基于系统优化的高校体育馆自然采光和通风节能设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源匮乏问题的日益严峻,与建筑节能相关的研究持续向纵深层面发展,成为了研究热点并受到世界范围内的广泛关注。目前建筑节能较多地采用笛卡尔思维方式的研究,即将建筑节能系统分解成若干要素,只是针对这些要素分别进行研究,而忽视了各要素之间的相关性以及建筑节能系统的整体性。本文采用系统思维的方式对建筑节能进行了研究,本着从整体出发的原则,利用建筑学、系统论和优化论的相关理论和方法等对建筑节能系统进行了构建,并提出了建筑节能系统的优化方法。本文选择了高校体育馆作为研究载体,对建筑节能系统中自然化技术层级进行了重点研究,旨在探讨公共建筑的建筑节能系统达到整体最优的设计观念和设计方法。
     由于采用笛卡尔思维对建筑节能进行研究具有一定的局限性,因此本文首先进行了思维范式的转换,采用系统思维的方法,借鉴系统论中的相关原理,从建筑设计过程中提取与建筑节能相关的设计要素构建了建筑节能系统,并建立了反映系统内在结构的数学模型。在此基础上,将多学科设计优化的相关理论和方法引入到建筑节能优化设计当中,提出了适合建筑节能系统优化的并行子系统协同优化法。
     为了理清高校体育馆的建筑能耗组成情况及其建筑节能的方向,本文随后对高校体育馆的本体特征与建筑能耗的关系进行了分析,并利用计算机模拟技术对具有一定代表性的齐齐哈尔某高校体育馆的建筑能耗进行分析,明确了高校体育馆的建筑节能重点应在其比赛厅上。
     在前面两方面工作的基础上,本文对高校体育馆建筑节能系统中自然化技术层级所包含的自然采光和自然通风两个子系统进行了并行优化设计。在优化设计过程中,采用计算机模拟与针对难以抽象出合适数学模型的优化问题的方案对比法相结合的方法,对自然采光和自然通风两个子系统的主要优化变量进行了定量分析,并求得各自的可行域。以此为依据,分别针对自然采光和自然通风两个子系统提出了优化设计的基本对策和具体措施。
     本文最后对高校体育馆建筑节能系统中自然化技术所包含的自然采光和自然通风两个子系统进行了协同优化设计,求得了协同优化的可行域,并利用计算机模拟的方法进行了实例验证。
With the serious shortage of energy, the research on building energy-saving, which one of the hottest points of the society, keeps developing in depth and gets worldwide attentions. In research of building energy-saving, Descartes thinking mode has been used to decompose the building energy-saving system into several factors, which had been the key investigating points, and the relationship among them. However, the integrity of the building energy-saving system is ignored. In this work, the building energy-saving was investigated by means of systematic thinking mode. The building energy-saving was constructed and the optimization method for the building energy-saving system was presented by taking advantage of the related theory and means of architecture, systems theory and optimization theory and taking the situation as a whole. This work chose university gymnasiums as the carrier, and focused on studying Naturalization Technical Level of the building energy-saving system, in order to make the system optimization in its entirety.
     Considering the limitations of Descartes thinking mode used in building energy-saving, this word changed the thinking mode first. With the method of systematic thinking model and some lessons from the relative theory of systems theory, the relative design factors of building energy-saving are developed from the process of architecture design to construct the building energy-saving system. Meanwhile, the mathematical model that reflects their interior structure is established. Based on all of these, the concurrent subsystem optimization method, which is suitable for the building energy-saving system, has been put forward by adopting relevant theories and methodologies of the multidisciplinary design optimization into the building energy-saving system.
     In order to distinct the composing of building energy consumption and direction of building energy-saving of university gymnasiums, this work analyses the relationship between building energy consumption and weather features as well as the body characteristics of university gymnasiums. It also analyses the building energy consumption of one of representative university gymnasium in Qiqihar by means of computer simulating. The final results show that the key point of building energy-saving in university gymnasiums should be the tournament hall.
