Meso. Mater.,2008,115,416-425.
    [34]C. He, B. Tian, J. Zhang, Synthesis of thermally stable and highly ordered bicontinuous cubic mesoporous titania-silica binary oxides with crystalline framework. Micro. Meso. Mater., 2009,126,50-57.
    [35]Q. Yuan, Y. Liu, L.L. Li, et al. Highly ordered mesoporous titania-zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution. Micro. Meso. Mater., 2009,124,169-178.
    [36]G.S. Li, D.Q. Zhang, J.C. Yu, Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts. Phys. Chem. Chem. Phys.,2009,11,3775-3782.
    [37]Z.W. Jin, X.D. Wang, X.G. Cui, Acidity-dependent mesostructure transformation of highly ordered mesoporous silica materials during a two-step synthesis. J. Non-crystal. Solids,2007, 353,2507-2514.
    [38]H. Kosslick, G. Lischke, H. Landmesser, et al. Acidity and catalytic behavior of substituted MCM-48. J. Catal,1998,176,102.
    [39]A. Sakthivel, S.K. Badamali, P. Selvam, para-Selective t-butylation of phenol over mesoporous H-AlMCM-41. Micropor. Mesopor. Mater.,2000,39,457.
    [40]A. Vantomme, Z.Y. Yuan, B.L. Su, One-pot synthesis of a high-surface-area zirconium oxide material with hierarchical three-length-scaled pore structure. New J. Chem.,2004,28, 1083-1085.
    [41]T. Kimura, Y. Sugahara, K. Kuroda, Synthesis of a hexagonal mesostructured aluminophosphate. Chem. Lett.,1997,983-984.
    [42]T. Kimura, Y. Sugahara, K. Kuroda, Synthesis of mesoporous aluminophosphates by using surfactants with long alkyl chain length and triisopropylbenzene as a solubilizing agent. Chem. Commun.,1998,559.
    [43]T. Kimura, Y. Sugahara, K. Kuroda, Synthesis of mesoporous aluminophosphates and their adsorption properties. Micro. Meso. Mater.,1998,22,115.
    [44]H. Nur, L.C. Guan, S. Endud, et al. Quantitative measurement of a mixture of mesophases cubic MCM-48 and hexagonal MCM-41 by 13C CP/MAS NMR. Mater. Lett.,2004,58, 1971-1974.
    [45]K.S. Sing, D.H. Everett, R.A.W. Haul, et al. Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity. Pure Appl. Chem.,1985,57,603.
    [46]M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomoposite materials. Chem. Mater.,2001,13,3169-3183.
    [47]A. Georgakopoulos, Aspects of solid state 13C CP/MAS NMR spectroscopy in coal from the Balkan Peninsula.J. Serb. Chem. Soc.,2003,68,599-605.
    [48]J.Q. Zhuang, X.W. Han, X. Bao, et al. In-situ 13C MAS NMR investigation of solvent effect on the formation of phenylacetaldehyde over TS-1 zeolite. J Catal,2009,267,177-180.
    [49]S. Che, S. Lim, M. Kaneda, H. Yoshitake, et al. the effect of the counteranion on the formation of mesoporous materials under the acidic synthesis process. J. Am. Chem. Soc., 2002,124,13962-3.
    [50]C.Z. Yu, B.Z. Tian, J. Fan, et al. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J. Am. Chem. Soc.,2002,124, 4556-4557.
    [51]H.P. Lin, C.P. Kao, C.Y. Mou, et al. Counterion effect in acid synthesis of mesoporous silica materials. J. Phys. Chem. B,2000,104,7885-7894.
    [52]T. Kimura, D. Nakashima, N. Miyamoto, Lamellar mesostructured aluminum organophosphonate with unique crystalline framework. Chem. Lett.,2009,38,916-917.
    [53]T.Y. Ma, X.J. Zhang, Z.Y. Yuan, Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents.J. Phys. Chem. C,2009,113,12854-12862.
    [54]H. Tamon,T. Kitamura, M. Okazaki, Preparation of silica aerogel from TEOS, J. Colloid Interface Sci.,1998,197,353-359.
    [55]C.J. Brinker, W.D. Drotning, G.W. Scherer, A comparison between the densification kinetics of colloidal and polymeric silica gels. Mar. Res. Symp. Proc.,1984,32,25.
    [56]T.Z. Ren, Z.Y.Yuan, B.L. Su, Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2. Chem. Phys. Lett.,2003,374,170-175.
    [57]A. Vantomme, Z.Y. Yuan, B.L. Su, One-pot synthesis of a high-surface-area zirconium oxide material with hierarchically three-length scaled pore structure. New J. Chem.,2004,28, 1083-1085.
    [58]K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem.,1985,57,603-619.
    [59]T.Y. Ma, X.J. Zhang, Z.Y. Yuan, Hierarchically meso-/macroporous titanium tetraphosphonate materials:synthesis, photocatalytic activity and heavy metal ion adsorption. Micro. Meso. Mater.,2009,123,234-242.
    [60]Z.Y.Yuan, T.Z. Ren, A. Azioune, et al. Self-assembly of hierarchically mesoporous-macroporous phosphated nanocrystalline aluminum (oxyhydr)oxide materials. Chem. Mater.,2006,18,1753-1767.
    [61]E. Jaimez, G.B. Hix, R.C.T. Slade, A phosphate-phosphonate of titanium (IV) prepared from phosphonomethyliminodiacetic acid:characterization, n-alkylamine intercalation and proton conductivity. Solid State Ionics,1997,97,195.
    [62]Z. Liu, R.J. Davis, Investigation of the structure of microporous Ti-Si mixed oxides by X-ray, UV reflectance, FT-Raman, and FT-IR spectroscopies. J. Phys. Chem.,1994,98,1253.
    [63]J.X. Jiao, X.B. Qun, L.M. Li, Porous TiO2/SiO2 composite prepared using PEG as template direction reagent with assistance of supercritical CO2. J. Colloid Interface Sci.,2007,316, 596-603.
    [64]R. Ryoo, C.H. Ko, R.F. Howe, Imaging the distribution of framework aluminum in mesoporous molecular sieve MCM-41. Chem. Mater.,1997,9,1607.
    [65]G. Ricchiardi, A. Damin, S. Bordiga, et al. Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study. J. Am. Chem. Soc.,2001,123,11409-11419.
    [66]J.C. Jansen, F.J. van der Gaag, H. van Bekkum, Identification of ZSM-type and other 5-ring containing zeolites by i.r. spectroscopy. Zeolites,1984,4,369.
    [67]N. Venkatathri, S. Nanjundan, Synthesis and characterization of a novel titanium aluminophosphate hollow nanosphere. Mater. Sci. Eng. C,2009,29,242-245.
    [68]J.S. Lee, J.H. Kim, J.T. Kim, et al. Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite. J. Chem. Eng. Data,2002,47,1237-1242.
    [69]S. Cavenati, C.A. Grande, A.E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data,2004,49, 1095-1101.
    [70]R.S. Franchi, P.J.E. Harlick, A. Sayari, Applications of pore-expanded mesoporous silica.2. development of a high-capacity, water-tolerant adsorbent for CO2. Ind. Eng. Chem. Res., 2005,44,8007.
    [71]P.J.E. Harlick, A. Sayari, Applications of pore-expanded mesoporous silica.3. triamine silane grafting for enhanced CO2 adsorption. Ind. Eng. Chem. Res.,2006,45,3248.
    [72]N. Hiyoshi, K. Yogo, T. Yashima, Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor. Chem. Lett.,2004,33,510.
    [73]S. Kim, J. Ida, V.V. Guliants, et al. Tailoring pore properties of MCM-48 silica for selective adsorption of CO2. J. Phys. Chem. B,2005,109,6287.
    [74]T.Y. Ma, X.Z. Lin, X.J. Zhang, et al. High surface area titanium phosphonate materials with hierarchical porosity for multi-phase adsorption. New J. Chem.,2010,34,1209-1216.
    [75]G.P. Knowles, S.W. Delaney, A.L. Chaffee, Diethylenetriamine [propyl (silyl)]-functionalized (DT) mesoporous silicas as CO2 adsorbents. Ind. Eng. Chem. Res., 2006,45,2626-2633.
    [76]X.L. Ma, X.X. Wang, C.S. Song, "Molecular basket" sorbents for separation of CO2and H2S from various gas streams.J. Am. Chem. Soc,2009,131,5777-5783.
    [77]R.S. Franchi, P.J.E. Harlick, A. Sayari, Applications of pore-expanded mesoporous silica.2. development of a high-capacity, water-tolerant adsorbent for CO2. Ind. Eng. Chem. Res., 2005,44,8007-8013.
    [78]S.H. Lin, S.L. Lai, H. Leu, Removal of heavy metals from aqueous solution by chelating resin in a multistage adsorption process. J. Hazard. Mater.,2000,76,139-153.
    [79]N. Unlu, M. Ersoz, Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J. Hazard. Mater.,2006,136,272-280.
    [80]Y.S. Ho, C.T. Huang, H.W. Huang, Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem.,2002,37,1421-1430.
    [81]V.C. Srivastava, I.D. Mall, I.M. Mishra, Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA. J. Hazard. Mater., 2006,134,257-267.
    [82]A. San, M. Tuzen, D. Citak, et al. Adsorption characteristics of Cu (Ⅱ) and Pb (Ⅱ) onto expanded perlite from aqueous solution. J. Hazard. Mater.,2007; 148,387-394.
    [83]X.J. Zhang, T.Y. Ma, Z.Y. Yuan, titania-phosphonate hybrid porous materials:preparation, photocatalytic activity and heavy metal ion adsorption. J. Mater. Chem.,2008,18, 2003-2010.
    [84]T.Y. Ma, X.J. Zhang, Z.Y. Yuan, High selectivity for metal ion adsorption:from mesoporous phosphonated titanias to meso/-macroporous titanium phosphonates, J. Mater. Sci,2009,44, 6775-6785.
    [85]I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc.,1918,40,1361-1403.
    [86]U. von Gunten, Ozonation of drinking water:Part Ⅰ. oxidation kinetics and production formation. Water Res.,2003,37,1443-1467.
    [1]P. Barbaro, F. Liguori, Ion exchange resins:catalyst recovery and recycle. Chem. Rev.,2009, 109,515.
    [2]S.T. Wilson, B.M. Lok, C.A. Messina, et al. Aluminophosphate molecular sieve-A new class of microporous crystalline inorganic solids. J. Am. Chem. Soc.,1982,104,1146.
    [3]G. Alberti, M. Casciola, U. Costantino, et al. Layered and pillared metal (IV) phosphates and phosphonates. Adv. Mater.,1996,8,291-303.
    [4]X.J. Zhang, T.Y. Ma, Z.Y. Yuan, Titania-phosphonate hybrid porous materials:preparation, photocatalytic activity and heavy metal ion adsorption. J. Mater. Chem.,2008,18, 2003-2010.
    [5]T.Y. Ma, X.Z. Lin, Z.Y. Yuan, Cubic mesoporous titanium phosphonates with multifunctionality. Chem. Eur. J.,2010,16,8487-8494.
    [6]T.Y. Ma, H. Li, A.N. Tang, et al. Ordered, mesoporous metal phosphonate materials with microporous crystalline walls for selective separation techniques. Small,2011,7,1827-1837.
    [7]T.Y. Ma, Z.Y. Yuan, Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. ChemSusChem,2011,4,1407-1419.
    [8]S.J. Brickner, D.K. Hutchinson, M.R. Barbachyn, et al. Synthesis and antibacterial activity of U-100592-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant Gram-positive bacterial infections.J. Med. Chem.,1996,39,673-679.
    [9]T.M. Makhtar, G.D. Wright, Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem. Rev.,2005,105,529-542.
    [10]L. Aurelio, R.T.C. Brownlee, A.B. Hughus, Synthetic preparation of N-methyl-alpha-amino acids. Chem. Rev.,2004,104,5823-5846.
    [11]R.J. Watson, D. Batty, A.D. Baxter, et al. An enantioselective synthesis of sulphonamide hydroxamic acids as matrix metalloproteinase inhibitors. Tetrahedron Lett,2002,43, 683-685.
    [12]A. Sudo, Y. Morioka, F. Sanda, et al. N-tosylaziridine, a new substrate for chemical fixation of carbon dioxide via ring expansion reaction under atmospheric pressure. Tetrahedron Lett., 2004,45,1363-1365.
    [13]M.T. Hancock, A.R. Pinhas, A convenient and inexpensive conversion of an aziridine to an oxazolidinone. Tetrahedron Lett.,2003,44,5457-5460.
    [14]F. Bellezza, A. Cipiciani, U. Costantino, et al. Adsorption of myoglobin onto porous zirconium phosphate and zircocnium benzenephosphonate obtained with template synthesis. Langmuir,2006,22,5064-5069.
    [15]X. Shi, J. Liu, C.M. Li, et al. Pore-size tunable mesoporous zirconium organophosphonates with chiral L-proline for enzyme adsorption. Inorg. Chem.,2007,46,7944-7952.
    [16]X. Shi, J.P. Li, Y.Tang, et al. pH-Sensitive mesoporous zirconium diphosphonates for controllable colon-targeted delivery.J. Mater. Chem.,2010,20,6495-6504.
    [17]X.B. Ma, Y.H. Wang, W. Wang, et al. Synthesis and characterization of mesoporous zirconium phosphonates:a novel supported cinchona alkaloid catalysts in asymmetric catalysis. Catal. Commun.,2010,11,401-407.
    [18]G.B. Hix, A. Turner, B.M. Kariuki, et al. Strategies for the synthesis of porous metal phosphonate materials. J. Mater. Chem.,2002,12,3220-3227.
    [19]J. Li, L. Meng, Z.G. Sun, et al. Synthesis, crystal structure and characterization of a new 3D porous zinc phosphonate:Zn6[(O3PCH2)2NHC6H11]4·6H2O. Inorg. Chem. Commun.,2008, 11,211-214.
    [20]C. Serre, J.A. Groves, P. Lightfoot, et al. Synthesis, structure and properties of related microporous N,N'-piperazinebismethylenephosphonates of aluminum and titanium. Chem. Mater,2006,18,1451.
    [21]K. Maeda, Y. Kiyozumi, F. Mizukami, Characterization and gas adsorption properties of aluminum methylphosphonates with organically lined unidimensional channels. J. Phys. Chem. B,1997,101,4402-4412.
    [22]T. Kimura, Synthesis of mesostructured and mesoporous aluminum organophosphonates prepared by using diphosphonic acids with alkylene groups. Chem. Mater.,2005,17, 337-344.
    [23]T.Y. Ma, Z.Y. Yuan, Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. Chem. Commun.,2010,46,2325-2327.
    [24]X. Shi, J. Yang, Q.H. Yang, Mesoporous aluminium organophosphonates functionalized with chiral L-proline groups in the pore. Eur. J. Inorg. Chem.,2006,1936-1939.
    [25]M.V. Vasylyev, E.J. Wachtel, R. Popovitz-Biro, et al. Titanium phosphonate porous materials constructured from dendritic tetraphosphonates. Chem. Eur. J.,2006,12,3507 3514.
    [26]Z.Y. Yuan, B.L. Su, Insights into hierarchically meso-macroporous structured materials. J. Mater. Chem.,2006,16,663-677.
