上扬子地区早三叠世错时相沉积记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上扬子地区P-T转折时期广泛发育各种类型的错时相碳酸盐岩,主要包括微生物岩、蠕虫状灰岩、条带状灰岩、纹层灰岩以及扁平砾石砾岩。微生物岩整体呈丘状产出,内部纹层发育;其主要岩性为粒泥灰岩和泥粒灰岩;岩石内部生物较少,种类单一,主要为一些介形虫、小型腹足和小型腕足等生物化石。
     P-T过渡时期的蠕虫状灰岩发育于下二叠统长兴组生物碎屑灰岩之上,其所属时代为晚二叠世。蠕虫状灰岩主要由浅色“基质”和深色“蠕体”两部分组成,蠕体方解石含量较高,泥质含量较低;而基质方解石含量较低,泥质含量较高。根据蠕体分布形态将蠕虫状灰岩分为三类,即蠕体呈顺层连续的线纹状分布的蠕虫状灰岩、蠕体呈顺层断续的点线纹状分布的蠕虫状灰岩以及蠕体呈异形杂乱状分布的蠕虫状灰岩。各类蠕虫状灰岩在形成演化上具有一定的先后顺序,蠕体呈顺层连续状分布的蠕虫状灰岩最先形成,顺层断续状次之,蠕体呈异形杂乱排列的蠕虫状灰岩最后形成。各类蠕虫状灰岩在成因上相互联系,其形成与沉积分异作用、成岩作用以及后期水动力改造作用有关。
     条带状灰岩常与泥晶灰岩、粉砂质泥岩等呈互层产出。镜下显示,条带常为规则的泥质、泥灰质薄层或不规则的泥质团块。泥质纹层被压实后对碳酸盐团块的干扰现象比较普遍,显示不规则的灰质团块是后期压实作用的结果。扁平砾石砾岩见于广元上寺和青川大沟里P—T界线地层剖面中,其常与薄层状、纹层状泥质灰岩、灰质泥岩共生,并伴随有丘状交错层理、菊花状构造、底面侵蚀构造等反映风暴作用的标志性沉积构造。研究表明,扁平砾石砾岩的形成大致经历了以下四个阶段:(1)薄层状灰岩—灰泥岩快速沉积阶段;(2)灰岩等富碳酸盐层变形、破碎;(3)富泥层对富碳酸盐层的进一步破坏;(4)风暴等对前期砾屑的侵蚀、搬运阶段。
     P-T生物大灭绝后,全球环境剧变。错时相沉积在这一时期广泛出现,指示了当时紊乱、异常的大气条件和海洋环境。微生物岩在大灭绝后迅速出现,表现出微生物等对当时恶劣的环境具有较强的适应能力,并经历了存活—稳定—繁盛的自身演化过程;条带状灰岩、纹层状灰岩、蠕虫状灰岩以及扁平砾石砾岩的岩石学特征及成因机制表明,这些错时相沉积的形成具有相似的海洋化学条件和沉积背景。原始沉积的成层特征保存完好是这些错时相共有的特征,其可能反映了生物大灭绝后底栖后生动物的减小和生物垂向扰动能力的降低;而可能由深部碳酸盐过饱和的贫氧海水上翻以及微生物新陈代谢引起的同沉积海底胶结作用,则是这一时期这些错时相沉积体或沉积构造得以形成的又一关键因素。薄层状灰岩、纹层状灰岩等静水沉积物之上,普遍发育与强水动力条件有关的扁平砾石砾岩、角砾状灰岩、丘状交错层理粉砂岩,反映了特提斯洋在这一时期曾经历过从停滞到动荡的海洋环境变化。大规模的风暴沉积物在全球下三叠统地层中广泛出现,表明了当时的气候处于极端异常的状态,气候的剧烈变化可能与当时盛行的巨型季风有关。停滞的海洋循环、底层海水普遍缺氧,碳、氧、硫同位素负偏、H2S和CO2的增多,海水碱性增强、盐度升高、同沉积海底胶结作用的广泛发生等构成的早三叠世海洋环境,是错时相沉积得以发育并作为P—T过渡时期重要沉积类型的基础。强烈的巨型季风、频繁的风暴活动等外界因素对沉积物的侵蚀、再改造,最终导致类型丰富的错时相碳酸盐岩在全球这一时期广泛再现。
     灭绝事件后,贫瘠的生物圈对地球系统的反馈作用随之减弱,原本混乱的地球系统在得不到生物圈有效制约的状况下,进一步恶化直至走向极端,而以错时相为代表的异常沉积以及风暴岩的大规模出现正是始于对环境走向极端的自然响应。我们将生物圈对地球系统的这一调节过程称之为Gaia效应。
Various types of anachronistic facies including microbiolites, vermiculate limestone, ribbon limestone, laminated Limestone and flat-pebble conglomerate were developed in Upper Yangtz area during the P/T transforming interval. Microbiolites were found as dome shapes on outcrop and interior lamina occurred in the microbiolites,which were formed by wackestone and packstone, characteristicing for less organisms and monotonous species inside, such as, ostracodes, minitype proleg and tiny brachiopoda etc..