     Based on the research results mentioned above, parallel design is performed for the Naturalization Technical Level of the building energy-saving system, which is parallel optimized for the daylighting subsystem and natural ventilation subsystem of the Naturalization Technical Level of the building energy-saving system of university gymnasiums. Within the process of optimize design, this study deployed quantitative analysis of the main optimize variation of natural-lighting subsystem and natural ventilation subsystem, together with method of the combination of the project comparison Comparative Law Programme that in accordance with the optimization methods of the optimization problems which is difficult to draw out a suitable mathematical model and the method of computer simulating, finally worked out the feasible way that satisfy each constraint conditions. In accordance with the points above, this work puts forward the fundamental strategy and concrete measures pointing at the daylighting subsystem and natural ventilation subsystem.
     Finally, this work optimized the Naturalization Technical Level of the building energy-saving system which is for university gymnasiums that contain daylighting subsystem and natural ventilation subsystem of building energy-saving system in combination, and worked out the coordinated optimization feasible way of the system and made an investigation with living examples.
引文
1杨爱华,颜玢岩.基于绿色供应链管理的房地产企业经营策略.东岳论丛. 2005, (06): 100~102
    2吴利均.既有公共建筑节能诊断与改造研究.重庆大学硕士学位论文. 2009
    3薛志峰,江亿.北京市大型公共建筑用能现状与节能潜力分析.暖通空调. 2004, (09):8~10
    4燕达,朱伟峰,刘昕,薛志峰,江亿,金招芬.北京市宾馆类建筑测试与分析(二)水系统现状及分析.中国建筑工业出版社, 2000.109~113
    5杨洁,涂光备,孙洲洋等.天津神户公共建筑能耗调查及空调制冷系统节能分析.暖通空调, 2002 (1):40~42
    6鄢涛.深圳市公共建筑能耗与节能分析.重庆大学硕士学位论文. 2005
    7郭林文.重庆市公共建筑能耗现状及节能评价.重庆大学硕士学位论文. 2005
    8王洪卫.重庆市公共建筑空调系统能耗现状及节能技术研究重庆大学硕士学位论文. 2006
    9丁高.降低大型公共建筑能耗关键技术研究.建设科技.2008, (01):104~107
    10郁文红.建筑节能的理论分析与应用研究.天津大学博士学位论文. 2004: 4
    11 David Wilkinson. Maastricht and environment Journal of Environment Low. 1992, 4(2): 223
    12 [英]布赖恩·爱德华兹.可持续性建筑.周玉鹅,宋眸皓译.中国建筑工业出版社, 2003: 6
    13公共建筑节能设计标准GB 50189-2005.国家标准.中国建筑工业出版社, 2005: 37
    14宋春华.公建节能应做节能表率.科技地产. 2005, 15: 45
    15汪光煮.应对能源资源环境挑战共同促进可持续发展.在首届国际智能与绿色建筑技术研讨会上的讲话. 2005
    16 Karl Magnus Maribu, Ryan M. Firestone, Chris Marnay, Afzal S. Distributed energy resources market diffusion model. Energy Policy, Volume 35, Issue 9, September 2007: 4471~4484
    17 W. L. Lee, S. H. Lee. Developing a simplified model for evaluating chiller-system configurations. Applied Energy, Volume 84, Issue 3, March 2007: 290~306
    18 Young-hak Song, Yasunori Akashi, Jurng-Jae Yee. Energy performance of a cooling plant system using the inverter chiller for industrial building. Energy and Buildings, Volume 39, Issue 3, March 2007: 89~297