    [27]G.J.A.A. Soler-Illia, E.L. Crepaldi, D. Grosso, et al. Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci.,2003,8,109-126.
    [28]G.J.A.A. Soler-Illia, C. Sanchez, B. Lebeau,et al. Chemical strategies to design textured materials:from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev.,2002,102,4093-4138.
    [29]A. Bhaumik, S. Inagaki, Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.J. Am. Chem. Soc.,2001,123,691.
    [30]M.M. Gomez-Alcantara, A. Cabeza, P. Olivera-Pastor, et al. Layered microporous tin (Ⅳ) bisphosphonates. Dalton Trans.,2007,2394-2404.
    [31]A. Subbiah, D. Pyle, A. Rowland, et al. A family of microporous materials formed by Sn (Ⅳ) phosphonate nanoparticles. J. Am. Chem. Soc.,2005,127,10826-10827.
    [32]Z.K.. Wang, J.M. Heisng, A. Clearfield, Sulfonated microporous organic-inorganic hybrids as strong Bronsted acids. J. Am. Chem. Soc.,2003,125,10375-10383.
    [33]N.K. Mal, M. Fujiwara, Y. Yamada, et al. Synthesis of surfactant-assisted microporous layered tin phenylphosphonate. Chem. Lett.,2003,32,292-293.
    [34]N.K. Mal, M. Fujiwara, Y. Yamada, et al. Synthesis of a microporous layered titanium phenylphosphonate in presence of sodium dodecylsulfate. J. Ceram. Soc. Jpn..,2003,111, 219-221.
    [35]P. Sairam, R. Puranik, B.S. Rao, et al. Synthesis of 1,2,3-tri-O-acetyl-5-deoxy-D-ribofuranose from D-ribose. Carbohyd. Res.,2003,338, 303-306.
    [36]Y. Kamiya, S. Sakatab, Y. Yoshinaga, et al. Zirconium phosphate with a high surface area as a water-tolerant solid acid. Catal. Lett.,2004,94,45-47.
    [37]A. Corma, Solid acid catalysts. Curr. Opin. Solid State Mater. Sci.,1997,2,63-75.
    [38]XJ. Zhang, T.Y. Ma, Z.Y. Yuan, Nanostructured titania -diphosphonate hybrid materials with a porous hierarchy. Eur. J. Inorg. Chem.,2008,2721-2726.
    [39]T.Y. Ma, X.J. Zhang, Z.Y. Yuan, Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. J. Phys. Chem. C,2009,113,12854-12862.
    [40]W.R. Leenstra, J.C. Amicangelo, Synthesis, characterization and interlayer distance study of zirconium phosphonates with stoichiometric variation of methyl and p-aminobenzyl pendant groups. Inorg. Chem.,1998,37,5317-5323.
    [41]P. Wu, Y. Liu, M. He, et al. Postsynthesis of hexagonally packed porous zirconium phosphate through a novel anion exchange between zirconium oxide mesophase and phosphoric acis. Chem. Mater.,2005,17,3921.
    [42]T.Z. Ren, Z.Y. Yuan, B.L. Su, Thermally stable macroporous zirconium phosphates with supermicroporous walls:a self-formation phenomenon of hierarchy. Chem. Commun.,2004, 2730-2731.
    [43]M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater.,2001,13,3169-3183.
    [44]D.R. Jansen, J.R. Zeevaart, Z.I. Kolar, et al.31P NMR study of the valence stability of tin in its 1-hydroxyethylene-diphosphonate (HEDP) and N,N,N-trimethylenephosphonate-polyethyleneimine (PEI-MP) complexes. Polyhedron,2008, 27,1779-1786.
    [45]W.A. Schafer, P.W. Carr, E.F. Funkenbusch, et al. Physical and chemical characterization of a porous phosphate-modified zirconia substrate. J. Chromatogr.,1991,587,137.
    [46]J. Jimenez-Jimenez, P. Maireles-Torres, P. Olivera-Pastor, et al. Surfactant-assisted synthesis of a mesoporous form of zirconium phosphate with acidic properties. Adv. Mater.,1998,10, 812-815.
    [47]W. Gao, L. Dickinson, C. Grozinger, et al. Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir,1996,12,6429-6435.
    [48]X.J. Zhang, T.Y.Ma, Z.Y. Yuan, Nanostructured titania-diphosphonate hybrid materials with a porous hierarchy. Eur. J. Inorg. Chem.,2008,2721-2726.
    [49]Z.Y. Yuan, T.Z. Ren, A. Azioune, et al. Marvelous self-assembly of hierarchically nanostructured porous zirconium phosphate solid acids with high thermal stability. Catal. Today,2005,105,647-654
    [50]M. Salavati-Niasari, M. Dadkhah, F. Davar, Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron,2009,28,3005-3009.
    [51]A. Cabeza, M.M. Gomez-Alcantara, P. Olivera-Pastor, et al. From non-porous crystalline to amorphous microporous metal (IV) bisphosphonates. Micro. Meso. Mater.,2008,114, 322-336.
    [52]B. Adolphi, E. Jahne, G. Busch, et al. Characterization of the adsorption of w-(thiophene-3-yl alkyl) phosphonic acid on metal oxides with AR-XPS. Anal. Bioanal. Chem.,2004,379,646.
    [53]U. Ciesla, M. Froba, G. Stucky, et al. Highly ordered porous zirconias from surfactant-controlled syntheses:zirconium oxide-sulfate and zirconium oxo phosphate. Chem. Mater.,1999,11,227-234.
    [54]P.T. Tanev, T.J. Pinnavaia, Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating:a comparison of physical properties. Chem. Mater.,1996,8,2068.
    [55]M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater.,2001,13,3169-3183.
    [56]T.Z. Ren, Z.Y. Yuan, B.L. Su, Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2. Chem. Phys. Lett.,2003,374,170.
    [57]E.V. Bakhmutova-Albert, N. Bestaoui, V.I. Bakhmutov, et al. A novel cadmium aminophosphonate:X-ray powder diffraction structure, solid state IR and NMR spectroscopic determination of the fine structure of the organic moieties. Inorg. Chem.,2004, 43,1264-1272.
    [58]F. Odobel, B. Bujoli, D. Massiot, Zirconium phosphonate frameworks covalently pillared with a bipyridine moiety. Chem. Mater.,2001,13,163-173.
    [59]C. Jacopin, M. Sawicki, G. Plancque, et al. Investigation of the interaction between 1-hydroxyethane-1,1'-diphosphonic acid (HEDP) and uranium (VI). Inorg. Chem.,2003,42, 5015-5022.
    [60]J.D. Kim, T. Mori, I. Honma, Anhydrous proton conductivity of a lamella-structured inorganic-organic zirconium-monododecyl phosphate crystalline hybrid. J. Power Sources, 2007,172,694-697.
    [61]J.D. Kim, T. Mori, I. Honma, Organic-inorganic hybrid membranes for a PEMFC operation at intermediate temperatures. J. Electrochem. Soc.,2006,153, A508.
    [62]W. Gao, L. Dickinson, C. Grozinger, et al. Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir,1996,12,6429-6435.
    [63]C.S. Griffith, M.D.L. Reyes, N. Scales, et al. Hybrid inorganic-organic adsorbents part 1: synthesis and characterization of mesoporous zirconium titanate frameworks containing coordinating organic functionalities. ACS Appl. Mater. Interfaces,2010,2,3436-3446.
    [64]X. Mo, D.E. Lopez, K. Suwannakan, et al. Activatioin and deactivation characteristic of sulfonated carbon catalysts. J. Catal.,2008,254,332.
    [65]H. Nur, L.C. Guan, S. Endud, et al. Quantitative measurement of a mixture of mesophases cubic MCM-48 and hexagonal MCM-41 by 13C CP/MAS NMR. Mater. Lett.,2004,58, 1971-1974.
    [66]H.P. Lin, Y.R. Cheng, S.B. Liu, et al. The effect of alkal-1-ols addition on the structural ordering and morphology of mesoporous silicate MCM-41. J. Mater. Chem.,1999,9, 1197-1201.
    [67]C.C. Landry, S.H. Tolbert, K.W. Gallis, et al. Phase transformations in mesostructured silica/surfactant composites. Mechanisms for change and applications to materials synthesis. Chem. Mater.,2001,13,1600-1608.
    [68]S.Q. Liu, P. Cool, O. Collart, et al. The influence of the alcohol concentration on the structural ordering of mesoporous silica:cosurfactant versus cosolvent. J. Phys. Chem. B, 2003,107,10405-10411.
    [69]H.M. Kao, C.C. Cheng, C.C. Ting, et al. Phase control of cubic SBA-1 mesostructures via alcohol-assisted synthesis. J. Mater. Chem.,2005,15,2989-2992.
    [70]M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposte materials. Chem. Mater.,2001,13,3169-3183.
    [71]P. Wu, Y. Liu, M. He, et al. Postsynthesis of hexagonally packed porous zirconium phosphate through a novel anion exchange between zirconium oxide mesophase and phosphoric acid. Chem. Mater.,2005,17,3921.
    [72]H. Nur, C.G. Lau, S. Endud, et al. Quantitative measurement of a mixture of hexagonal MCM-41 and cubic MCM-48 mesophases by 13C CP/MAS NMR. Mater. Lett.,2004,58, 1971-1974.
    [73]J.A. Wang, M.A. Valenzuela, J. Salmones, et al. Methanol decomposition on electrospun zirconia nanofibers. Catal. Today.,2001,68,21-30.
    [74]J.M. Hernandez Enriquez, L.A. Cortez Lajas, R. Garcia Alamilla, et al. Synthesis and characterization of mesoporous and nano-crystalline phosphate zirconium oxides. J. Alloys Compd.,2009,483,425-428.
    [75]A. Vantomme, Z.Y.Yuan, B.L. Su, One-pot synthesis of a high-surface-area zirconium oxide material with hierarchically three-length scaled pore structure. New J. Chem.,2004,28, 1083-1085.
    [76]G.S. Herman, E.P. McDaniel, S. A. Joyce, Interaction of D2O with the Fe3O4 (111) and the biphase ordered structures on a-Fe2O3 (0001). J. Electron Spectrosc.,1999,101-103, 433-438.
    [77]G.D. Zhang, X. Chen, Y. Zhao, et al. Effects of alcohols and counterions on the phase behavior of 1-octyl-3-methylimidazolium chloride aqueous solution, J. Phys. Chem. B,2007, 111,11708-11713.
    [78]W.Q. Wang, J.G. Wang, P.C. Sun, et al. Effect of alcohol on morphology and mesostructure control of anionic-surfactant-templated mesoporous silica (AMS), J. Colloid. Interface Sci., 2009,331,156-162.
    [79]M. Ogawa, A simple sol-gel route for the preparation of silica-surfactant mesostructured materials. Chem. Commun.,1996,1149-1050.
    [80]M. Ogawa, T. Kikuchi, Preparation of self-standing transparent films of silica-surfactant mesostructured materials and the conversion to porous silica films. Adv. Mater.,1998,10, 1077-1080.
    [81]S.M. Coman, G. Pop, C. Stere, et al. New heterogeneous catalysts for greener routes in the synthesis of fine chemicals. J. Catal.,2007,251,388-399.
    [82]J.H. Clark, D.J. Macqquarrie, Environmentally friendly catalytic methods. Chem. Soc. Rev., 1996,25,303.
    [83]M.G. Clerici, Zeolites for fine chemicals production. Topics in Catal,2000,13,373-386.
    [84]F. Figueras, Pillared clays as catalysts. Catal. Rev. Sci. Eng.,1988,30,457.
    [86]A. Corma, M. Renz, A general method for the preparation of ethers using water-resistant solid Lewis acids. Angew. Chem. Int. Ed.,2007,46,298-300.
    [86]A. Corma, M.E. Domine, S. Valencia, Water-resistant solid Lewis acid catalysts: Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite. J. Catal., 2003,215,294-304.
    [87]K. Manabe, S. Limura, X.M. Sun, et al. Dehydration reactions in water. Bronsted acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc,2002,124,11971-11978.
    [88]M. Kimura, T. Nakato, T. Okuhara, Water-tolerant solid acid catlysis of CS2.5H0.5PW12O40 for hydrolysis of esters in the presence of excess water. Appl. Catal. A:Gen.,1997,165, 227-240.
    [89]T. Okuhara, Water-tolerant solid acid catalyst. Chem. Rev.,2002,102,3641-3666.
    [90]S.X. Song, R.A. Kydd, Activation of sulfated zirconia catalysts effect of water content on their activity in n-butane isomerization. J. Chem. Soc. Faraday Trans.,1998,94,1333-1338.
    [91]D.E. Lopez, J.G. Goodwin Jr., D.A. Bruce, Transesterification of triacetin with methanol on Nafion acid resins.J. Catal.,2007,245,381-391.
    [92]H. Chiang, A. Bhan, Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J. Catal.,2010, 271,251-261.
    [93]I.V. Kozhevnikov, Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev.,1998,98,171.
    [94]I.V. Kozhevnikov, K.R. Kloetstra, A. Sinnema, et al. Study of catalysts comprising heteropoly acid H3PW12O40 supported on MCM-41 molecular sieve and amorphous silica. J. Mol. Catal. A:Chem.,1996,114,287.
    [95]P. Madhusudhan Rao, A. Wolfson, S. Kababya, et al. Immobilization of molecular H3PW12O40 heteropolyacid catalyst in alumina-grafted silica-gel and mesostructured SBA-15 silica matrices. J. Catal.,2005,232,210-225.
    [96]M. Curini, O. Rosati, U. Costantino, Heterogeneous catalysts in liquid phase organic synthesis, promoted by layered zirconium phosphates and phosphonates. Curr. Org. Chem., 2004,8,591-606.
    [97]K. Segawa, T. Ozawa, Two-dimensional composte zirconium phosphonates:preparation and catalytic activities. J. Mol. Catal. A:Chem.,1999,141,249-255.
    [98]K. Segawa, N. Kihara, H. Yamamoto, Catalyst design of two-dimensional zirconium phosphonates. J. Mol. Catal.,1992,74,213-221.
    [99]D. Lanari, F. Montanari, F. Marmottini, et al. New zirconium hydrogen phosphate and/or aryl phosphonates with high surface area as heterogeneous Bronsted acid catalysts for aza-Diels-Alder reaction in aqueous medium. J. Catal.,2011,277,80-87.
    [100]S. Calogero, D. Lanari, M. Orru, et al. Supported L-proline on zirconium phosphates methyl and/or phenyl phosphonates as heterogeneous organocatalysts for direct asymmetric aldol addition. J. Catal.,2011,282,112-119.
    [101]F. Klepper, E.M. Jahn, V. Hickmann, et al. Synthesis of the transfer-RNA nucleoside queuosine by using a chiral allyl azide intermediate. Angew. Chem. Int. Ed.,2007,46,2325-2327.
    [102]A.GM. Barrett, S.A. Lebold, (Phenylthio) nitromethane in the total synthesis of polyoxin C. J. Org. Chem.,1990,55,3853-3857.
    [103]C. Vogel, J. Meier-Haack, A. Taeger, et al. On the stability of selected monomeric and polymeric aryl sulfonic acids on heating in water (Part 1). Fuel cells,2004,4,320-327.
    [104]F. Kuuera, J. Jancar, Homogeneous and heterogeneous sulfonation of polymers:a review. Polym. Eng. Sci.,1998,38,783-792.
