多孔膦酸盐的制备、表征和结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机/无机杂化多孔材料是一类新型的多孔材料,在催化、分离、吸附、主客体化学和功能材料等领域都有巨大的潜在应用价值,是当今材料和催化等众多领域的一个研究热点。
    本论文的工作主要集中在两个方面,一是采用模板辅助合成法制备了三种新型的多孔甲基膦酸盐;二是采用水热合成方法,制备了两种新型六方管状1-羟基乙叉-1,1-二膦酸盐。综合采用EDX,GC-MS,EPMA,FTIR,NMR,TG,DTA,XRD,氮气物理吸附-脱附和X-射线单晶衍射等方法对制得的材料进行了表征和结构测定,得到了一些有意义的结果。
    首次利用甲基膦酸二丁酯(DBMP)作为模板剂成功合成了多孔甲基膦酸盐,并发展了两种有效的脱除模板剂的方法,即低压热处理法和水热处理法。采用这两种方法,可以在不破坏有机/无机杂化骨架的前提下高效地除掉中间产物中包含的模板剂,制得多孔甲基膦酸盐。观察到脱除模板剂的方法对产品的结构有很大的影响。
    采用水热合成法,首次合成出两种新型六棱柱形管状1-羟基乙叉-1,1-二膦酸盐(DLES-Alt 和DLES-CrAl)晶体。用X-射线单晶衍射法解析了它们的晶体结构。两者的结构相近,都呈层状结构。平行于ab 平面的层板包含六边形骨架结构,其中含有”三叶草”型手性结构单元。证实1-羟基乙叉-1,1-二膦酸配体(hedp)中的季碳为手性碳原子。考察了合成条件对DLES-Alt 晶体形貌和结构的影响。在不同条件下得到几种具有不同形貌的1-羟基乙叉-1,1-二膦酸铝钠系列晶体,DLES-Alt,DLES-Alp,DLES-Als 和DLES-Alts,并成功地解析了它们的结构。另外,还合成了1-羟基乙叉-1,1-二膦酸铬钠(DLES-Cr)和四水合乙二胺1-羟基乙叉-1,1-二膦酸二钠盐(SDP-2)这两个新晶体。在前述的七种新晶体中,hedp 表现出四种未见报道的新配位形式。
Organic-inorganic hybrid materials are novel porous materials. They have lots ofpotential utilizations in the field of catalysis, separation, sorption, host-guestchemistry and functional materials. Therefore, the materials have drawn muchattention in recently years.
    The thesis focused on the two main subjects. Firstly, three novelmetal-methylphosphonates were synthesized by using template-assisted method;secondly, two novel hexagonal tubular metal 1-hydroxyethylidenediphosphonateswere synthesized by utilizing hydrothermal technology. The synthesized materialswere characterized by EDX, GC-MS, EPMA, FTIR, NMR, TG, DTA, XRD, nitrogenadsorption-desorption measurements and X-ray single-crystal diffraction. Someinteresting results were obtained.
    DBMP (dibutyl methylphosphonate) could be used as template for synthesizingporous methylphosphonates. The incorporated template could be removed efficientlyfrom the as-synthesized precursor by evaporation in vacuum or by hydrothermaltreatment without destroying the hybrid structures. The post-synthesis treatment hasgreat effects on the structures of the products.
    Two novel hexagonal tubular metal 1-hydroxyethylidenediphosphonates,DLES-Alt and DLES-CrAl, were synthesized by using hydrothermal technology.Their structures were determined by single-crystal X-ray diffraction. They areisostructural with layered crystal structures, propeller-like chiral motifs, andhexagonal rings along [001]. Moreover, there is a chiral quaternary carbon in the1-hydroxyethylidenediphosphonic (hedp) ligand. Several new crystals with differentmorphologies have been synthesized in different reaction conditions. The newcrystals are designated as DLES-Alt,DLES-Alp,DLES-Als and DLES-Alts,respectively. The order of cell dimension is DLES-Als > DLES-Alts > DLES-Alt >DLES-Alp. Furthermore, another two novel crystals of chrominium1-hydroxyethylidenediphosphonate (DLES-Cr) and NH3CH2CH2NH3) Na2(hedp)·4H2O (SDP-2) were synthesized successfully. In the above seven new crystals,hedp shows four novel coordination modes.