    19 Charles Ehrlich, Konstantinos Papamichael, Judy Lai, Kenneth Revzan. A method for simulating the performance of photosensor-based lighting controls. Energy and Buildings, Volume 34, Issue 9, October 2002: 883~2889
    20 Osman Sezgen, Jonathan G. Koomey. Interactions between lighting and space conditioning energy use in US commercial buildings. Energy, Volume 25, Issue 8, August 2000: 793~805
    21 Joseph C. Lam. Shading effects due to nearby buildings and energy implications. Energy Conversion and Management, Volume 41, Issue 7, May 2000: 647~659
    22 Steve Mann, Isaac Harris, Joshua Harris. The development of urban renewable energy at the existential technology research center (ETRC) in Toronto, Canada. Renewable and Sustainable Energy Reviews, Volume 10, Issue 6, December 2006: 576~589
    23 E. S. Lee, D. L. DiBartolomeo. Application issues for large-area electrochromic windows in commercial buildings. Solar Energy Materials and Solar Cells, Volume 71, Issue 4, March 2002: 465~491
    24 Ann McNicholl, J. Owen Lewis. Energy efficiency and solar energy in European office buildings: a mid-career education initiative. Energy and Buildings, Volume 33, Issue 3, February 2001: 213~217
    25 E. S. Lee, A. Tavil. Energy and visual comfort performance of electrochromic windows with overhangs. Building and Environment, Volume 42, Issue 6, June 2007: 2439~2449
    26 E. Syrrakou, S. Papaefthimiou, P. Yianoulis. Eco-efficiency evaluation of a smart window prototype. Science of The Total Environment, Volume 359, Issues 1-3, 15 April 2006: 267~282
    27 Joseph C. Lam. Energy analysis of commercial buildings in subtropical climates. Building and Environment, Volume 35, Issue 1, January 2000: 19~26
    28 E. S. Lee, S. E. Selkowitz. The New York Times Headquarters daylighting mockup: Monitored performance of the daylighting control system. Energy and Buildings, Volume 38, Issue 7, July 2006: 914~929
    29 F. Garde, H. Boyer, J. C. Gatina. Elaboration of global quality standards fornatural and low energy cooling in French tropical island buildings. Building and Environment, Volume 34, Issue 1, 1 January 1999: 71~83
    30 Peter Wouters, David Ducarme, Jan Demeester, Luk Vandaele. Ventilation requirements in non-domestic buildings and energy efficiency. Energy and Buildings, Volume 27, Issue 3, June 1998: 257~261
    31 N. K. Bansal. Emerging Trends for Energy Efficiency in Buildings. World Renewable Energy Congress VI, 2000: 350~355
    32 J. Buck, D. Young. The potential for energy efficiency gains in the Canadian commercial building sector: A stochastic frontier study. Energy, Volume 32, Issue 9, September 2007: 1769~1780
    33 M. Medrano, J. Brouwer, V. McDonell, J. Mauzey, S. Samuelsen. Integration of distributed generation systems into generic types of commercial buildings in California. Energy and Buildings, Volume 40, Issue 4, 2008: 537~548