    [105]N. Shibuya, R.S. Porter, Kinetics of PEEK sulfonation in concentrated sulfuric acid. Macromolecules,1992,25,6495-6499.
    [106]F.J. Liu, X.J. Meng, Y.L. Zhang, et al. Efficient and stable solid acid catalysts synthesized from sulfonation of swelling mesoporous polydivinylbenzenes. J. Catal.,2010,271,52-58.
    [107]L. Li, Y. Yoshinaga, T. Okuhara, Water-tolerant catalysis by Mo-Zr mixed oxides calcined at high temperataure. Phys. Chem. Chem. Phys.,1999,1,4913.
    [108]R.L. Paddock, S.T. Nguyen, Chemical CO2 fixation:Cr (Ⅲ) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J. Am. Chem. Soc.,2001,123, 11498-11499.
    [109]R. Zevenhoven, S. Eloneva, S. Teir, Chemical fixation of CO2 in carbonates:routes to valuable products and long-term storage. Catal. Today 2006,115,73-79.
    [110]K.M.K. Yu, I. Curcic, J. Gabriel, et al. Recent advances in CO2 capture and utilization. ChemSusChem 2008,893-899.
    [111]T. Sakakura, J.C. Choi, H. Yasuda, Transformation of carbon dioxide. Chem. Rev.,2007,107, 2365-2387.
    [112]M.R. Barbachyn, C.W. Ford, Oxazolidinone structure-activity relationships leading to linezolid. Angew. Chem. Int. Ed,.2003,42,2010-2023.
    [113]D.B. Hoellman, G. Lin, L.M. Ednie, et al. Antipneumococcal and antistaphylococcal activities of ranbezolid (RBX 7644), a new oxazolidinone, compared to those of other agents. Antimicrob. Agents Chemother,2003,47,1148-1150.
    [114]T.M. Makhtar, G.D. Wright, Streptogramins, oxazolidinones and other inhibitors of bacterial protein synthesis. Chem. Rev.,2005,105,529-542.
    [115]R.J. Watson, D. Batty, A.D. Baxter, et al. An enantioselective synthesis of sulphonamide hydroxamic acids as matrix metalloproteinase inhibitors. Tetrahedron Lett.,2002,43, 683-685.
    [116]A. Sudo, Y. Morioka, F. Sanda, et al. N-tosylaziridine, a new substrate for chemical fixatioin of carbon dioxide via ring expansion reaction under atmospheric pressure. Tetrahedron Lett., 2004,45,1363-1365.
    [117]M.T. Hancock, A.R. Pinhas, A convenient and inexpensive conversion of an aziridine to an oxazolidine. Tetrahedron Lett.,2003,44,5457-5460.
    [118]H. Kawanami, H. Matsumoto, Y. Ikushima, Effective scCO2-ionic liquid reaction system based on symmetricc aliphatic ammonium salts for the rapid CO2 fixation with aziridine to 2-oxazolidinone. Chem. Lett.,2005,34,60-61.
    [119]H.F. Jiang, J.W. Ye, C.R. Qi, et al. Naturally occurring a-amino acid:a simple and inexpensive catalyst for the selective synthesis of 5-aryl-2-oxazolidinones from CO2 and aziridines under solvent-free conditions. Tetrahedron Lett.,2010,51,928-932.
    [120]A. Sudo, Y. Morioka, E. Koizumi, et al. Highly efficient chemical fixations of carbon dioxide and carbon disulfide by cycloaddition to aziridine under atmospheric pressure. Tetrahedron Lett.,2003,44,7889-7891.
    [121]Y. Du, Y. Wu, A.H. Liu, et al. Quaternary ammonium bromide functionalized polyethylene glycol:a highly efficient and recyclable catalyst for selective synthesis of 5-ary1-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. J. Org. Chem.,2008,73,4709-4712.
    [122]Y. Wu, L.N. He, Y. Du, et al. Zirconyl chloride:an efficient recyclable catalyst for synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Tetrahedron,2009,65,6204-6210.
    [123]X.Y. Dou, L.N. He, Z.Z. Yang, et al. Catalyst-free process for the synthesis of 5-aryl-2-oxazolidinones va cycloaddition reaction of aziridines and carbon dioxide. Synlett., 2010,14,2159-2163.
    [124]X.B. Lu, J.H. Xiu, R. He, et al. Chemical fixation of CO2 to ethylene carbonate under supercritical conditions:continuous and selective. Appl. Catal. A,2004,275,73.
    [125]W.G. Lu, D.Q. Yuan, J.L. Sculley, et al. Sulfonate-grafted-porous polymer networks for preferential CO2 adsorption at low pressure. J. Am. Chem. Soc.,2011,133,18126-18129.
    [126]R. Dawson, D.J. Adams, A.I. Cooper, Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem.Sci.2011,2,1173.
    [127]M. Sevilla, P. Valle-Vigon, A.B. Fuertes, N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater.2011,21,2781-2787.
    [128]A. Torrisi, R.G. Bell, C. Mellot-Draznieks, Functionalized MOFs for enhanced CO2 capture. Cryst. Growth Des.,2010,10,2839.
    [129]R. Babarao, S. Dal, D.E. Jiang, Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation:a molecular simulation study. Langmuir,2011,27,3451-3460.
    [130]Z.Z. Yang, Y.N. Li, Y.Y. Wei, et al. Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinons from aziridines and CO2 under mild conditions. Green Chem.,2011, 13,2351-2353.
    [131]A. Ramila, B. Munoz, J. Perez-Pariente, et al. Mesoporous MCM-41 as drug host system. J. Sol-Gel Sci. Technol.,2003,26,1199-1202.
    [132]P. Horcajada, A. Ramila, J. Perez-Pariente, et al. Influence of pore size of MCM-41 matrices on drug delivery rate. Micro. Meso. Mater.,2004,68,105-109.
    [133]S. Wang, H. Li, Structure directed reversible adsorption of organic dye on mesoporous silica in aqueous solution.Micropor. Mesopor. Mater.,2006,97,21-26.
    [134]M. Ugurlu, Adsorption of a textile dye onto activated sepiolite. Micro. Meso. Mater.,2009, 119,276-283.
    [135]M. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, et al. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite:A kinetic study. J. Colloid Interface Sci.,2005,286,101-109.
    [136]A. Khaled, A.E. Nemr, A. El-Sikaily, et al. Removal of direct N blue-106 from artificial textile dye effluent using activated carbon from organge peel. J. Harzard. Mater.,2009,165, 100-110.
    [137]V. Vimones, S. Lei, B. Jin, et al. Adsorption of congo red by three Australian kaolins. Appl. Clay. Sei.,2009,43,465-472.
    [138]S. Senthilkumaar, P. Kalaamani, C.V. Subburaam, Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree. J. Hazard. Mater. B,2006, 136,800-808.
    [139]C.K. Lee, S.S. Liu, L.C. Juang, et al. Application of MCM-41 for dyes removal from wastewater. J. Hazard Mater.,2007,147,997-1005.
    [140]E. Eren, Investigation of a basic dye removal from aqueous solution onto chemically modified unye bentonite. J. Hazard Mater.,2009,166,88-93.
    [141]S. Wu, C. Zhu, All-solid-state UV dye laser pumped by XeCl laser. Opt. Mater.,1999,12, 99.
    [142]D.E. Wetzler, D:Garcia-Fresnadillo, G. Orellana, A clean, well-defined solid system for photosensitized 1O2 production measurements. Phys. Chem. Chem. Phys.,2006,8, 2249-2256.
    [143]C. McDonagh, B.D. MacCraith, A.K. McEvoy, Tailoring of sol-gel films for optical sensing of oxygen in gas and aquesous phase. Anal. Chem.,1998,70,45-50.
    [144]M. Gratzel, Dye-sensitized solar cells.J. Photochem. Photobiol. C Photochem. Rev.,2003, 4,145-153.
    [145]M.E. Thompson, Use of layered metal phospohonates for the design and construction of molecular materials. Chem. Mater.,1996,6,1168-1175.
    [146]L.F. Vieira Ferreira, A.R.Garcia, M. Rosario Freixo, et al. Photochemistry on surfaces: solvent-matrix effect on the swelling of cellulose. An emission and absorption study of adsorbed auramine O. J. Chem. Soc. Faraday Trans.,1993,89,1937-1944.
    [147]J.M. McKiernan, S.A. Yamanaka, B. Dunn, et al. Spectroscopy and laser action of rhodamine 6G doped aluminosilicate xerogels. J. Phys. Chem.,1990,94,5652.
    [148]Z. Grauer, D. Avnir, S. Yariv, Adsorption characterization of rhodamine 6G on montmorillonite and laponite, elucidated from electronic absorption and emission spectra. Can.J. Chem.,1984,62,1889.
    [149]X.Yang, L. Hong, G. Ma, et al. Optical holographic recording properties of 1-(2-pyridylazo)-2-naphthol thin film Opt. Commun.,2007,272,521-524.
    [150]E. Yariv, S. Schultheiss, T. Saraidarov, et al. Efficiency and photostability of dye-doped solid-state lasers in different hosts. Opt. Mater.,2001,16,29-38.
    [151]G. Wimsberger, P.D. Yang, H.C. Huang, et al. Patterned block-copolymer-silica mesostructured as host media for the laser dye rhodamine 6G.J. Phys. Chem. B,2001,105, 6307-6313.
    [152]D. Li, J. Zhang, M. Anpo, et al. Transparent carbon films as electrodes in organic solar cells. Mater. Lett.,2005,59,2120-2123.
    [153]A.V. Deshpande, E.B. Namdas, Lasing action of rhodamine B in polyacrylic films. Appl. Phys. B,1997,64,419-422.
    [154]F. Amat-Guerri, A. Costela, J.M. Figuera, et al. Laser action from rhodamine 6G poly (2-hydroxylethylmethacrylate) matrices with different crosslinking degrees. Chem. Phys. Lett.,1993,209,352.
    [155]S. Popov, Dye photodestruction in a solid-state dye laser with a polymeric gain medium. Appl. Opt.,1998,37,6449.
    [1]T. Okuhara, N. Mizuno, M. Misono, Catalytic chemistry of heteropoly compounds. Adv. Cotal.,1996,41,113.
    [2]A. Miiller, M. T. Pope, Polyoxometalates:From Platonic Solids to Anti-Retroviral Activity. Kluwer Academic, Dordrecht,1994.
    [3]H.Li, W.Qi, W. Li, et al. A highly transparent and luminescent hybrid based on the copolymerization of surfactant-encapsulated polyoxometalate and methyl methacrylate. Adv. Mater.,2005,17,2688.
    [4]W. Li, W. Bu, H. Li, et al. A surfactant-encapsulated polyoxometalate complex towards a thermotropic liquid crystal. Chem. Commun.,2005,3785.
    [5]S. Polarz, B. Smarsly, M. Antonietti, Colloidal organization and clusters:self-assembly of polyoxometalate-surfactant complexes towards three-dimensional organized structures. ChemPhysChem.,2001,2,457.
    [6]C. Li, J.B. Gao, Z.X. J, et al. Selective oxidations on recoverable catalysts assembled in emulsions. Topics in Catal.,2005,35,169-175.
    [7]L. Hua, Y.X. Qiao, H. Li, et al. Epoxidation of olefins with hydrogen peroxide catalyzed by a reusable lacunary-type phosphotungstate catalyst. Sci. China. Chem.,2011,54,769-773.
    [8]T.R. Zhang, C. Spitz, M. Antonietti, et al. Highly photoluminescent polyoxometaloeuropate-surfactant complexes by ionic selft-assembly. Chem. Eur. J.,2005, 11,1001-1009.
    [9]A. Taguchi, T. Abe, M. Iwamoto, Non-silica-based mesostructured material.2 synthesis of hexagonal superstructure consisting of 11-tungstophosphate anions and dodecyltrimethylammonium cations. Micro. Meso. Mater.,1998,21,387.
    [10]A. Stein, M. Fendorf, T. P. Jarvie, et al. Salt-gel synthesis of porous transition-metal oxides. Chem. Mater.,1995,7,304.
    [11]M. Nyman, D. Ingersoll, S. Singh, et al. Comparative study of inorganic cluster-surfactant arrays., Chem. Mater.,2005,2885-2895.
    [12]K. Narasimha Rao, L.D. Dingwall, P.L. Gai, et al. Synthesis and characterization of nanoporous phosphor-tungstate organic-inorganic hybrid materials.J. Mater. Chem.,2008, 18,868-874.
    [13]Y.F. Zhang, Z.X. Shen, J.T. Tang, et al. Direct, efficient, and inexpensive formation of a-hydroxyketones from olefins by hydrogen peroxide oxidation catalyzed by the 12-tungstophosphoric acid-cetylpyridinium chloride system. Org. Bio. Chem.,2006,4, 1478-1482.
    [14]R. Hutter, T. Mallat, D. Dutoit, et al. Titania-silica aerogels with superior catalytic performance in olefin epoxidation compared to large pore Ti-molecular sieves. Top. Catal., 1996,421-436.
    [15]Y.X. Qiao, Z.S. Hou, H. Li, et al. Polyoxometalate-based protic alkylimidazolium salts as reaction-induced phase-separation catalyzed for olefin epoxidation. Green Chem.,2009,11, 1955-1960.
    [16]M. Schroder, Osmium tetraoxide cis hydroxylation of unsaturated substrates. Chem. Rev., 1980,80,187-213.
    [17]H.C. Kolb, M.S. VanNieuwenhze, K.B. Sharpless, Catalytic asymmetric dihydroxylation. Chem. Rev,1994,94,2483.
    [18]S. Chandrasekhar, C. Narsihmulu, S. Shameem Sultana, et al. Osmium tetraoxide in poly(ethylene glycol) (PEFT):a recyclable reaction medium for rapid asymmetric dihydroxylation under Sharpless conditions. Chem. Commun.,2003,1716-1717.
    [19]K. Jin Kim, H.Y. Choi, S.H. Hwang, et al. Markedly enhanced recyclability of osmium catalyst in asymmetric dihydroxylation reactions by using macroporous resins bearing both residual vinyl groups and quaternary ammonium moieties. Chem. Commun.,2005, 3337-3339.
    [20]T. Ishida, R. Akiyama, S. Kobayashi, A novel microencapsulated Osmium catalyst using cross-linked polystyrene as an efficient catalyst for asymmetric dihydroxylation of olefins in water. Adv. Synth. Catal.,2005,347,1189-1192.
    [21]T.W.S. Chow, E.L.M. Wong, Z. Guo, et al. cis-Dihydroxylation of alkenes with oxone catalyzed by iron complexes of a macrocyclic tetra aza ligand and reaction mechanism by ESI-MS spectrometry and DFT calculations. J. Am. Chem. Soc.,2010,132,13229-13239.
    [22]T.W.S. Chow, Y. Lium C.M. Che, Practical mangnanese-catalyzed highly enantioselective cis-dyhydroxylation of electron-deficient alkenes and detection of a cis-dioxomangnese(v) intermediate by high resolution ESI-MS analysis. Chem. Commun.,2011,47,11204-11206.
    [23]H. Kosslick, G. Lischke, H. Landmesser, et al. Acidity and catalytic behavior of substituted MCM-48. J. Catal.,1998,176,102-114.