引文
1. Wight A P, Davis M E. Design and preparation of organic-inorganic hybrid catalysts. Chem. Rev. 2002, 102: 3589-3614.
    2. Jones C W. Zeolites go organic. Science 2003, 18: 300-301.
    3. Moulton B, Zaworotko M J. Coordination polymers: toward functional transition metal sustained materials and supermolecules. Curr. Opin. Solid State Mat. Sci. 2002, 6: 117-123.
    4. Burch R, Curise N, Gleeson D, Tsang S C. Surface-grafted manganese-oxo species on the walls of MCM-41 channels -a novel oxidation catalyst. Chem. Commun. 1996, 951-952.
    5. Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J. Am. Chem. Soc. 1999, 121: 9611-9614.
    6. Asefa T, Maclachlan M J, Coombs N, Ozin G A. Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 1999, 402: 867-871.
    7. Zhao X S, Lu G Q. Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study. J. Phys. Chem. B, 1998, 102: 1556-1561.
    8. O’keeffe M, Eddaoudi M, Li H L, Reineke T, Yaghi O M. Frameworks for extended solids: geometrical design principles. J. Solid State Chem. 2000, 152: 3-20.
    9. Ferey G. Building units design and scale chemistry. J. Solid State Chem. 2000, 152: 37-48.
    10. 徐筱杰. 超分子建筑-从分子到材料,北京:科学技术文献出版社,2000.
    11. Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev. 2003, 103: 663-701.
    12. Nguyen C V, Carter K R, Hawker C J, Hedrick J L, Jaffe R L, Miller R D, Remenar J F, Rhee H W, Rice P M, Toney M F, Trollsas M, Yoon D Y. Low-dielectric, nanoporous organosilicate films prepared via inorganic/organic polymer hybrid templates. Chem. Mater. 1999, 11: 3080-3085.
    13. J. L. Hedrik, T. Magbitang, E. F. Connor, T. Glauser, W. Volksen, C. J. Hawker, V. Y. Lee, D. M. Robert, Application of Complex Macromolecular Architectures for Advanced Microelectronic Materials. Chem. Eur. J. 2002, 8:3308-3319.
    14. 赵玉芬,赵国辉. 元素有机化学,北京:清华大学出版社,1998.
    15. Clearfield A, Smith G D. The crystallography and structure of a-zirconium bis(monohydrogen or thophosphate) monohydrate. Inorg. Chem. 1969, 8: 431-436.
    16. Dines M B, Digiacomo P M. Derivatized lamellar phosphates and phosphonates of M(IV) ions. Inorg. Chem. 1981, 20: 92-97.
    17. Dines M B, Griffith P C. The mixed-component layered tetravalent metal phosphonate system Th(O_3P-C_6H_5)x(O_3P-C_6H_4-C_6H_5)_(2-x). Inorg. Chem. 1983, 22: 567-569.
    18. Rosenthal G L, Caruso J. Synthesis and structural analysis of pure and mixed zirconium phosphates Zr(O_3PR)x(O_3PR’)_(2-x). J. Solid State Chem. 1993, 107: 497-502.
    19. Dines M B, Griffith P C. Surface texture and crystallinity behavior of zirconium bis(methylphosphonate). J. Inorg. Nucl. Chem. 1968, 30: 571-576.
    20. Jaffres P A, Caigaert V, Villemin D. A direct access to layered zirconium-phosphonate materials from dialkylphosphonates. Chem. Commun. 1999, 1997-1998.
    21. Yamanaka S. Synthesis and characterization of the organic derivatives of zirconium phosphonate. Inorg. Chem. 1976, 15: 2811-2817.
    22. Hix G B, Carter V J, Wragg D S, Morris R E, Wright P A. The synthesis and modification of aluminum phosphonates. J. Mater. Chem. 1999, 9: 179-185.