    34 Anastasios I. Stamou, Ioannis Katsiris, Alois Schaelin. Evaluation of thermal comfort in Galatsi Arena of the Olympics“Athens 2004”using a CFD model. Applied Thermal Engineering, Volume 28, Issue 10, July 2008: 1206~1215
    35 J. Bouyer, J. Vinet, P. Delpech, S. Carré. Thermal comfort assessment in semi-outdoor environments: Application to comfort study in stadia. Journal of Wind Engineering and Industrial Aerodynamics, Volume 95, Issues 9-11, October 2007: 963~976
    36 Agota Szucs, Sophie Moreau, Francis Allard. Spectators’aerothermal comfort assessment method in stadia. Building and Environment, Volume 42, Issue 6, June 2007: 2227~2240
    37 Joseph C. Lam, Apple L. S. Chan. CFD analysis and energy simulation of a gymnasium. Building and Environment, Volume 36, Issue 3, 1 April 2001: 351~358
    38 G. B. Smith, A. Earp, J. Stevens, P. Swift, G. McCredie, J. Franklin. Measurement and evaluation of the indoor thermal environment in a large domed stadium. World Renewable Energy Congress VI, 2000: 201~206
    39 W. K. Chow. Application of Computational Fluid Dynamics in building services engineering. Building and Environment, Volume 31, Issue 5, September 1996: 425~436
    40 G. B. Smith, A. Earp, J. Stevens, P. Swift, G. McCredie, J. Franklin. Materials Properties for Advanced Daylighting in Buildings. World Renewable EnergyCongress VI, 2000: 201~206
    41 L. Serres, A. Trombe, J. H. Conilh. Study of coupled energy saving systems sensitivity factor analysis. Building and Environment, Volume 32, Issue 2, March 1997: 137~148
    42王远,魏庆凡,薛志峰,江亿.大型公建节能会诊(三)——调查分析篇大型公共建筑能耗调查分析.建设科技. 2007, (02): 17~19
    43杨晓敏.上海地区公共建筑能耗现状与节能分析.同济大学硕士论文. 2007
    44沈浩.长沙地区公共建筑能耗现状与节能分析.湖南大学硕士论文. 2005
    45吴晓艳.公共建筑空调系统的节能设计与优化管理.湖南大学的硕士论文. 2006
    46孙金城.济南某商场能耗分析及其整改方案的研究.西安建筑科技大学硕士论文. 2006
    47张伟.结合天然采光的办公建筑节能研究.天津大学博士论文. 2005
    48罗忆.大型公共建筑外围护结构节能探讨.中国建筑学会2007年学术年会论文集. 2007
    49李俊.广州地区公共建筑围护结构节能设计初探.墙材革新与建筑节能. 2007, (06)
    50李雪平.建筑玻璃幕墙的节能设计研究.西安建筑科技大学硕士论文. 2006
    51杨璐.重庆大中型商场节能建筑设计研究——以围护结构为例.重庆大学硕士论文. 2005
    52卫欣.一种公共建筑上的太阳墙系统.太阳能. 2007, (01)
    53金佳怡.大空间全玻璃幕墙建筑外遮阳及自然通风技术研究.同济大学硕士论文. 2006
    54王志刚.建筑节能及新能源应用研究.西安建筑科技大学硕士论文. 2005
    55张莉等.北京市不同类型公共建筑节能工作调研分析.建筑节能. 2008, (02)
    56刘颐.寒冷地区建筑的节能设计.工程建设与设计. 2007, (05): 99~101
    57沈杰,张宇.谈某公共建筑的高效低能耗设计策略.山西建筑. 2009, 29: 236~237
    58王琪.重庆地区公共建筑设计节能策略.重庆大学硕士论文. 2006
    59李振翔.办公建筑节能设计方法研究.浙江大学的硕士论文. 2004
    60张文渊.借鉴国外先进经验服务我国既有公共建筑节能改造.新型建筑材料. 2003, (09): 37~39
    61李峥嵘,赵明明.上海既有公共建筑节能改造方案对比分析.建筑节能. 2007, (08): 25~28
    62易涛.绿色体育建筑若干问题探讨.北京工业大学硕士论文. 2005
    63杨锦.大空间体育馆建筑节能及其性能模拟分析研究华.华中科技大学硕士论文. 2004
    64孙凤明,暴磊,简文清.体育建筑节能措施.山西建筑. 2007, 26: 265~2266
    65马睿.体育建筑中新技术新材料对促进节能的探讨.安徽建筑, 2005(06): 16
    66 http: //baike. baidu. com/view/6243. htm?fr=ala0_1
    67陈颖健,张惠群.新思维范式.科学技术文献出版社, 2003: 1, 16~19
    68 http: //baike. baidu. com/view/1853475. htm
    69季羡林等.大国方略:著名学者访谈录.红旗出版社, 1996: 133
    70夏博.上海高层住宅建筑节能控制方法与技术策略研究.同济大学博士学位论文. 2008, (05): 36~49