    [24]M. Misono, Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal. Rev. Sci. Eng.,1987,29,269.
    [25]W. Zhao, Y. Ding, Z. X. Zhang, et al. Immobilization of heteropolytungstate on functionalized KIT-1 mesoporous silica:catalyst for alkene epoxidation. Kinet. Mech. Cat., 2011,102,93-102.
    [26]S. S. Balula, I.C.M.S. Santos, L. Cunha-Silva, et al. Phosphotungstates as catalysts for monoterpenes oxidation:homo-and heterogeneous performance. Catal. Today,2013,203, 95-102.
    [27]H. Nur, L. C. Guan, S. Endud, et al. Quantitative measurement of a mixture of mesophases cubic MCM-48 and hexagonal MCM-41 by 13C CP/MAS NMR. Mater. Lett.,2004,58, 1971-1974.
    [28]A. Stein, M. Fendorf, T. P. Jarvie, et al. Salt-gel synthesis of porous transition metal oxides. Chem. Mater.,1995,7,304.
    [29]D.C. Duncan, R.C. Chambers, E. Hecht, et al. Mechanism and dynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of{PO4[WO(O2)2]4}3-. J. Am. Chem. Soc.,1995,117,681.
    [30]L. Salles, C. Aubry, R. Thouvenout, et al.31P and 183W NMR Spectroscopic evidence for novel peroxo species in the "H3[PWi2O40].cntdot.yH2O/H2O2" system. Synthesis and X-ray structure of tetrabutylammonium (.mu.-hydrogen phosphato)bis(.mu.-peroxo)bis(oxoperoxotungstate) (2-):a catalyst of olefin epoxidation in a biphase medium. Inorg. Chem.,1994,33,871.
    [31]Z. Zhang, Q. Chen, D.C. Duncan, et al. Multiiron polyoxoanions. Synthesis, characterization, X-ray crystal structure, and catalytic H2O2-based alkene oxidation by [(n-C4H9)4N]6[FeⅢ4(H2O)2(PW9O34)2]. Inorg. Chem.,1997,36,4381.
    [32]R. Neuman, M. Gara, The manganese-containing polyoxometalate, [WZnMnⅡ2(ZnW9O34)2]12, as a remarkably effective catalyst for hydrogen peroxide mediated oxidations. J. Am. Chem. Soc.,1995,117,5066.
    [33]R. Ben-Daniel, A.M. Khenkin, R. Neumann, The Nickel-substituted quasi-Wells-Dawson-type polyfluoroxometalate, [NiⅡ(H2O)H2F6NaW17O55]9-, as a uniquely active nickel-based catalyst for the activation of hydrogen peroxide and the epoxidation of alkenes and alkenols. Chem. Eur. J.,2000,6,3722-3728.
    [1]K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem.,1985,57,603-619.
    [2]R.M. Barer, Syntheses and reactions of mordenite. J. Chem. Soc.,1948,10,2158-2163.
    [3]F.S. Xiao, S.L. Qiu, W.Q. Pang, New developments in microporous materials. Adv. Mater., 1999,11,1091-1099.
    [4]K. Kunnii, K. Narahara, S. Yamanaka, Template-free synthesis of AlPO4-H1-H2 and H3 by microwave heating. Micropor. Mesopor. Mater.,2002,52,159-167.
    [5]R. Dawson, A.I. Cooper, D.J. Adams, Nanoporous organic polymer networks. Progress in polymer science.,2012,37,530-563.
    [6]A.P. Cote, A.I. Benin, N.W. Ockwig, et al. Porous crystalline covalent organic frameworks. Science,2005,310,1166-70.
    [7]M. Mastalerz, The next generation of shape-persistant zeolite analogues:covalent organic frameworks. Angew Chem. Int. Ed.,2008,47,445-447.
    [8]K. Severin, Boronic acids as building blocks for molecular nanostructures and polymeric materials. Dalton Trans.,2009,5254-5264.
    [9]V.A. Davankov, M.P. Tsyurupa, Structure and properties of hypercrosslinked polystyrene-the 1 st representative of a new class of polymer networks. React. Polym.,1990,13,27-42.
    [10]M.P. Tsyurupa, V.A.Davankov, Hypercrosslinked polymers:basic principle of preparing the new class of polymeric materials. React. Funct. Polym.,2002,53,193-203.
    [11]N. Fontanals, P. Manesiotis, D.C. Sherrington, et al. Synthesis of spherical ultra-high-surface-area monodisperse amphipathic polymer sponges in the low-micrometer size range. Adv. Mater.,2008,20,1298-1302.
    [12]R. Chinchilla, C. Najera, The sonogashira reaction:a booming methodology in synthetic organic chemistry. Chem. Rev.,2007,107,874-922.
    [13]A. Li, R.F. Lu, Y. Wang, et al. Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew Chem. Int. Ed.,2010,49,3330-3333.
    [14]R. Dawson, A. Laybourn, R. Clowes, YZ. Khimyak, D.J. Adams, A.I. Cooper, Functionalized conjugated microporous polymers. Macromolecules,2009,42,8809-8816.
    [15]N.B. McKeown, S. Makhseed, P.M. Budd, Phthalocyanine-based nanoporous network polymers. Chem. Commun.,2002,2780-2781.
    [16]N.B. McKeown, S. Hanif, K. Msayib, et al. Porphyrin-based nanoporous network polymers. Chem. Commun.,2002,2782-2783.
    [17]N.B. McKeown., P.M. Budd, K.J. Msayib, et al. Polymers if intrinsic microporosity (PIMs). Chem. Eur. J.,2005,11,2610-2620.
    [18]K. Song, J.Q. Guan, Z.Q. Wang, et al. Post-treatment of mesoporous material with high temperature for synthesis super-microporous materials with enhanced hydrothermal stability. Appl. Surface Sci.,2009,255,5843-5846.
    [19]M. J. Frisch, GW. Trucks, H.B. Schlegel, et al. Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh, PA,2003.
    [20]R. Ryoo, I. Park, S. Jun, et al. Synthesis of ordered and disordered silicas with uniform pores on the border between micropore and mesopore regions using short double-chanin surfactants.J. Am. Chem. Soc.,2001,123,1650-1657.
    [21]R. L. Wang, S.H. Han, W.G Hou, et al. Highly ordered supermicroporous silica. J. Phys. Chem. C,2007,111,10955-10958.
    [22]S.S. Wang, S.H. Han, X.Y. Cui, et al. Effects of the spacer length of Gemini surfactants on the ordered pore of silica. J. Porous Mater.,2012,19,243-249.
    [23]G.(?)ye, J. Sjoblom, M. Stocker, Synthesis, characterization and potential applications of new materials in the mesoporous range. Adv. Colloid Interface Sci.,2001,89-90,439-466.
    [24]D.Y. Zhao, Q.S. Huo, J.L. Feng, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc.,1998,120,6024-6036.
    [25]Y. Muto, K. Esumi, K. Meguro, et al. Aggregation behavior of mixed fluorocarbon and hydrocarbon surfactants in aqueous-solutions. J. Colloid Interface Sci.,1987,120,162.
    [26]Y. Han, D. Li, L. Zhao, et al. High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures. Angew. Chem. Int. Ed.,2003,42,3633.
    [27]Y. Di, X.J. Meng, L.F. Wang, et al. Ultralow temperature synthesis of ordered hexagonal smaller supermicroporous silica using semifluorinated surfactants as template. Langmuir, 2006,22,3068-3072.
    [28]T.W. Davey, W.A. Ducker, A.R. Hayman, Aggregation of w-hydroxy quaternary ammonium bolaform surfactants. Langmuir,2000,16,2430.
    [29]S.A. Bagshaw, A.R. Hayman, Novel super-microporous silicate templating by w-hydroxyalkylammonium halide bolaform surfactants. Chem. Commun.,2000,533-534.
    [30]S.A. Bagshaw, A.R. Hayman, Super-microporous silicate molecular sieves. Adv. Mater.,2001, 13,1011-1013.
    [31]徐如人,庞文琴等.分子筛与多孔材料化学。北京:科学出版社,2004,619-633。
    [32]L.T. Kresge, M. E. Leonomicz, W. J. Roth, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,395,710.
    [33]D.Y. Zhao, J.L. Feng, Q.S. Huo, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science,1998,2,548-552.
    [34]S.S. Kim, W.Z. Zhang, T.J. Pinnavaia, Ultrastable mesoporous silica vesicles. Science,1998, 282,1302-1305.
    [35]S.S. Kim, T.R. Pauly, T.J. Pinnavaia, Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates. Chem.Commun.,2000,1661-1662.
    [36]F. Kleitz, S.H. Choi, R. Ryoo, Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun.,2003, 2136-2137.
    [37]F. Kleitz, D. Liu, G. M. Anilkumar, et al. Large cage face-centered-cubic Fm3m mesoporous silica:synthesis and structure. J. Phys. Chem. B,2003,107,14296-14300.
    [38]J. Fan, C.Z. Yu, T. Gao, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem. Int. Ed.,2003,42,3146-3150.
    [39]J. Fan, C.Z. Yu, J. Lei, et al. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J. Am Chem. Soc.,2005,127,10794-10795.
    [40]S.D. Shen, A.E. Garcia-Bennett, Z. Liu, et al. Three-dimensional low symmetry mesoporous silica structures templated from tetra-headgroup rigid bolafonn quaternary ammonium surfactant. J. Am Chem. Soc.,2005,127,6780-6787.
    [41]B.Z. Tian, X.Y. Liu, B. Tu, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nat. Mater.,2003,2,159-163.
    [42]Y. Wan, Y.F. Shi, D.Y. Zhao, Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem. Commun.,2007,897-926.
    [43]J.S. Beck, J.C. Vartuli, W.J. Roth, et al. A new family of mesoporous molecular sieves prepared with liquid crystal template. J. Am. Chem. Soc.,1992,114,10834.
    [44]Q.S. Huo, D.I. Margolese, U. Ciesla, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase array. Chem. Mater.,1994,5,1176.
    [45]A. Monnier, F. Shuth, Q. Huo, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructure. Science,1993,261,1299-1303.
    [46]Q.S. Huo, D.I. Margolese, G.D. Stucky, Surfactant control of phase in the synthesis of mesoporous silica-based materials. Chem. Mater.,1996,8,114.
    [47]S.A. Che, S. Lim, M. Kaneda, et al. The effect of the counteranion on the formation of mesoporous materials under the acidic synthesis process. J. Am. Chem. Soc.,2002,124, 13962-13963.
    [48]H.P. Lin, C.P. Kao, C.Y. Mou, et al. Counterion effect in acid synthesis of mesoporous silica materials. J. Phys. Chem. B,2000,104,7885-7894.
    [49]K. Flodstrom, V. Alfredsson, N. Kallrot, Formation of a New Ia3d cubic meso-structured silica via triblock copolymer-assisted synthesis. J. Am. Chem. Soc.,2003,125,4402-3303.
    [50]C.Z. Yu, B.Z. Tian, J. Fan, et al. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J. Am. Chem. Soc.,2002,124, 4556-4557.
    [51]D.Y. Yuan, J.Y. Sun, Q.Z. Li, et al. Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater.,2000,12,275-279.
    [52]S.Z. Qiao, C.Z. Yu, Q.H. Hu, et al. Control of ordered structure and morphology of large-pore periodic mesoporous organosilicas by inorganic salt. Micro. Meso. Mater.,2006, 91,59-69.
    [53]C.Z. Yu, B.Z. Tian, J. Fan, et al. Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers. Chem. Commun.,2001,2726-2727.
    [54]H.P. Lin, C.P. Kao, C.Y. Mou, Counterion and alcohol effect in the formation of mesoporous silica. Micro. Meso. Mater.,2001,48,135-141.
    [55]A. Okabe, T. Fukushima, K. Ariga, et al. Tetrafluoroborate salts as site-selective promoters for sol-gel synthesis of mesoporous silica. J. Am. Chem. Soc.,2004,126,9013-9016.
    [56]J. Yu, J.L. Shi, H.R. Chen, et al. Effect of inorganic salt addition during synthesis on pore structure and hydrothermal stability of mesoporous silica. Micro. Meso. Mater.,2001,46, 153-162.
    [57]E. Leontidis, Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr.Opin. Colloid Interface. Sci.,2002,7,81-91.
    [58]D. Nguyen, GL. Bertrand, Calorimetric observation of the sphere-rod transition of tetradecyltrimethylammonium bromide and sodium dodecyl sulfate:effects of electrolytes and non-electrolytes at 25 and 45℃. J. Colloid Int. Sci.,1992,150,143-157.
    [59]S. Berr, R.M.R. Jones, J.J. Johnson, Effect of counterion on the size and charge of alkyltrimethylammonium halide micelles as a function of chain length and concentration as determined by small-angle neutron scattering. J. Phys. Chem.,1992,96,5611-5614.
    [60]A.S. Poyraz, C. Albayrak, O. Dag, The effect of cationic surfactant and some organic/inorganic additives on the morphology of mesostructured silica templated by pluronics. Micro. Meso. Mater.,2008,115,548-555.
    [61]J.C. Eriksson, G Gillerg, NMR studies of the solubilization of aromatic compounds in cetyltrimethylammonium bromide solution. Ⅱ, Acta Chem. Scand.,1966,20,2019-2027.
    [62]J.L. Blin, C. Otjacques, G. Herrier, et al. Pore size engineering of mesoporous silicas using decane as expander. Langmuir,2000,16,4229-4236.
    [63]L. Huang, M. Kruk, Synthesis of ultra-large-pore FDU-12 silica using ethylbenzene as micelle expander. J. Colloid Interface Sci.,2012,365,137-142.
    [64]J. Sun, H. Zhang, D. Ma, et al. Alkanes-assisted low temperature formation of highly ordered SBA-15 with large cylindrical mesopores. Chem. Commun.,2005,5343-5345.
    [65]L. Cao, M. Kruk, Synthesis of large-pore SBA-15 silica from tetramethyl orthosilicate using triisopropylbenzene as micelle expander. Colloids and Surfaces A:Physicochem. Eng. Aspects,2010,357,91-96.
    [66]A. Shimojima, M. Sakurai, K. Kuroda, et al. Effect of organic additives on the formation of alkylsiloxane mesophase. J. Colloid Interface Sci.,2010,350,155-160.
    [67]F. Kleitz, J. Blanchard, B. Zibrowius, et al. Influence of Cosurfactants on the properties of mesostructured materials. Langmuir,2002,18,4963.
    [68]H.P. Lin, Y.R. Cheng, S.B. Liu, et al. The effect of alkan-1-ols addition on the structural ordering and morphology of mesoporous silicate MCM-41. J. Mater. Chem.,1999,9, 1197-1201.
    [69]S.Q. Liu, P. Cool, O. Collart, et al. The influence of the alcohol concentration on the structural ordering of mesoporous silica:cosurfactant versus cosolvent. J. Phys. Chem. B, 2003,107,10405-10411.
    [70]G. Zhou, Y. Chen, J. Yang, et al. From cylindrical-channel mesoporous silica to vesicle-like silica with well-defined multilamella shells and large inter-shell mesopores. J. Mater. Chem., 2007,17,2839-2844.
    [71]H.M. Kao, C.C. Cheng, C.C. Ting, et al. Phase control of cubic SBArl mesostructures via alcohol-assisted synthesis. J. Mater. Chem.,2005,15,2989-2992.