    23. Lohse D L, Seroy S C. Co_2(O_3P-CH_2-PO_3) ? H_2O: a novel microporous diphosphonate with an inorganic framework and hydrocarbon-lined hydrophobic channels. Angew. Chem. Int. Ed. Engl. 1997, 36: 1619-1621.
    24. Burkholder E, Golub V O, O’Connor C J, Zubieta J. The synthesis, magnetic properties and crystal structure of a Cu(II) methylenediphosphonate, {Cu2(O3PCH2PO3)}. Inorg. Chim. Acta 2002, 340: 127-132.
    25. Danis J A, Runde W H, Scott B, Fettinger J, Eichhorn B. Hydrothermal synthesis of the first organically templated open-framework uranium phosphonate. Chem. Commun. 2001, 2378-2379.26. Maeda K, Akimoto J, Kiyozumi Y, Mizukami F. AlMePO-a: a novel open-framework aluminum methylphosphonate with organo-lined
     unidimensional channels. Angew. Chem. Int. Ed. Engl. 1995, 34: 1199-1201.
    27. Maeda K, Kiyozumi Y, Mizukami F. Characterization and gas adsorption properties of aluminum methylphosphonate with organically lined unidimensional channels. J. Phys. Chem. B 1997, 101: 4402-4412.
    28. Carter V J, Kujanpaa J P, Riddell F G, Wright P A, Turner J F C, Catlow C R A, Knight K S. Structure and dynamics of methyl groups in the deuterated microporous organic-inorganic hybrid, aluminum methylphosphonate-?. Chem. Phys. Lett. 1999, 313: 505-513.
    29. Harvey H G, Teat S J, Attfield M P. Al_2[O_3PC_2H_4PO_3](H_2O)_2F_2 H_2O: a novel aluminium diphosphonate. J. Mater. Chem. 2000, 10: 2632-2633.
    30. Maeda K, Akimoto J, Kiyozumi Y, Mizukami F. Synthesis and crystal structures of two ‘organzeolites’. Stud. Surf. Sci. Catal. 1997, 105: 197-204.
    31. Hix G B, Turner A, Kariuki B M, Tremayne M, Maclean E J. Strategies for the synthesis of porous metal phosphonate materials. J. Mater. Chem. 2002, 12: 3220-3227.
    32. Maeda K, Kiozumi Y, Mizukami F. Synthesis of the first microporous aluminum phosphonate with organic groups covalently bonded to the skeleton, Angew. Chem. Int. Ed. Engl. 1994, 33: 2335-2337.
    33. Maeda K, Kiozumi Y, Mizukami F. Crystalline aluminum organophosphate. EP0671403A1.
    34. Zapf P J, Rose D J, Haushalter R C, Zubieta J. Synthesis and structural characterization of solid phases of the Sn(II)-organophosphonate system: the 1-dimensional [Sn(HO_3PCH_2PO_3H)]H_2O and the 3-dimensional [Sn2{O3PC(OH)(CH3)PO3}]. J. Solid State Chem. 1996, 125: 182-185.
    35. Zheng L M, Duan Ch Y, Ye X R, Zhang L Y, Wang Ch, Xin X Q. Synthesis, crystal structure and magnetic properties of a movel mixed-valence copper phophonate: Na_2Cu_(15)(hedp)_6(OH)_2(H_2O) (hedp = 1-hydroxyethylidenediphosp- honae). J. Chem. Soc. Dalton Trans. 1998, 905-908.
    36. Zheng L M, Sang H H, Lin Ch H, Wang S L, Hu Zh, Yu Zh, Xin X Q. [NH_3(CH-2)_4NH_3]Fe_2[CH_3C(OH)(PO_3)(PO_3H)]_2?2H_2O: a novel iron(II) diphosphonate with a supramolecular open network structure. Inorg. Chem. 1999,
     38: 4618-4619.
    37. Zheng L M, Song H H, Duan Ch Y, Xin X Q. Template-directed one and two-dimensional copper(II) diphosphonates: structures and characterization of (NH_4)_2Cu_3(hedp)_2(H_2O)_4, [NH_3(CH_2)_4NH_3]Cu_3(hedp)_2?2H_2O and [NH_2(C-2H_4)_2NH_2]Cu_3(hedp)_2 (hedp=1-hydroxyethylidenediphosphonate). Inorg. Chem., 1999, 38: 5061-5066.