    71杨春时,邵光远等编.系统论?控制论?信息论浅说.中国广播电视出版社, 1987: 1~88
    72曾广容,易可君等编.系统论?控制论?信息论概要.中南工业大学出版社, 1986: 6
    73王行愚编.控制论基础.华东化工学院出版社, 1989: 12
    74曹琦,骆仲峰.试论建筑节能必须转变理念——以“系统思考”的理念处理“建筑节能”的问题.建筑节能. 2008, (10): 66
    75黄秉宪,韩秀冬.生物控制论基础.北京理工大学出版社, 1991: 5
    76钱学森等.论系统工程.湖南科学技术出版社, 1982: 204
    77贝塔朗菲.一般系统论的历史和现状.科学译文集.科学出版社, 1980: 314
    78贝塔菲著.林康义,魏宏森等译.一般系统论.清华大学出版社, 1987: 51
    79清华大学建筑学院,清华大学建筑设计研究院编著.建筑设计的生态策略.中国计划出版社, 2001: 80
    80恩格斯.自然辩证法.人民出版社, 1971: 206
    81李忠伟.寒冷地区办公建筑“自然化技术”的设计对策研究.哈尔滨工业大学硕士学位论文.2007
    82夏伟.被动式设计策略的适应性研究.建筑学报.2009, (01)
    83邹珊刚,黄麟雏,李继宗等编.系统科学.上海人民出版社, 1987: 283~284
    84 Sobieszczanski-Sobieski J. Optimization by decomposition: a step from hierarchic to non-hierarchic systems [R]. NASA CP-3031, 1988
    85 Giesing Joseph P, Barthelemy Jean-Francosi M. A Summary of Industry MDO Applications and Needs. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMOSymposium on Multidisciplinary Analysis and Optimization, Florida, 1998. AIAA Paper 98~4737
    86 Renaud J E, Gabriele G A. Improved coordination in non-hierarchic systems optimization [R]. AIAA-1992-2497, 1992
    87 Renaud J E, Gabriele G A. Approximation in non-hierarchic systems optimization[J]. AIAA Journal, 1994, 32(1): 198~205
    88 Seller R S, Stelmack M, Batill S M, et al. Response sur-face approximation for discipline coordination in multidisciplinary design optimization [R]. AIAA-1996-1383, 1996
    89 Manning V M. Large- scale design of supersonic aircraft via collaborative optimization [D] . San Francisco: Stanford University, 1999
    90 Braun R D, GAGE P, KROO I. Implementation and performance issues in collaborative optimization [ R ]. AIAA-1996-4017, 1996
    91 Alexandrov N M, Lewis R M. Comparative properties of collaborative optimization and other approaches to MDO[ R ]. NASA/CR-1999-209354, 1999
    92 Sobieski L P, KROO I. Collaborative optimization using response surface estimation[ R ]. AIAA-1998-0915, 1998
    93黄平主编,孟永钢副主编.最优化理论与方法.清华大学出版社, 2009: 3~7
    94 Balling R. J. , Sobieski J. . An Algorithm for Solving the System-Level Problem in Multilevel Optimization. Proceedings of the 5th IAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City, Florida, September 1994: AIAA Paper 94~4333
    95苏子健.多学科设计优化的分解?协同及不确定性.华中科技大学博士学位论文. 2008
    96 Hulme K. F. , Bloebaum C. L. A Comparison of Solution Strategies for Simulation-based Multidisciplinary Design Optimization. Proceedings of the 7th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri, September 1998: AIAA Paper 98~4977
    97 Sobieski J. . Sensitivity of Complex. Internally Coupled Systems. AIAA Journal, 1990, 28(1): 153 ~162
    98中华人民共和国标准JGJ 31-2003,体育建筑设计规范.北京:中国建筑工业出版社, 2003
    99史立刚.大空间公共建筑生态化设计.哈尔滨工业大学博士论文. 2007, (02): 27, 118~168
    100范存养.大空间建筑空调设计及工程实录.中国建筑工业出版社, 2001:1~475
    101韩冬青.论建筑功能的动态特征.建筑学报, 1996(04): 34~37