    [72]N.P. Wickramaratne, M. Jaroniec, Phenolic resin-based carbons with ultra-large mesoporous prepared in the presence of poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer and trimethyl benzene. Carbon,2013,51,45-51.
    [73]M.B. Dines, R.E. Cooksey, P.C. Griffith, et al. Formation of a new nitride cluster from coordinated isocyanate. Inorg. Chem.,1983,22,1004-1006.
    [74]A. Clearfield, Layered phosphates, phosphites and phosphonates of groups 4 and 14 metals. Comm. Inorg.Chem.,1990,10,89-128.
    [75]G. Alberti, U. Costantino, J. Kornyei, et al. Derivatives of a-zirconium phosphate with two different functional groups. React. Polym.,1985,4,1-10.
    [76]J.D. Wang, A. Clearfield, Mater. Chem. Phys.,1993,35,208-219.
    [77]L.A. Vermeulen, M.E. Thompson, Synthesis and photochemical properties of porous zirconium viologen phosphonate compounds. Chem. Mater.,1994,6,77-81.
    [78]Z.K. Wang, J.M. Heising, A. Clearfield, Sulfonated microporous organic-inorganic hybrids as strong bronsted acids.J. Am. Chem. Soc.,2003,125,10375-10383.
    [79]A. Bhaumik, S. Inagaki, Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc.,2001,123,691-696.
    [80]T.Y. Ma, Z.Y. Yuan, Functional zed periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. Chem. Commun.,2010,46,2325-2327.
    [81]T.Y. Ma, X.Z. Lin, Z.Y. Yuan, Cubic mesoporous titanium phosphonates with multifunctionality. Chem. Eur. J.,2010,16,8487-8494.
    [82]N. Ren, Y. Tang, Y.J. Wang, et al. Mesoporous zirconium phosphate-phenylphosphonate and its functionalization. Chem. Lett.,2002,1035-1037.
    [83]X. Shi, J. Liu, C.M. Li, et al. Pore-size tunable mesoporous zirconium orgaophosphonates with chiral L-proline for enzyme adsorption. Inorg. Chem.,2007,46,7944-7952.
    [84]X. Shi, J.P. Li, Y. Tang, et al. pH-sensitive mesoporous zirconium diphosphonates for controllable colon-targeted delivery. J. Mater. Chem.,2010,20,6495-6504.
    [85]H.P. Perry, J. Law, J. Zon, et al. Porous zirconium and tin phosphonates incorporating 2.2'-bipyridine as supports for palladium nanoparticles. Micro. Meso. Mater.,2012,149, 172-180.
    [86]T. Kimura, Synthesis of novel mesoporous aluminu organophophonate by using organically bridged diphosphonic acid. Chem. Mater.,2003,15,3742-3744.
    [87]T. Kimura, Synthesis of mesostructured and mesoporous aluminum organophophonates prepared by using diphosphonic acid with alkylene groups. Chem. Mater.,2005,17,337-344.
    [88]T. Kimura, Oligomeric surfactant and triblock copolymer synthesis of aluminum organophophonates with ordered mesoporous structures. Chem. Mater.,2005,17,5521-5528.
    [89]T. Kimura, K. Kato, Simple removal of oligomeric surfactants and triblock copolymers from mesostructured p recursors of ordered mesoporous aluminum organophosphonates. Micro. Meso. Mater,2007,101,207-213.
    [90]T. Kimura, K. Kato, Mesostructural control non-silica-based hybrid mesoporous film composed of aluminum ethylenediphosphonate using triblock copolymers and their TEM observation. New J. Chem.,2007,31,1488-1492.
    [91]J. El Haskouri, C. Guillem, J. Latorre, et al. The first pure mesoporous aluminium phosphonatesand diphosphonates new hybrid porousmaterials. Eur. J. Inorg. Chem.,2004,9, 1804-1807.
    [92]J. El Haskouri, C. Guillem, J. Latorre, et al. S+I- ionic formation mechanism to new mesoporous aluminum phosphonates and diphosphonates. Chem. Mater,2004,16, 4359-4372.
    [93]N.K. Mal, M. Fujiwara, M. Matsukata, Synthesis of organic-inorganic hybrid mesoporous tin oxophosphate in the presence of anionic surfactant. Chem. Commun.,2005,41,5199-5201.
    [94]A. Dutta, M. Pramanik, A. K. Patra, et al. Hybrid porous tin (Ⅳ) phosphonate:an efficient catalyst for adipic acid synthesis and a very good adsorbent for CO2 uptake. Chem. Commun., 2012,48,6738-6740.
    [95]M. Vasylyev, R. Neumann, Preparation.characterization, and catalytic aerobic oxidation by a vanadium phosphonate mesoporous material constructured from a dendritic tetraphosphonate. Chem. Mater.,2006,18,2781-2783.
    [96]F. Bellezza, A. Cipiciani, U. Costantino, et al. Adsorption of myoglobin onto porous zirconium phosphate and zirconium benzenephosphonate obtained with template synthesis. Langmuir,2006,22,5064-5069.
    [97]M.V. Vasylyev, E.J. Wachtel, R. Popovitz-Biro, et al. Titanium phosphonate porous materials constructed from dendritic tetraphosphonates. Chem. Eur. J.,2006,12,3507-3514.
    [98]T.Y. Ma, X.Z. Lin, Z.Y. Yuan, Periodic mesoporous titanium phosphonate hybrid materials. J. Mater. Chem.,2010,20,7406-7415.
    [99]T.Y. Ma, L. Liu, Q.F. Deng, et al. Increasing the H+ exchange capacity of porous titanium phosphonate materials by protecting defective P-OH groups. Chem. Commun.,2011,47, 6015-6017.
    [100]T. Kimura, K. Kato, Synthesis of ordered mesoporous aluminium alkylenediphosphonates with integrated inorganic-organic hybrid frameworks. J. Mater. Chem.,2007,17,559-566.
    [101]T. Kimura, N. Suzuki, P. Gupta, et al. Effective mesopore tuning using aromatic compounds in the aerosol-assisted system of aluminium organophosphonate spherical particles. Dalton Trans.,2010,39,5139-5144.□□□
    [102]C. Yu, B. Tian, D. Zhao, Recent advances in the synthesis of non-siliceous mesoporous materials. Curr. Opin. Solid State Mater. Sci.,2003,7,191-197.
    [103]Y. Wan, H. Yang, D. Zhao, "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Acc. Chem. Res.,2006,39,423.
    [104]Y. Wan, Y. Shi, D. Zhao, Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem. Commun.,2007,897.
    [105]D.L. Wilcox, M. Berg, T. Bernat, et al. Hollow and solid spheres and microspheres:Science and technology associated with their fabrication and application. Materials Research Society Proceeding, MRS, Pittsburgh, PA,1995,372.
    [106]S.W. Kim, M. Kim, W.Y. Lee, et al. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupliing reactions. J. Am. Chem. Soc.,2002,124,7642-7643.
    [107]H.H. Yang, S.Q. Zhang, X.L. Chen, et al. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparation. Anal. Chem.,2004,76,1316-1321.
    [108]T. Kimura, K. Kato, Y. Yamauchi, Temperature-controlled and aerosol-assisted synthesis of aluminium organophosphonate spherical particles with uniform mesopores. Chem. Commun., 2009,4938-4940.
    [109]T.Y. Ma, Z.Y. Yuan, Periodic mesoporous titanium phosphonate spheres for high dispersion of CuO nanoparticles. Dalton Trans.,2010,39,9590-9578.
    [110]T. Kimura, Y. Sugahara, K. Kuroda, Synthesis of mesoporous aluminophosphates using surfactant with long alkyl chain lengths and triisopropylbenzen as a solubilizing agent. Chem. Commun.,1998,559.
    [111]D. Lanari, F. Montanari, F. Marmottini, et al. New zirconium hydrogen phosphate alkyl and/or aryl phosphonates with high surface area as heterogeneous Bronsted acid catalysts for aza-Diels-Alder reaction in aqueous medium. J. Catal,2011,277,80-87.
    [112]S. Calogero, D. Laneri, M. Orru, et al. Supported L-proline on zirconium phosphates methyl and/or phenyl phosphonates as heterogeneous organocatalysts for direct asymmetric aldol addition. J. Catal.,2011,282,112-119.
    [113]G. Alberti, M. Casciola, R. Palombari, Inorgano-organic proton conducting membranes for fuel cells and sensors at medium temperatures. J. Membrane Sci.,2000,172,233-239.
    [114]Y.G. Jin, S.Z. Qiao, Z.P. Xu, et al. Phosphonic acid functionalized silicas for intermediate temperature proton conduction. J. Mater. Chem.,2009,19,2363-2372.
    [115]Y.G. Jin, S.Z. Qiao, Z.P. Xu, et al. Porous silica nanospheres funtionalized with phosphonic acid as intermediate-temperature proton conductors. J. Phys. Chem. C,2009,113, 3157-3163.
    [116]A.A. Marti, J.L. Colon, Direct ion exchange of tris(2,2'-bipyridine) ruthenium (Ⅱ) into an a-zirconium phosphate framework. Inorg. Chem.,2003,42,2830.
    [117]K.M. Parida, B.B. Sahu, D.P. Das, A comparative study on textural characterization: cation-exchange and sorption properties of crystalline a-zirconium (Ⅳ), tin (Ⅳ), and titanium (Ⅳ) phosphates. J. Colloid Interf. Sci.,2004,270,436.
    [118]C.V. Kumar, A. Chaudhari, Proteins immobilized at the galleries of layered a-zirconium phosphate:structure and activity studies. J. Am. Chem. Soc.,2000,122,830.
    [119]U. Costantino, M. Nocchetti, R. Vivani, Preparation, characterization, and structure of zirocnium fluoride alkylamino-N, N-bis methylphosphonates:A new design for layered zircnoum diphosphosnates with a poorly hindered interlayer region. J. Am. Chem. Soc.,2002, 124:8428.
    [120]E. Rodriguez-Castellon, J. Jimenez-Jimenez, A. Jimenez-Lopez, et al. Proton conductivity of mesoporous MCM type of zirconium and titanium phosphates. Solid State Ionics,1999, 125,407.
    [121]G Alberti, M. Casciola, Solid state protonic conductors, present main applications and future prospects. Solid State Ionics,2001,145,3.
    [122]I.O. Benitez, B. Bujoli, L.J. Camus, et al. Monolayers as models for supported catalysts: Zirconium phosphonate films containing manganese (III) porphyrins. J. Am. Chem. Soc, 2002,124,4363.
    [123]I.C. Marcu, I. Sandulescu, J.M.M. Millet, Oxidehydrogenation of n-butane over tetravalent metal phosphates based catalysts. Appl. Catal. A gen.,2002,227,309.
    [124]GO. Rocha, R.A.W. Johnstone, B.F. Hemming, et al. Rates of formation of peroxyacetic acid from hydrogen peroxide and acetic acid in the presence of metal (IV) phosphates. J. Mol. Catal. A,2002,186,127.
    [125]M. Curini, F. Montanari, O. Rosati, et al. Layered zirconium phosphate and phosphonate as heterogeneous catalyst in the preparation of pyrroles. Tetrahedron Lett.,2003,44,3923.
    [126]P. Barbara, F. Liguori, Ion exchange resins:catalyst recovery and recycle. Chem. Rev.,2009, 109,515.
    [127]S.T. Wilson, B.M. Lok, C.A. Messina, et al. Aluminophosphate molecular sieve-A new class of microporous crystalline inorganic solids.J. Am. Chem. Soc.,1982,104,1146.
    [128]G Alberti, M. Casciola, U. Costantino, et al. Layered and pillared metal (IV) phosphates and phosphonates. Adv. Mater.,1996,8,291-303.
    [129]X.J. Zhang, T.Y. Ma, Z.Y. Yuan, Titania-phosphonate hybrid porous materials:preparation, photocatalytic activity and heavy metal ion adsorption. J. Mater. Chem.,2008,18, 2003-2010.
    [130]T.Y. Ma, H. Li, A.N. Tang, et al. Ordered, mesoporous metal phosphonate materials with microporous crystalline walls for selective separation techniques. Small,2011,7,1827-1837.
    [131]T.Y. Ma, Z.Y. Yuan, Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. ChemSusChem,2011,4,1407-1419.
    [132]S.J. Brickner, D.K. Hutchinson, M.R. Barbachyn, et al. Synthesis and antibacterial activity of U-100592-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant Gram-positive bacterial infections. J. Med. Chem.,1996,39,673-679.
    [133]T.M. Makhtar, G.D. Wright, Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem. Rev.,2005,105,529-542.
    [134]L. Aurelio, R.T.C. Brownlee, A.B. Hughus, Synthetic preparation of N-methyl-alpha-amino acids. Chem. Rev.,2004,104,5823-5846.
    [135]R.J. Watson, D. Batty, A.D. Baxter, et al. An enantioselective synthesis of sulphonamide hydroxamic acids as matrix metalloproteinase inhibitors. Tetrahedron Lett.,2002,43, 683-685.
    [136]A. Sudo, Y. Morioka, F. Sanda, et al. N-tosylaziridine, a new substrate for chemical fixation of carbon dioxide via ring expansion reaction under atmospheric pressure. Tetrahedron Lett., 2004,45,1363-1365.
    [137]M.T. Hancock, A.R. Pinhas, A convenient and inexpensive conversion of an aziridine to an oxazolidinone. Tetrahedron Lett.,2003,44,5457-5460.
    [138]X.B. Ma, Y.H. Wang, W. Wang, et al. Synthesis and characterization of mesoporous zirconium phosphonates:a novel supported cinchona alkaloid catalysts in asymmetric catalysis. Catal. Commun.,2010,11,401-407.
    [139]G.B. Hix, A. Turner, B.M. Kariuki, et al. Strategies for the synthesis of porous metal phosphonate materials. J. Mater. Chem.,2002,12,3220-3227.
    [140]J. Li, L. Meng, Z.G. Sun, et al. Synthesis, crystal structure and characterization of a new 3D porous zinc phosphonate:Zn6[O3PCH3)2NHC3H11]1·6H2O. Inorg. Chem. Commun.,2008, 11,211-214.
    [141]C. Serre, J.A. Groves, P. Lightfoot, et al. Synthesis, structure and properties of related microporous N,N'-piperazinebismethylenephosphonates of aluminum and titanium. Chem. Mater.,2006,18,1451.
    [142]K. Maeda, Y. Kiyozumi, F. Mizukami, Characterization and gas adsorption properties of aluminum methylphosphonates with organically lined unidimensional channels.J. Phys. Chem. B,1997,101,4402-4412.
    [143]X. Shi, J. Yang, Q.H. Yang, Mesoporous aluminium organophosphonates functionalized with chiral L-proline groups in the pore. Eur. J. Inorg. Chem.,2006,1936-1939.
    [144]Z.Y. Yuan, B.L. Su, Insights into hierarchically meso-macroporous structured materials. J. Mater. Chem.,2006,16,663-677.
    [145]G.J.A.A. Soler-Illia, E.L. Crepaldi, D. Grosso, et al. Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci.,2003,8,109-126.
    [146]G.J.A.A. Soler-Illia, C. Sanchez, B. Lebeau, et al. Chemical strategies to design textured materials:from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev.,2002,102,4093-4138.