    38. Song H H, Zheng L M, Lin Ch H, Wang S L, Xin X Q, Gao Z. Effects of organic templates on directing the structures of Nickel(II)-1-hydoxyeth ylidenediphosphonate compounds: a structural and magnetic study. Chem. Mater. 1999, 11: 2382-2388.
    39. Song H H, Zheng L M, Wang Zh M, Yan Ch H, Xin X Q. Zinc diphosphonates templated by organic amines: synthesis and characterization of [NH_3(CH_2)_2NH_3]Zn(hedpH_2)_2 H_2O and [NH_3(CH_2)nNH_3]Zn_2 (hedpH)_2 2H_2O(n=4,5,6) (hedp=1-hydroxyethylidenediphosphonate). Inorg. Chem., 2001, 40: 5024-5029.
    40. 宋会花, 郑丽敏, 朱广山, 施展, 冯守华, 高松, 忻新泉. [NH_3(CH_2)_5NH_3][Fe_2{O_3PC(CH_3)(OH)(PO_3H)}_2] 2H_2O: 一个新的二膦亚铁化 合物的合成,结构与性能研究,无机化学学报,2002,1:67-71.
    41. Alberti G, Casciola M, Costantino U, Vivani R. Layered and pillared metal(IV) phosphates and phosphonates, Adv. Mater. 1986, 8:291-303.
    42. Dines M B, Cookse R E, Griffith P C, Lane R H. Mixed-component layered tetravalent metal phosphonates/phosphates as precursors for microporous materials, Inorg. Chem. 1983, 22: 1003-1004.
    43. Alberti G, Costantino U, Marmottini F, Vivani R, Zappelli P. Zirconium phosphite (3,3’,5,5’-tetramethylbiphenyl) diphosphonate, a microporous, layered, inorganic-organic polymer. Angew. Chem. Int. Ed. Engl. 1993, 32: 1357-1359.
    44. Xiao J B, Xu J S, Wu Y M, Gao Z. Preparation and properties of zirconia-pillared zirconium phosphate and phenylphosphonate. Appl. Catal. A, 1999, 181: 313-322.
    45. Clearfield G. Metal phosphonate chemistry. Prog. Inorg. Chem. 1998, 47: 371-510.
    46. Carter V J, Wright P A, Gale J D, Morris R E, Sastre E, Pariente J P. AlMePO-?: inclusion and thermal removal of structure directing agent and the topotactic reconstructive transformation to its polymorph AlMePO-a. J. Mater. Chem. 1997, 7: 2287-2292.
    47. Brown S P, Ashbrook S E, Wimperis S. (27)~Al multiple-quantum magic angle spinning NMR study of the thermal transformation beween the microporous aluminum methylphosphonate AlMePO-? and AlMePO-a. J. Phys. Chem. B 1999, 103: 812-817.
    48. Serezhkin V N, Serezhkina L B, Sergienko V S. Crystal-structural role of 1-hydroxyethane-1,1-diphosphonate ions. Russ. J. Inorg. Chem. 2000, 45: 521-527.
    49. Yin P, Gao S, Zheng L M, Xin X Q. Magnetic properties of metal diphosphonate compound with one-dimensional chain structures. Chem. Mater. 2003, 15: 3233-3236.
    50. Zheng L M, Yin P, Xin X Q. Novel coordination polymer containing a mixed valence copper(Ⅰ, Ⅱ) phosphonate unit: Cu_2~ⅠCu~ⅡII(hedpH_2)_2(4,4’-bpy)_2?2H_2O (hedp=1-hydroxyelthylidenediphosphonate). Inorg. Chem., 2002, 41: 4084-4086.
    51. Hartgerink J D, Clark T D, Ghadiri M R. Peptide nanotubes and beyond. Chem. Eur. J. 1998, 4: 1367-1372.
    52. Patzke G R, Krumeich F, Nesper R. Oxides nanotubes and nanorods-anisotropic molecules for a future nanotechnology. Angew. Chem. Int. Ed. 2002, 41: 2446-2461.