    102罗鹏,陆诗亮,梅季魁.复合型体育馆设计实践探索——广东惠州体育馆设计.新建筑. 2003, (02): 47
    103王婧.严寒地区城镇典型居住建筑围护结构的生命周期评价.同济大学硕士学位论文. 2005
    104 http: //www. beijing2008. cn
    105云朋. ECOTECT建筑环境设计教程.中国建筑工业出版社, 2007: 2~3, 99~102
    106 http: //baike. baidu. com/view/3110512. htm?fr=ala0_1
    107李玲玲.体育馆自然采光方式比较与选择.低温建筑. 2003, (5): 18~19
    108赵晓龙.体育馆比赛厅空间环境设计探讨.哈尔滨建筑大学硕士学位论文. 2000: 75~88
    109李东哲.厦门体育馆天然光环境设计研究.天津大学硕士学位论文. 2003: 24
    110中华人民共和国行业标准.体育馆照明设计及检测标准JBJ153—2007.中国建筑工业出版社, 2001
    111王刚,邵伟,毕晓云.学校中小型体育馆自然采光模拟分析.建筑节能. 2008, (2): 60~62
    112杨公侠,杨旭东.不舒适眩光与不舒适眩光评价.照明工程学报. 2006, (02): 11~15
    113中华人民共和国行业标准.建筑采光设计标准GB/T50033—2001.中国建筑工业出版社, 2001
    114中华人民共和国行业标准.建筑照明设计标准GB/T50034—2004.中国建筑工业出版社, 2001
    115李玲玲.体育馆比赛厅自然采光环境研究.哈尔滨建筑大学学报. 2002, (6): 64~67
    116高履泰.论采光照明中的眩光.北京建筑工程学院科技情报室. 1986
    117梅季魁,刘德明,姚亚雄大跨建筑结构构思与结构选型中国建筑工业出版社, 2002: 125~127
    118 ?????一?名古屋市東区.近代建築. 1997, (5): 86~95
    119 ?????一?.新建築. 1997, (4): 165~171
    120 Sports Facilities . Links International, 2004
    121沈天行,李东哲.厦门体育馆的天然采光设计.建筑学报. 2003, (02): 60~62122一戸町??????????.新建築. 2003, (1): 217
    123 [日]仙田满+环境设计研究所著,水晶石数字传媒编.环筑.中国建筑工业出版社, 2003
    124 http: //www. 17net. net/Article/801/6181. html
    125王鑫.略谈建筑气候设计.华中建筑. 2002, (04): 45~48
    126札幌????札幌市豐平区.新建築. 2001, (7): 156~173
    127長野市真岛総合???一???一? ???と????長野県長野市.新建築. 1997, (1): 209~213
    128 Nagano Winter Olympic Games Memorial International Seminar“Sports facilities in cold and snow-covered area”. UIA/JIA Proceedings. Tokyo/Nagano. 1998: 1~137
    129刘德明,梅季魁,孙清军.拥抱阳光——梦幻乐园空间环境与节能设计.建筑学报. 1999, (09): 34~36
    130 http: //www. weather. com. cn/html/cityintro/101050201. shtml
    131 Gail Schiller Brager, Richard de Dear. A Standard for Natural Ventilation. ASHRAE Journal. 2000: 10
    132宋德萱.节能建筑设计与技术.同济大学出版社, 2003, (07)
    133白羽.冷凝热释放对环境及自然通风的影响研究.湖南大学硕士学位论文. 2007
    134赵彬,马晓钧,李先庭,彦启森.体育场馆气流组织形式概述.建筑热能通风空调. 2002, (05)
    135王师白,杨纯华.大型游泳馆分区空调技术研究.暖通空调. 1990, (05)
    136施绍男.北京国家奥林匹克体育中心游泳馆采暖空调设计.暖通空调. 1992, (03)
    137龚光彩,汤广发.高大空间纵向气流隔断仿真.湖南大学学报. 1999, (01)
    138 Szokolay, S. V. (1984): Thermal Comfort and Passive Design. Advances in Solar Energy. The ASES annual publication. 1985, (2)
    139李华东主编.高技术生态建筑.天津大学出版社, 2002
    140北京市建筑设计研究院编.奥林匹克与体育建筑.天津大学出版社, 2002
    141日伊东丰雄建筑设计事务所编.伊东丰雄/轻型结构建筑细部.中国建筑工业出版社, 2003
    142贝思出版有限公司汇编,陈晋略主编.体育建筑.辽宁科学技术出版社, 2002
    143庄楚龙.体育馆可动设施设计研究.哈尔滨工业大学硕士论文. 2003
    144王鹏,谭刚.生态建筑中的自然通风.世界建筑. 2000, (04)
    145《建筑创作》杂志社编.建筑师看奥林匹克.北京:机械工业出版社, 2004
    146 http://bbs.topenergy.org
    147谢浩.公共建筑天窗的设计策略.节能技术.2000, (04): 353~357
    148 Drury B. Crawley, Jon W. Hand, Michael Kummert, Brent T. Griffith. Contrasting the Cappabilities of Building Energy Performance Simulation Programs. The ASES annual publication.2005, (07)
    149 http://shenluse.5d6d.com/frame.php?frameon=yes&referer=http%3A//shenluse.5d6d.com/thread-6067-1-1.html
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.