    [147]M.M. Gomez-Alcantara, A. Cabeza, P. Olivera-Pastor, et al. Layered microporous tin (IV) bisphosphonates. Dalton Trans.,2007,2394-2404.
    [148]A. Subbiah, D. Pyle, A. Rowland, et al. A family of microporous materials formed by Sn (IV) phosphonate nanoparticles. J. Am. Chem. Soc.,2005,127,10826-10827.
    [149]N.K. Mal, M. Fujiwara, Y. Yamada, et al. Synthesis of surfactant-assisted microporous layered tin phenylphosphonate. Chem. Lett.,2003,32,292-293.
    [150]N.K. Mal, M. Fujiwara, Y. Yamada, et al. Synthesis of a microporous layered titanium phenylphosphonate in presence of sodium dodecylsulfate. J. Ceram, Soc. Jpn..,2003,111, 219-221.
    [151]P. Sairam, R. Puranik, B.S. Rao, et al. Synthesis of 1,2,3-tri-O-acetyl-5-deoxy-D-ribofuranose from D-ribose. Carbohyd. Res.,2003,338, 303-306.
    [152]Y. Kamiya, S. Sakatab, Y. Yoshinaga, et al. Zirconium phosphate with a high surface area as a water-tolerant solid acid. Catal. Lett.,2004,94,45-47.
    [153]A. Corma, Solid acid catalysts. Curr. Opin. Solid State Mater. Sci.,1997,2,63-75.
    [154]X.J. Zhang, T.Y. Ma, Z.Y. Yuan, Nanostructured titania-diphosphonate hybrid materials with a porous hierarchy. Eur. J. Inorg. Chem.,2008,2721-2726.
    [155]T.Y. Ma, X.J. Zhang, Z.Y. Yuan, Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. J. Phys. Chem. C,2009,113,12854-12862.
    [156]W.R. Leenstra, J.C. Amicangelo, Synthesis, characterization and interlayer distance study of zirconium phosphonates with stoichiometric variation of methyl and p-aminobenzyl pendant groups. Inorg. Chem.,1998,37,5317-5323.
    [157]P. Wu, Y. Liu, M. He, et al. Postsynthesis of hexagonally packed porous zirconium phosphate through a novel anion exchange between zirconium oxide mesophase and phosphoric acis. Chem. Mater.,2005,17,3921.
    [158]T.Z. Ren, Z.Y. Yuan, B.L. Su, Thermally stable macroporous zirconium phosphates with supermicroporous walls:a self-formation phenomenon of hierarchy. Chem. Commun.,2004, 2730-2731.
    [159]M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater,2001,13,3169-3183.
    [160]D.R. Jansen, J.R. Zeevaart, Z.I. Kolar, et al.31P NMR study of the valence stability of tin in its 1-hydroxyethylene-diphosphonate (HEDP) and N,N,N-trimethylenephosphonate-polyethyleneimine (PEI-MP) complexes. Polyhedron,2008, 27,1779-1786.
    [161]W.A. Schafer, P.W. Carr, E.F. Funkenbusch, et al. Physical and chemical characterization of a porous phosphate-modified zirconia substrate. J. Chromatogr,1991,587,137.
    [162]J. Jimenez-Jimenez, P. Maireles-Torres, P. Olivera-Pastor, et al. Surfactant-assisted synthesis of a mesoporous form of zirconium phosphate with acidic properties. Adv. Mater.,1998,10, 812-815.
    [163]W. Gao, L. Dickinson, C. Grozinger, et al. Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir,1996,12,6429-6435.
    [164]X.J. Zhang, T.Y.Ma, Z.Y. Yuan, Nanostructured titania-diphosphonate hybrid materials with a porous hierarchy. Eur. J. Inorg. Chem.,2008,2721-2726.
    [165]Z.Y. Yuan, T.Z. Ren, A. Azioune, et al. Marvelous self-assembly of hierarchically nanostructured porous zirconium phosphate solid acids with high thermal stability. Catal. Today,2005,105,647-654
    [166]M. Salavati-Niasari, M. Dadkhah, F. Davar, Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron,2009,28,3005-3009.
    [167]A. Cabeza, M.M. Gomez-Alcantara, P. Olivera-Pastor, et al. From non-porous crystalline to amorphous microporous metal (IV) bisphosphonates. Micro. Meso. Mater.,2008,114, 322-336.
    [168]B. Adolphi, E. Jahne, G. Busch, et al. Characterization of the adsorption of w-(thiophene-3-yl alkyl) phosphonic acid on metal oxides with AR-XPS. Anal. Bioanal. Chem.,2004,379,646.
    [167]U. Ciesla, M. Froba, G. Stucky, et al. Highly ordered porous zirconias from surfactant-controlled syntheses:zirconium oxide-sulfate and zirconium oxo phosphate. Chem. Mater,1999,11,227-234.
    [170]P.T. Tanev, T.J. Pinnavaia, Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating:a comparison of physical properties. Chem. Mater.,1996,8,2068.
    [171]M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater.,2001,13,3169-3183.
    [172]T.Z. Ren, Z.Y. Yuan, B.L. Su, Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2. Chem. Phys. Lett.,2003,374,170.
    [173]E.V. Bakhmutova-Albert, N. Bestaoui, V.I. Bakhmutov, et al. A novel cadmium aminophosphonate:X-ray powder diffraction structure, solid state IR and NMR spectroscopic determination of the fine structure of the organic moieties. Inorg. Chem.,2004, 43,1264-1272.
    [174]F. Odobel, B. Bujoli, D. Massiot, Zirconium phosphonate frameworks covalently pillared with a bipyridine moiety. Chem. Mater.,2001,13,163-173.
    [175]C. Jacopin, M. Sawicki, G. Plancque, et al. Investigation of the interaction between 1-hydroxyethane-1,1'-diphosphonic acid (HEDP) and uranium (Ⅵ). Inorg. Chem.,2003,42, 5015-5022.
    [176]J.D. Kim, T. Mori, I. Honma, Anhydrous proton conductivity of a lamella-structured inorganic-organic zirconium-monododecyl phosphate crystalline hybrid. J. Power Sources, 2007,172,694-697.
    [177]J.D. Kim, T. Mori, I. Honma, Organic-inorganic hybrid membranes for a PEMFC operation at intermediate temperatures. J. Electrochem. Soc.,2006,153, A508.
    [178]W. Gao, L. Dickinson, C. Grozinger, et al. Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir,1996,12,6429-6435.
    [179]C.S. Griffith, M.D.L. Reyes, N. Scales, et al. Hybrid inorganic-organic adsorbents part 1: synthesis and characterization of mesoporous zirconium titanate frameworks containing coordinating organic functionalities. ACS Appl. Mater. Interfaces,2010,2,3436-3446.
    [180]X. Mo, D.E. Lopez, K. Suwannakan, et al. Activatioin and deactivation characteristic of sulfonated carbon catalysts. J. Catal.,2008,254,332.
    [181]H. Nur, L.C. Guan, S. Endud, et al. Quantitative measurement of a mixture of mesophases cubic MCM-48 and hexagonal MCM-41 by 13C CP/MAS NMR. Mater. Lett.,2004,58, 1971-1974.
    [182]C.C. Landry, S.H. Tolbert, K.W. Gallis, et al. Phase transformations in mesostructured silica/surfactant composites. Mechanisms for change and applications to materials synthesis. Chem. Mater.,2001,13,1600-1608.
    [183]M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposte materials. Chem. Mater.,2001,13,3169-3183.
    [184]P. Wu, Y. Liu, M. He, et al. Postsynthesis of hexagonally packed porous zirconium phosphate through a novel anion exchange between zirconium oxide mesophase and phosphoric acid. Chem. Mater.,2005,17,3921.
    [185]H. Nur, C.G. Lau, S. Endud, et al. Quantitative measurement of a mixture of hexagonal MCM-41 and cubic MCM-48 mesophases by 13C CP/MAS NMR. Mater. Lett.,2004,58, 1971-1974.
    [186]J.A. Wang, M.A. Valenzuela, J. Salmones, et al. Methanol decomposition on electrospun zirconia nanofibers. Catal. Today.,2001,68,21-30.
    [187]J.M. Hernandez Enriquez, L.A. Cortez Lajas, R. Garcia Alamilla, et al. Synthesis and characterization of mesoporous and nano-crystalline phosphate zirconium oxides.J. Alloys Compel.,2009,483,425-428.
    [188]A. Vantomme, Z.Y.Yuan, B.L. Su, One-pot synthesis of a high-surface-area zirconium oxide material with hierarchically three-length scaled pore structure. New J. Chem.,2004,28, 1083-1085.
    [189]G.S. Herman, E.P. McDaniel, S. A. Joyce, Interaction of D2O with the Fe3O4 (111) and the biphase ordered structures on a-Fe2O3 (0001). J. Electron Spectrosc.,1999,101-103, 433-438.
    [190]G.D. Zhang, X. Chen, Y. Zhao, et al. Effects of alcohols and counterions on the phase behavior of 1-octyl-3-methylimidazolium chloride aqueous solution, J. Phys. Chem. B,2007, 111,11708-11713.
    [191]W.Q. Wang, J.G. Wang, P.C. Sun, et al. Effect of alcohol on morphology and mesostructure control of anionic-surfactant-templated mesoporous silica (AMS), J. Colloid. Interface Sci., 2009,331,156-162.
    [192]M. Ogawa, A simple sol-gel route for the preparation of silica-surfactant mesostructured materials. Chem. Commun.,1996,1149-1050.
    [193]M. Ogawa, T. Kikuchi, Preparation of self-standing transparent films of silica-surfactant mesostructured materials and the conversion to porous silica films. Adv. Mater.,1998,10, 1077-1080.
    [194]S.M. Coman, G. Pop, C. Stere, et al. New heterogeneous catalysts for greener routes in the synthesis of fine chemicals. J. Catal.,2007,251,388-399.
    [195]J.H. Clark, D.J. Macqquarrie, Environmentally friendly catalytic methods. Chem. Soc. Rev., 1996,25,303.
    [196]M.G. Clerici, Zeolites for fine chemicals production. Topics in Catal.,2000,13,373-386.
    [197]F. Figueras, Pillared clays as catalysts. Catal. Rev. Sci. Eng.,1988,30,457.
    [198]A. Corma, M. Renz, A general method for the preparation of ethers using water-resistant solid Lewis acids. Angew. Chem. Int. Ed.,2007,46,298-300.
    [199]A. Corma, M.E. Domine, S. Valencia, Water-resistant solid Lewis acid catalysts: Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite. J. Catal., 2003,215,294-304.
    [200]K. Manabe, S. Limura, X.M. Sun, et al. Dehydration reactions in water. Bronsted acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water.J. Am. Chem. Soc.,2002,124,11971-11978.
    [201]M. Kimura, T. Nakato, T. Okuhara, Water-tolerant solid acid catlysis of CS2.5H0.5PW12O40 for hydrolysis of esters in the presence of excess water. Appl.Catal. A:Gen.,1997,165, 227-240.
    [202]T. Okuhara, Water-tolerant solid acid catalyst. Chem. Rev.,2002,102,3641-3666.
    [203]S.X. Song, R.A. Kydd, Activation of sulfated zirconia catalysts effect of water content on their activity in n-butane isomerization. J. Chem. Soc. Faraday Trans.,1998,94,1333-1338.
    [204]D.E. Lopez, J.G. Goodwin Jr., D.A. Bruce, Transesterification of triacetin with methanol on Nafion acid resins. J. Catal.,2007,245,381-391.
    [205]H. Chiang, A. Bhan, Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J. Catal.,2010, 271,251-261.
    [206]I.V. Kozhevnikov, Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev,1998,98,171.
    [207]I.V. Kozhevnikov, K.R. Kloetstra, A. Sinnema, et al. Study of catalysts comprising heteropoly acid H3PW12O40 supported on MCM-41 molecular sieve and amorphous silica. J. Mol. Catal. A:Chem.,1996,114,287.
    [208]P. Madhusudhan Rao, A. Wolfson, S. Kababya, et al. Immobilization of molecular H3PW12O40 heteropolyacid catalyst in alumina-grafted silica-gel and mesostructured SBA-15 silica matrices. J. Catal.,2005,232,210-225.
    [209]M. Curini, O. Rosati, U. Costantino, Heterogeneous catalysts in liquid phase organic synthesis, promoted by layered zirconium phosphates and phosphonates. Curr. Org. Chem., 2004,8,591-606.
    [210]K. Segawa, T. Ozawa, Two-dimensional composte zirconium phosphonates:preparation and catalytic activities. J. Mol. Catal. A:Chem.,1999,141,249-255.
    [211]K. Segawa, N. Kihara, H. Yamamoto, Catalyst design of two-dimensional zirconium phosphonates. J. Mol. Catal.,1992,74,213-221.
    [212]D. Lanari, F. Montanari, F. Marmottini, et al. New zirconium hydrogen phosphate and/or aryl phosphonates with high surface area as heterogeneous Bronsted acid catalysts for aza-Diels-Alder reaction in aqueous medium. J. Catal.,2011,277,80-87.
    [213]S. Calogero, D. Lanari, M. Orru, et al. Supported L-proline on zirconium phosphates methyl and/or phenyl phosphonates as heterogeneous organocatalysts for direct asymmetric aldol addition. J. Catal.,2011,282,112-119.
    [214]F. Klepper, E.M. Jahn, V. Hickmann, et al. Synthesis of the transfer-RNA nucleoside queuosine by using a chiral allyl azide intermediate. Angew. Chem. Int. Ed.,2007,46,2325-2327.
    [215]A.GM. Barrett, S.A. Lebold, (Phenylthio) nitromethane in the total synthesis of polyoxin C. J. Org. Chem.,1990,55,3853-3857.
    [216]C. Vogel, J. Meier-Haack, A. Taeger, et al. On the stability of selected monomeric and polymeric aryl sulfonic acids on heating in water (Part 1). Fuel cells,2004,4,320-327.
    [217]F. Kucera, J. Jancar, Homogeneous and heterogeneous sulfonation of polymers:a review. Polym. Eng. Sci.,1998,38,783-792.
    [218]N. Shibuya, R.S. Porter, Kinetics of PEEK sulfonation in concentrated sulfuric acid. Macromolecules,1992,25,6495-6499.
    [219]F.J. Liu, X.J. Meng, Y.L. Zhang, et al. Efficient and stable solid acid catalysts synthesized from sulfonation of swelling mesoporous polydivinylbenzenes. J. Catal.,2010,271,52-58.
    [220]L. Li, Y. Yoshinaga, T. Okuhara, Water-tolerant catalysis by Mo-Zr mixed oxides calcined at high temperataure. Phys. Chem. Chem. Phys.,1999,1,4913.
    [221]R.L. Paddock, S.T. Nguyen, Chemical CO2 fixation:Cr (III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J. Am. Chem. Soc.,2001,123, 11498-11499.
    [222]R. Zevenhoven, S. Eloneva, S. Teir, Chemical fixation of CO2 in carbonates:routes to valuable products and long-term storage. Catal. Today 2006,115,73-79.
    [223]K.M.K. Yu, I. Curcic, J. Gabriel, et al. Recent advances in CO2 capture and utilization. ChemSusChem 2008,893-899.