    53. Li G, Fudickar W, Skupin M, Klyszcz A, Draeger C, Lauer M, Fuhrhop J H. Rigid lipid membranes and nanometer clefts: motifs for the creation of molecular landscapes. Angew. Chem. Int. Ed., 2002, 41: 1828-1852.
    54. Bong D T, Clark T D, Granja J R, Ghadiri M R. Self-assembling organic nanotubes. Angew. Chem. Int. Ed. 2001, 40: 988-1011.
    55. Bates T F, Sand L B, Mink J F. Tubular crystals of chrysotile asbestos. Science, 1995, 111:512-513.
    56. Hirsch A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41: 1853-1859.
    57. Star A, Steuerman D W, Heath J R, Stoddart J F. Starched carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41: 2508-2512.
    58. Thess A, Lee R, Nikolaev P, Dai H J, Petit P, Robert J, Xu Ch H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273: 483-487.
    59. Charlier J C, Vita A D, Blase b, Car R. Microscopic growth mechanisms for carbon nanotubes. Science 1997, 275: 646-650.
    60. 刘小畅,丛洪涛,成会明. 氢等离子电弧法半连续制备单臂纳米碳管. 新型 碳材料,2000,15:1-4.
    61. Iijina S. Helical microtubeles of graphitic carbon. Nature 1991,354: 56-58.
    62. Ajayan P M, Stephan O, Redlich Ph, Colliex C. Carbon nanotubes as removable templates for metal oxide nnacomposites and nanostructures. Nature 1995, 375: 564-567.
    63. Ebbesen T W. Cones and tubes: geometry in the chemistry of carbon. Acc. Chem. Res. 1998, 31; 558-566.
    64. Hu J Q, Deng B, Lu Q Y, tang L B, Jiang RR, Qian Y T, Zhou G En, Cheng H. Hydrothermal growth of ?-Ag_2Se tubular crystals. Chem. Commun. 2000, 715-716.
    65. Remskar M, Mrzel A, Skraba Z, Jesih A, Ceh M, Demsar J, Stadelmann P, Levy F, Mihailovic O. Self-assembly of subnanometer-diameter single-well MoS2 nanotubes. Science 2001, 292: 479-481.
    66. Gomez-Herrero A, Landa-Canovas A R, Hansen S, Otero-Diaz L C. Electron microscopy study of tubular crystals (BiS)_(1+d)(NbS_2)_n. Micron 2000, 31: 587-595.
    67. Rothschild A, Sloan J, Tenne R. Growth of WS_2 nanotube phase. J. Am. Chem. Soc. 2000, 122: 5169-5179.
    68. Chen J, Tan Zh L, Li S L, Fan X B, Chou Sh L. Synthesis of TiSe2 nanotubes/ nanowires. Adv. Mater. 2003, 15: 1379-1382.
    69. Wang X D, Gao P X, Li J, Summers C J, Wang Zh L. Rectangular porous ZnO-ZnS nanocables and nanotubes. Adv. Mater. 2002, 14: 1732-1735.
    70. Hacohen V, Grunbaum E, Tenne R, Sloan J, Hutchison J L. Cage structures and nanotubes of NiCl2. Nature 1998, 395: 336-337.
    71. Shen R F, Wang F Y, Xiong Zh X, Xue R, Bi-Ba-Fe-Cl micro-nanotube of tetragonal prosm crystal, Acta Phys.-Chem. Sin. 2001, 17: 824-827.
    72. Tang Ch Ch, Bando Y Sh, Liu Z W, Golberg D. Synthesis and structure of InP nanowires and nanotubes. Chem. Phys. Lett. 2003, 376: 676-682.
    73. Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A. Boron nitride nanotubes. Science 1995, 269: 866-867.
    74. Goldberger J, He R R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D. Single-crystal gallium nitride nanotubes. Nature 2003, 422: 599-602.