    [224]T. Sakakura, J.C. Choi, H. Yasuda, Transformation of carbon dioxide. Chem. Rev.,2007, 107,2365-2387.
    [225]M.R. Barbachyn, C.W. Ford, Oxazolidinone structure-activity relationships leading to linezolid. Angew. Chem. Int. Ed,.2003,42,2010-2023.
    [226]D.B. Hoellman, G. Lin, L.M. Ednie, et al. Antipneumococcal and antistaphylococcal activities of ranbezolid (RBX 7644), a new oxazolidinone, compared to those of other agents. Antimicrob. Agents Chemother.,2003,47,1148-1150.
    [227]T.M. Makhtar, GD. Wright, Streptogramins, oxazolidinones and other inhibitors of bacterial protein synthesis. Chem. Rev.,2005,105,529-542.
    [228]R.J. Watson, D. Batty, A.D. Baxter, et al. An enantioselective synthesis of sulphonamide hydroxamic acids as matrix metalloproteinase inhibitors. Tetrahedron Lett.,2002,43, 683-685.
    [229]A. Sudo, Y. Morioka, F. Sanda, et al. N-tosylaziridine, a new substrate for chemical fixatioin of carbon dioxide via ring expansion reaction under atmospheric pressure. Tetrahedron Lett., 2004,45,1363-1365.
    [230]M.T. Hancock, A.R. Pinhas, A convenient and inexpensive conversion of an aziridine to an oxazolidine. Tetrahedron Lett.,2003,44,5457-5460.
    [231]H. Kawanami, H. Matsumoto, Y. Ikushima, Effective scCO2-ionic liquid reaction system based on symmetricc aliphatic ammonium salts for the rapid CO2 fixation with aziridine to 2-oxazolidinone. Chem. Lett.,2005,34,60-61.
    [232]H.F. Jiang, J.W. Ye, C.R. Qi, et al. Naturally occurring α-amino acid:a simple and inexpensive catalyst for the selective synthesis of 5-aryl-2-oxazolidinones from CO2 and aziridines under solvent-free conditions. Tetrahedron Lett.,2010,51,928-932.
    [233]A. Sudo, Y. Morioka, E. Koizumi, et al. Highly efficient chemical fixations of carbon dioxide and carbon disulfide by cycloaddition to aziridine under atmospheric pressure. Tetrahedron Lett.,2003,44,7889-7891.
    [234]Y. Du, Y. Wu, A.H. Liu, et al. Quaternary ammonium bromide functionalized polyethylene glycol:a highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. J. Org. Chem.,2008,73,4709-4712.
    [235]Y. Wu, L.N. He, Y. Du, et al. Zirconyl chloride:an efficient recyclable catalyst for synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Tetrahedron,2009,65,6204-6210.
    [236]X.Y. Dou, L.N. He, Z.Z. Yang, et al. Catalyst-free process for the synthesis of 5-aryl-2-oxazolidinones va cycloaddition reaction of aziridines and carbon dioxide. Synlett., 2010,14,2159-2163.
    [237]X.B. Lu, J.H. Xiu, R. He, et al. Chemical fixation of CO2 to ethylene carbonate under supercritical conditions:continuous and selective. Appl. Catal. A,2004,275,73.
    [238]W.G. Lu, D.Q. Yuan, J.L. Sculley, et al. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J. Am. Chem. Soc.,2011,133,18126-18129.
    [239]R. Dawson, D.J. Adams, A.I. Cooper, Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem. Sci.2011,2,1173.
    [240]M. Sevilla, P. Valle-Vigon, A.B. Fuertes, N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater.2011,21,2781-2787.
    [241]A. Torrisi, R.G. Bell, C. Mellot-Draznieks, Functionalized MOFs for enhanced CO2 capture. Cryst. Growth Des.,2010,10,2839.
    [242]R. Babarao, S. Dai, D.E. Jiang, Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation:a molecular simulation study. Langmuir,2011,27,3451-3460.
    [243]Z.Z. Yang, Y.N. Li, Y.Y. Wei, et al. Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinons from aziridines and CO2 under mild conditions. Green Chem.,2011, 13,2351-2353.
    [244]A. Ramila, B. Munoz, J. Perez-Pariente, et al. Mesoporous MCM-41 as drug host system. J. Sol-Gel Sci. Technol.,2003,26,1199-1202.
    [245]P. Horcajada, A. Ramila, J. Perez-Pariente, et al. Influence of pore size of MCM-41 matrices on drug delivery rate. Micro. Meso. Mater.,2004,68,105-109.
    [246]S. Wang, H. Li, Structure directed reversible adsorption of organic dye on mesoporous silica in aqueous solution. Micropor. Mesopor. Mater.,2006,97,21-26.
    [247]M. Ugurlu, Adsorption of a textile dye onto activated sepiolite. Micro. Meso. Mater.,2009, 119,276-283.
    [248]M. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, et al. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite:A kinetic study. J. Colloid Interface Sci.,2005,286,101-109.
    [249]A. Khaled, A.E. Nemr, A. EI-Sikaily, et al. Removal of direct N blue-106 from artificial textile dye effluent using activated carbon from organge peel.J. Harzard. Mater.,2009,165, 100-110.
    [250]V. Vimones, S. Lei, B. Jin, et al. Adsorption of congo red by three Australian kaolins. Appl. Clay. Sci.,2009,43,465-472.
    [251]S. Senthilkumaar, P. Kalaamani, C.V. Subburaam, Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree. J. Hazard. Mater. B,2006, 136,800-808.
    [252]C.K.. Lee, S.S. Liu, L.C. Juang, et al. Application of MCM-41 for dyes removal from wastewater.J. Hazard Mater.,2007,147,997-1005.
    [253]E. Eren, Investigation of a basic dye removal from aqueous solution onto chemically modified unye bentonite. J. Hazard Mater.,2009,166,88-93.
    [254]S. Wu, C. Zhu, All-solid-state UV dye laser pumped by XeCl laser. Opt. Mater.,1999,12, 99.
    [255]D.E. Wetzler, D. Garcia-Fresnadillo, G. Orellana, A clean, well-defined solid system for photosensitized 1O2 production measurements. Phys. Chem. Chem. Phys.,2006,8, 2249-2256.
    [256]C. McDonagh, B.D. MacCraith, A.K. McEvoy, Tailoring of sol-gel films for optical sensing of oxygen in gas and aquesous phase. Anal. Chem.,1998,70,45-50.
    [257]M. Gratzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev.,2003, 4,145-153.
    [258]M.E. Thompson, Use of layered metal phospohonates for the design and construction of molecular materials. Chem. Mater.,1996,6,1168-1175.
    [259]L.F. Vieira Ferreira, A.R.Garcia, M. Rosario Freixo, et al. Photochemistry on surfaces: solvent-matrix effect on the swelling of cellulose. An emission and absorption study of adsorbed auramine O.J. Chem. Soc. Faraday Trans.,1993,89,1937-1944.
    [260]J.M. McKiernan, S.A. Yamanaka, B. Dunn, et al. Spectroscopy and laser action of rhodamine 6G doped aluminosilicate xerogels. J. Phys. Chem.,1990,94,5652.
    [261]Z. Grauer, D. Avnir, S. Yariv, Adsorption characterization of rhodamine 6G on montmorillonite and laponite, elucidated from electronic absorption and emission spectra. Can. J. Chem.,1984,62,1889.
    [262]X.Yang, L. Hong, G. Ma, et al. Optical holographic recording properties of 1-(2-pyridylazo)-2-naphthol thin film Opt. Commun.,2007,272,521-524.
    [263]E. Yariv, S. Schultheiss, T. Saraidarov, et al. Efficiency and photostability of dye-doped solid-state lasers in different hosts. Opt. Mater.,2001,16,29-38.
    [264]G. Wirnsberger, P.D. Yang, H.C. Huang, et al. Patterned block-copolymer-silica mesostructured as host media for the laser dye rhodamine 6G. J. Phys. Chem. B,2001,105, 6307-6313.
    [265]D. Li, J. Zhang, M. Anpo, et al. Transparent carbon films as electrodes in organic solar cells. Mater. Lett.,2005,59,2120-2123.
    [266]A.V. Deshpande, E.B. Namdas, Lasing action of rhodamine B in polyacrylic films. Appl. Phys. B,1997,64,419-422.
    [267]F. Amat-Guerri, A. Costela, J.M. Figuera, et al. Laser action from rhodamine 6G poly (2-hydroxylethylmethacrylate) matrices with different crosslinking degrees. Chem. Phys. Lett.,1993,209,352.
    [268]S. Popov, Dye photodestruction in a solid-state dye laser with a polymeric gain medium. Appl. Opt.,1998,37,6449.
    [269]M.A. Carreon, V.V. Guliants, Ordered meso-and macroporous binary and mixed metal oxides. Eur. J. Inorg. Chem.,2005,27-43.
    [270]J.Y. Ying, C.P. Mehnert, M.S. Wong, Synthesis and application of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed.,1999,38,56-77.
    [271]T.Y. Ma, Z.Y. Yuan, Metal phosphonate hybrid mesostructures:environmentally friendly multifunctional materials for clean energy and other applications. ChemSusChem,2011,4, 1407-1419.
    [272]X. Shi, J. Yang, Q.H. Yang, Mesoporous aluminium organophosphonates functionalized with chiral L-proline groups in the pores. Eur. J. Inorg. Chem.,2006,1936-1939.
    [273]J.P. Wilcoxon, Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters. J. Phys. Chem. B,2000,104,7334.
    [274]S. Gubbala, V. Chakrapani, V. Kumar, et al. Band-edge engineered hybrid structures for dye sensitized solar cells based on SnO2 nanowires. Adv. Funct. Mater.,2008,18,2411.
    [275]E.J. Kim, D. Son, T.G. Kim, et al. A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries. Angew. Chem. Int. Ed.,2004,43, 5987-5990.
    [276]G. Derrien, J. Hassoun, S. Panero, et al. Nanostructured Sn-C composites as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater.,2007,19,2336-2340.
    [277]X.G Han, M.S. Jin, S.F. Xie, et al. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy{221} facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed.,2009,48,1-5.
    [278]C. Serre, A. Auroux, A. Gervasini, et al. Hexagonal and cubic thermally stable mesoporous Tin(Ⅳ) phosphates with acidic and catalytic properties. Angew. Chem. Int. Ed.,2002,41, 1594-1597.
    [279]S. Kirumakki, S. Samarajeewa, R. Harwell, et al. Sn (IV) Phosphonates as catalysts in solvent-free Baeyer-Villiger oxidations using H2O2. Chem. Commun.,2008,5556-5558.
    [280]A.E.C. Palmqvist, Synthesis of ordered mesoporous materials using surfactant liquid crystals or micellar solutions. Curr. Opin. Colloid. Interface. Sci.,2003,8,145-155.
    [281]G.D. Zhang, X. Chen, Y.R. Zhao, et al. Effects of alcohols and counterions on the phase behavior of 1-octyl-3-methylimidazolium chloride aquesous solution. J. Phys. Chem. B,2007, 111,11708-11713.
    [282]A. Berggren, A.E.C. Palmqvist, K. Holmberg, Surfactant-templated mesostructured materials from inorganic silica. Soft Matter,2005,1,219-226.
    [283]S.R. Zhai, S.S. Park, M. Park, et al. Role of inorganic salts in the formation of ordered mesoporous organosilicas (PMOs) without extra acids. Micro. Meso. Mater.,2008,113, 47-55.
    [284]W.Q. Wang, J.G Wang, P.C. Sun, et al. Anionic surfactant-templated mesoporous silica (AMS) nano-spheres with radically oriented mesopores. J. Colloid. Interface Sci.,2009,331, 156-162.
    [285]C.S. Griffith, M. De Los Reyes, N. Scales, et al. Hybrid inorganic-organic adsorbents part 1: synthesis and characterization of mesoporous zirconium titanate frameworks containing coordinating organic functionalities. Appl. Mater. Interface,2010,2,3436-3446.
    [286]S. Calogero, D. Lanari, M. Orru, et al. Supported L-proline on zirconium phosphates methyl and/or phenyl phosphonates as heterogeneous organocatalysts for direct asymmetric aldol addition. J. Catal,2011,282,112-119.
    [289]G.S. Shao, F.Y. Wang, T.Z. Ren, et al. Hierarchical mesoporous phospohrus and nitrogen doped titania materials:synthesis, characterization and visible-light photocatalytic activity. Appl. Catal. B,2009,92,61-67.
    [290]Z.Y.Yuan, T.Z. Ren, A. Vantomme, et al. Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials. Chem. Mater.,2004, 16,5096-5106.
    [291]Y.Z. Li, S.J. Kim, Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability. J. Phys. Chem. B,2005,109,12309-12315.
    [292]J. Li, S. Liu, Y. He, et al. Adsorption and degration of the cationic dyes over Co doped amorphous mesoporous titania-silica catalyst under UV and visible light irradition. Micro. Meso. Mater.,2008,115,416-425.
    [293]C. He, B. Tian, J. Zhang, Synthesis of thermally stable and highly ordered bicontinuous cubic mesoporous titania-silica binary oxides with crystalline framework. Micro. Meso. Mater.,2009,126,50-57.
    [294]Q. Yuan, Y. Liu, L.L. Li, et al. Highly ordered mesoporous titania-zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution. Micro. Meso. Mater., 2009,124,169-178.
    [295]G.S. Li, D.Q. Zhang, J.C. Yu, Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts. Phys. Chem. Chem. Phys.,2009,11,3775-3782.
    [296]Z.W. Jin, X.D. Wang, X.G. Cui, Acidity-dependent mesostructure transformation of highly ordered mesoporous silica materials during a two-step synthesis. J. Non-crystal. Solids,2007, 353,2507-2514.
    [297]H. Kosslick, G. Lischke, H. Landmesser, et al. Acidity and catalytic behavior of substituted MCM-48.J. Catal.,1998,176,102.
    [298]A. Sakthivel, S.K. Badamali, P. Selvam, para-Selective t-butylation of phenol over mesoporous H-AlMCM-41. Micropor. Mesopor. Mater.,2000,39,457.
    [300]A, Vantomme, Z.Y. Yuan, B.L. Su, One-pot synthesis of a high-surface-area zirconium oxide material with hierarchical three-length-scaled pore structure. New J. Chem.,2004,28, 1083-1085.
    [301]T. Kimura, Y. Sugahara, K. Kuroda, Synthesis of a hexagonal mesostructured aluminophosphate. Chem. Lett.,1997,983-984.
    [302]T. Kimura, Y. Sugahara, K. Kuroda, Synthesis of mesoporous aluminophosphates by using surfactants with long alkyl chain length and triisopropylbenzene as a solubilizing agent. Chem. Commun.,1998,559.
    [303]T. Kimura, Y. Sugahara, K. Kuroda, Synthesis of mesoporous aluminophosphates and their adsorption properties. Micro. Meso. Mater.,1998,22,115.
    [304]H. Nur, L.C. Guan, S. Endud, et al. Quantitative measurement of a mixture of mesophases cubic MCM-48 and hexagonal MCM-41 by 13C CP/MAS NMR. Mater. Lett.,2004,58, 1971-1974.
    [305]K.S. Sing, D.H. Everett, R.A.W. Haul, et al. Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity. Pure Appl. Chem.,1985,57,603.
    [306]M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomoposite materials. Chem. Mater.,2001,13,3169-3183.
    [307]A. Georgakopoulos, Aspects of solid state 13C CP/MAS NMR spectroscopy in coal from the Balkan Peninsula. J. Serb. Chem. Soc.,2003,68,599-605.
    [308]J.Q. Zhuang, X.W. Han, X. Bao, et al. In-situ 13C MAS NMR investigation of solvent effect on the formation of phenylacetaldehyde over TS-1 zeolite. J Catal,2009,267,177-180.
    [309]S. Che, S. Lim, M. Kaneda, H. Yoshitake, et al. the effect of the counteranion on the formation of mesoporous materials under the acidic synthesis process.J. Am. Chem. Soc., 2002,124,13962-13963.
    [310]C.Z. Yu, B.Z. Tian, J. Fan, et al. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J. Am. Chem. Soc.,2002,124, 4556-4557.
    [311]T. Kimura, D. Nakashima, N. Miyamoto, Lamellar mesostructured aluminum organophosphonate with unique crystalline framework. Chem. Lett.,2009,38,916-917.
    [312]T.Y. Ma, X.J. Zhang, Z.Y. Yuan, Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. J. Phys. Chem. C,2009,113,12854-12862.
    [313]H. Tamon,T. Kitamura, M. Okazaki, Preparation of silica aerogel from TEOS, J. Colloid Interface Sci.,1998,197,353-359.
    [314]C.J. Brinker, W.D. Drotning, G.W. Scherer, A comparison between the densification kinetics of colloidal and polymeric silica gels. Mar. Res. Symp. Proc.,1984,32,25.
    [315]T.Z. Ren, Z.Y.Yuan, B.L. Su, Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2. Chem. Phys. Lett.,2003,374,170-175.
    [316]A. Vantomme, Z.Y. Yuan, B.L. Su, One-pot synthesis of a high-surface-area zirconium oxide material with hierarchically three-length scaled pore structure. New J. Chem.,2004,28, 1083-1085.
    [317]T.Y. Ma, X.J. Zhang, Z.Y. Yuan, Hierarchically meso-/macroporous titanium tetraphosphonate materials:synthesis, photocatalytic activity and heavy metal ion adsorption. Micro. Meso. Mater.,2009,123,234-242.
    [318]Z.Y.Yuan, T.Z. Ren, A. Azioune, et al. Self-assembly of hierarchically mesoporous-macroporous phosphated nanocrystalline aluminum (oxyhydr)oxide materials. Chem. Mater.,2006,18,1753-1767.
    [319]E. Jaimez, G.B. Hix, R.C.T. Slade, A phosphate-phosphonate of titanium (Ⅳ) prepared from phosphonomethyliminodiacetic acid:characterization, n-alkylamine intercalation and proton conductivity. Solid State Ionics,1997,97,195.
    [320]Z. Liu, R.J. Davis, Investigation of the structure of microporous Ti-Si mixed oxides by X-ray, UV reflectance, FT-Raman, and FT-IR spectroscopies. J. Phys. Chem.,1994,98, 1253.
    [321]J.X. Jiao, X.B. Qun, L.M. Li, Porous TiO2/SiO2 composite prepared using PEG as template direction reagent with assistance of supercritical CO2.J. Colloid Interface Sci.,2007,316, 596-603.
    [322]R. Ryoo, C.H. Ko, R.F. Howe, Imaging the distribution of framework aluminum in mesoporous molecular sieve MCM-41. Chem. Mater.,1997,9,1607.
    [323]G. Ricchiardi, A. Damin, S. Bordiga, et al. Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study.J. Am. Chem. Soc.,2001,123,11409-11419.
    [324]J.C. Jansen, F.J. van der Gaag, H. van Bekkum, Identification of ZSM-type and other 5-ring containing zeolites by i.r. spectroscopy. Zeolites,1984,4,369.
    [325]N. Venkatathri, S. Nanjundan, Synthesis and characterization of a novel titanium aluminophosphate hollow nanosphere. Mater. Sci. Eng. C,2009,29,242-245.
    [326]J.S. Lee, J.H. Kim, J.T. Kim, et al. Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite. J. Chem. Eng. Data,2002,47,1237-1242.
    [327]S. Cavenati, C.A. Grande, A.E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data,2004,49, 1095-1101.
    [328]R.S. Franchi, P.J.E. Harlick, A. Sayari, Applications of pore-expanded mesoporous silica.2. development of a high-capacity, water-tolerant adsorbent for CO2. Ind. Eng. Chem. Res., 2005,44,8007.
    [329]P.J.E. Harlick, A. Sayari, Applications of pore-expanded mesoporous silica.3. triamine silane grafting for enhanced CO2 adsorption. Ind. Eng. Chem. Res.,2006,45,3248.
    [330]N. Hiyoshi, K. Yogo, T. Yashima, Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor. Chem. Lett.,2004,33,510.
    [331]S. Kim, J. Ida, V.V. Guliants, et al. Tailoring pore properties of MCM-48 silica for selective adsorption of CO2. J. Phys. Chem. B,2005,109,6287.
    [332]T.Y. Ma, X.Z. Lin, X.J. Zhang, et al. High surface area titanium phosphonate materials with hierarchical porosity for multi-phase adsorption. New J. Chem.,2010,34,1209-1216.
    [333]G.P. Knowles, S.W. Delaney, A.L. Chaffee, Diethylenetriamine [propyl (silyl)]-functionalized (DT) mesoporous silicas as CO2 adsorbents. Ind. Eng. Chem. Res., 2006,45,2626-2633.
    [334]X.L. Ma, X.X. Wang, C.S. Song, "Molecular basket" sorbents for separation of CO2 and H2S from various gas streams. J. Am. Chem. Soc.,2009,131,5777-5783.
    [335]R.S. Franchi, P.J.E. Harlick, A. Sayari, Applications of pore-expanded mesoporous silica.2. development of a high-capacity, water-tolerant adsorbent for CO2. Ind. Eng. Chem. Res., 2005,44,8007-8013.
    [336]S.H. Lin, S.L. Lai, H. Leu, Removal of heavy metals from aqueous solution by chelating resin in a multistage adsorption process. J. Hazard. Mater.,2000,76,139-153.
    [337]N. Unlu, M. Ersoz, Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J. Hazard. Mater.,2006,136,272-280.
    [338]Y.S. Ho, C.T. Huang, H.W. Huang, Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem.,2002,37,1421-1430.
    [339]V.C. Srivastava, I.D. Mall, I.M. Mishra, Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA. J. Hazard. Mater.,2006,134,257-267.
    [340]A. Sari, M. Tuzen, D. Citak, et al. Adsorption characteristics of Cu (Ⅱ) and Pb (Ⅱ) onto expanded perlite from aqueous solution. J. Hazard. Mater.,2007,148,387-394.
    [341]X.J. Zhang, T.Y. Ma, Z.Y. Yuan, titania-phosphonate hybrid porous materials:preparation, photocatalytic activity and heavy metal ion adsorption. J. Mater. Chem.,2008,18, 2003-2010.
    [342]T.Y. Ma, X.J. Zhang, Z.Y. Yuan, High selectivity for metal ion adsorption:from mesoporous phosphonated titanias to meso/-macroporous titanium phosphonates, J. Mater. Sci.,2009,44,6775-6785.
    [343]I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc.,1918,40,1361-1403.
    [344]U. von Gunten, Ozonation of drinking water:Part Ⅰ. oxidation kinetics and production formation. Water Res.,2003,37,1443-1467.
    [345]T. Okuhara, N. Mizuno, M. Misono, Catalytic chemistry of heteropoly compounds. Adv. Catal,1996,41,113.
    [346]A. Muller, M. T. Pope, Polyoxometalates:From Platonic Solids to Anti-Retroviral Activity. Kluwer Academic, Dordrecht,1994.
    [347]H.Li, W.Qi, W. Li, et al. A highly transparent and luminescent hybrid based on the copolymerization of surfactant-encapsulated polyoxometalate and methyl methacrylate. Adv. Mater.,2005,17,2688.
    [348]W. Li, W. Bu, H. Li, et al. A surfactant-encapsulated polyoxometalate complex towards a thermotropic liquid crystal. Chem. Commun.,2005,3785.
    [349]S. Polarz, B. Smarsly, M. Antonietti, Colloidal organization and clusters:self-assembly of polyoxometalate-surfactant complexes towards three-dimensional organized structures. ChemPhysChem.,2001,2,457.
    [350]C. Li, J.B. Gao, Z.X. J, et al. Selective oxidations on recoverable catalysts assembled in emulsions. Topics in Catal.,2005,35,169-175.
    [351]L. Hua, Y.X. Qiao, H. Li, et al. Epoxidation of olefins with hydrogen peroxide catalyzed by a reusable lacunary-type phosphotungstate catalyst. Sci. China. Chem.,2011,54,769-773.
    [352]T.R. Zhang, C. Spitz, M. Antonietti, et al. Highly photoluminescent polyoxometaloeuropate-surfactant complexes by ionic selft-assembly. Chem. Eur. J.,2005, 11,1001-1009.
    [353]A. Taguchi, T. Abe, M. Iwamoto, Non-silica-based mesostructured material.2 synthesis of hexagonal superstructure consisting of 11-tungstophosphate anions and dodecyltrimethylammonium cations. Micro. Meso. Mater.,1998,21,387.
    [354]A. Stein, M. Fendorf, T. P. Jarvie, et al. Salt-gel synthesis of porous transition-metal oxides. Chem. Mater.,1995,7,304.
    [355]M. Nyman, D. Ingersoll, S. Singh, et al. Comparative study of inorganic cluster-surfactant arrays., Chem. Mater.,2005,2885-2895.
    [356]K. Narasimha Rao, L.D. Dingwall, P.L. Gai, et al. Synthesis and characterization of nanoporous phosphor-tungstate organic-inorganic hybrid materials. J. Mater. Chem.,2008, 18,868-874.
    [357]Y.F. Zhang, Z.X. Shen, J.T. Tang, et al. Direct, efficient, and inexpensive formation of a-hydroxyketones from olefins by hydrogen peroxide oxidation catalyzed by the 12-tungstophosphoric acid-cetylpyridinium chloride system. Org. Bio. Chem.,2006,4, 1478-1482.
    [358]R. Hutter, T. Mallat, D. Dutoit, et al. Titania-silica aerogels with superior catalytic performance in olefin epoxidation compared to large pore Ti-molecular sieves. Top. Catal., 1996,421-436.
    [359]Y.X. Qiao, Z.S. Hou, H. Li, et al. Polyoxometalate-based protic alkylimidazolium salts as reaction-induced phase-separation catalyzed for olefin epoxidation. Green Chem.,2009,11, 1955-1960.
    [360]M. Schroder, Osmium tetraoxide cis hydroxylation of unsaturated substrates. Chem. Rev., 1980,80,187-213.
    [361]H.C. Kolb, M.S. VanNieuwenhze, K.B. Sharpless, Catalytic asymmetric dihydroxylation. Chem. Rev.,1994,94,2483.
    [362]S. Chandrasekhar, C. Narsihmulu, S. Shameem Sultana, et al. Osmium tetraoxide in poly(ethylene glycol) (PEFT):a recyclable reaction medium for rapid asymmetric dihydroxylation under Sharpless conditions. Chem. Commun.,2003,1716-1717.
    [363]K. Jin Kim, H.Y. Choi, S.H. Hwang, et al. Markedly enhanced recyclability of osmium catalyst in asymmetric dihydroxylation reactions by using macroporous resins bearing both residual vinyl groups and quaternary ammonium moieties. Chem. Commun.,2005, 3337-3339.
    [364]T. Ishida, R. Akiyama, S. Kobayashi, A novel microencapsulated Osmium catalyst using cross-linked polystyrene as an efficient catalyst for asymmetric dihydroxylation of olefins in water. Adv. Synth. Catal,2005,347,1189-1192.
    [365]T.W.S. Chow, E.L.M. Wong, Z. Guo, et al. cis-Dihydroxylation of alkenes with oxone catalyzed by iron complexes of a macrocyclic tetra aza ligand and reaction mechanism by ESI-MS spectrometry and DFT calculations. J. Am. Chem. Soc.,2010,132,13229-13239.
    [366]T.W.S. Chow, Y. Lium C.M. Che, Practical mangnanese-catalyzed highly enantioselective cis-dyhydroxylation of electron-deficient alkenes and detection of a cis-dioxomangnese(v) intermediate by high resolution ESI-MS analysis. Chem. Commun.,2011,47,11204-11206.
    [367]H. Kosslick, G. Lischke, H. Landmesser, et al. Acidity and catalytic behavior of substituted MCM-48.J. Catal.,1998,176,102-114.
    [368]M. Misono, Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal. Rev. Sci. Eng.,1987,29,269.
    [369]W. Zhao, Y. Ding, Z. X. Zhang, et al. Immobilization of heteropolytungstate on functionalized KIT-1 mesoporous silica:catalyst for alkene epoxidation. Kinet. Mech. Cat., 2011,102,93-102.
    [370]S. S. Balula, I.C.M.S. Santos, L. Cunha-Silva, et al. Phosphotungstates as catalysts for monoterpenes oxidation:homo- and heterogeneous performance. Catal. Today,2013,203, 95-102.
    [371]H. Nur, L. C. Guan, S. Endud, et al. Quantitative measurement of a mixture of mesophases cubic MCM-48 and hexagonal MCM-41 by 13C CP/MAS NMR. Mater. Lett.,2004,58, 1971-1974.
    [372]A. Stein, M. Fendorf, T. P. Jarvie, et al. Salt-gel synthesis of porous transition metal oxides. Chem. Mater.,1995,7,304.
    [373]D.C. Duncan, R.C. Chambers, E. Hecht, et al. Mechanism and dynamics in the H3PPW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of{PO4[WO(O2)2]4}3-. J.Am. Chem. Soc.,1995,117,681.
    [374]L. Salles, C. Aubry, R. Thouvenout, et al.31P and 183W NMR Spectroscopic evidence for novel peroxo species in the "H3[PW12O40].cntdot.yH2O/H2O2" system. Synthesis and X-ray structure of tetrabutylammonium (.mu.-hydrogen phosphato)bis(.mu.-peroxo)bis(oxoperoxotungstate) (2-):a catalyst of olefin epoxidation in a biphase medium. Inorg. Chem.,1994,33,871.
    [375]Z. Zhang, Q. Chen, D.C. Duncan, et al. Multiiron polyoxoanions. Synthesis, characterization, X-ray crystal structure, and catalytic H2O2-based alkene oxidation by [(n-C4H9)4N]6[FeⅢ4(H2O)2(PW9O34)2]. Inorg. Chem.,1997,36,4381.
    [376]R. Neuman, M. Gara, The manganese-containing polyoxometalate, [WZnMnIl2(ZnW9O34)2]12-,as a remarkably effective catalyst for hydrogen peroxide mediated oxidations. J. Am. Chem. Soc.,1995,117,5066.
    [377]R. Ben-Daniel, A.M. Khenkin, R. Neumann, The Nickel-substituted quasi-Wells-Dawson-type polyfluoroxometalate, [NiⅡ(H2O)H2F6NaWi7O55]9-, as a uniquely active nickel-based catalyst for the activation of hydrogen peroxide and the epoxidation of alkenes and alkenols. Chem. Eur. J.,2000,6,3722-3728.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.