    75. Lee S M, Lee Y H. Electronic structures of GaN nanotubes. J. Korean Phys. Soc. 1999, 34: 5253-5257.
    76. Li Y B, Bando Y, Goldberg D. Quasi-aligned single-crystalline W_(18)O_(49) nanotubes and nanowires. Adv. Mater. 2003, 15: 1294-1296.
    77. Spahr M E, Bitterli P S, Nesper R, Haas O, Novdk P. Vanadium oxide nanotubes a new nanostructured redox-active material for the electrochemical insertion of lithium. J. Electrochem. Soc. 1999, 146: 2780-2783.
    78. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of titanium oxide nanotubes. Langmuir 1998, 14: 3160-3163.
    79. Vayssieres L, Keis K, Hagfeldt A, Lindquist S E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13: 4395-4398.
    80. Lauterbach R, Schnick W. Single-crystalline hexagonal Sr-Er-and Sr-Dy-Sialon microtubes. J. Mater. Sci. 2000, 35: 3793-3797.
    81. Purdy A P, Case S, George C. Ammonothermal crystal growth of germanium and its alloys: synthesis of a hollow metallic crystal. Crystal Growth & Design 2003, 3: 121-124.
    82. Suenaga K, Colliex C, Demoncy N, Loiseau A, Pascard H, Willaime F. Synthesis of nanoparticles and nanotubes with well-separated layers of boron mitride and carbon. Science 1997, 278: 653-655.
    83. Lin H P, Mou Ch Y. “Tubules-within-a tubule”hierarchical order of mesoporous molecular sieves in MCM-41. Science 1996, 276: 765-768.
    84. Ma R Zh, Bando Y, Sato T, Tang Ch Ch, Xu F F. Single-crystal Al_(18)B_(4)O_(33) microtubes J. Am. Chem. Soc., 2002, 124: 10668-10669.
    85. Li R, Ruoff R S, Chang P H. Boric acid nanotubes, nanotips, nanorods, microtubes and microwires. Chem. Mater. 2003, 15: 3276-3285.
    86. Wang Ch. R, Tang K B, Yang Q, Bin H, Shen GZh, Qian YT. Synthesis of CuS millimeter-scale tubular crystals. Chem. Commun. 2003, 652: 652-653.
    87. Wu Q, Hu Zh, Wang X. Zh, Lu Y N, Chen X, Xu H, Chen Y. Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. J. Am. Soc. 10.1021/ja0359963
    88. Minsuk K, Kwonnam S, Jaeyun K, Taeghwan H. Synthesis of carbon tubes with mesoporous wall structure using designed silica tubes as templates. Chem. Comm. 2003, 652-653.
    89. Zheng X W, Xie Y, Zhu L Y, Jiang X Ch, Jia Y B, Song W H, Sun Y P. Growth of Sb_2E_3 (E = S, Se) Polygonal Tubular Crystals via a Novel Solvent-Relief-Self-Seeding Process. Inorg. Chem. 2002, 41: 455-461.
    90. Herrero A G, Canovas A R L, Sen S H, Diaz L C Q. Electron microscopy study of tubular crystals (BiS)_(1+d)(NbS_2)_n. Micron 2000, 31: 587-595.
    91. Kong J, Soh H T, Cassell A M, Quate C F, Dai H J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998, 395: 878-881.
    92. Amelinckx S, Zhang X B, Bernaerts D, Zhang X F, Ivanov V, Nagy J B. Science 1994, 265: 635-639.
    93. Tian B Zh, Liu X Y, Yu Ch Zh, Gao F, Luo Q, Xie S H, Tu B, Zhao D Y. Microwave assisted template removal of siliceous porous materials. Chem. Commun. 2002, 1186.
    94. Kawi S, Lai M W. Supercritical fluid extraction of surfactant template from MCM-41. Chem. Commun. 1998, 1407-1408.
    95. Matthew T J K, Renaud D, Philip L L. Ozone treatment for the removal of surfactant to form MCM-41 type materials. Chem. Commun. 1998, 2203.
    96. Segawa K, Sugiyama A, Kurusu Y. Molecular design of two-dimensional zirconium phosphonate catalysts. Stud. Surf. Sci. Catal. 1991, 60: 73-80.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.