     Vermiculate limestone was underlied by the bioclastic limestone in the toppest layer of upper Permian Changxing formation, and the geological age of the vermiculate limestones was infered as late Permian. The vermiculate limestone mainly consisted of light-colored 'matrix' and dark-colored 'worm grains', the former contained higher component of calsite and lower component of mud than that of the latter. Vermiculate limestone could be divided into following three main types according to its distribution shape:(1) continuous line shaped, (2) intermittent line shaped, (3) strange and littery shape. The continuous line shaped one was formed first, the second was the intermittent line shaped vermiculate limestone and the strange and littery shape was the last one. It's thought that all the three types of vermiculate limestones were interrelated to their genesis, and the formation of these rocks were associated with sedimentary differentiation, diagenesis and the rework of the hydrodynamic force after thet were deposited.
     Ribbon limestone often occurred with interbedded micritic limestone or silty mudstones. The microscopic features showed that ribbon limestone was usually comprised by regular thin mud bed and irregular marl crumb. With the influence of compaction, the mud lamina often disrupted the carbonate crumb, which indicated that the formation of irregular calcareous crumb was resulted from the compaction. flat-pebble conglomerate was often found in P/T Stratigraphic profile in Guangyuan Shangsi and Qingchuan Dagouli. It usually co-occured with thin or lamina argillaceous limestone and calcilutite, and was often accompanied by the storm-generated sedimentary structures, such as hummocky cross bedding, chrysanthemum structure, base erosion structure, etc.. The formation of the flat-pebble conglomerate had experienced the following four stages:(1) the quick deposition of thin limestone-calculutite; (2) the deformation or the breaking of the carbonate-rich layer, (3) the further disruption to carbonate-rich layers by mud-rich layers, (4) the erosion and transportation of the former calcrudite by storm.
     The globle climate sharply changed after the P/T mass extinction. Anachronistic facies widely appeared during this period, which indicated the disorder and unusual atmospheric conditions of the marine environment.Microbiolites growing rapidly after the extinction demonstrated that the microbiolite could adapt to the degradation condition at that time, and had experienced survival-stable-prosperous evolutionary process. According to the petrological features and genetic mechanism of the vermiculate limestone, ribbon limestone, laminated limestone and flat-pebble conglomerate demonstrate, it was concluded that the marine chemical conditions and depositional setting were almost similar when they were deposited. Stratification was in good keeping of the primary deposit, which was the common character of the anachronistic facies, indicating the decrease of metazoon and the receding of its vertical disturbance. The synsedimentary cementation caused by the upturning of poor-oxygen oversaturated-seawater and by metabolism of microbiolite, was the other main factor for the formation and conserve of sedimentary structure of the anachronistic facies. The laminated limestone, thin-bedded pelmicrite, argillaceous limestone were widely covered by storm-generated brecciform limestone, flat-pebble conglomerate calcirudyte, hummocky cross-bedding siltstone, which reflected that the Tethys during this interval might experience the changes from the sluggish to the oscillating sea. The storm-generated sediments widely emerged around the world in the lower Triassic, which indicates that the atmospheric conditions were in an extremely abnormal state. The severe changes in atmospheric conditions might be correlated with the 'megamosoon'. The stagnant ocean circulation, the comprehensive anoxia in bottom water, the increase of atmospheric CO2 and H2S, enhancing of alkaline and salinity, along with the extensive synsedimentary cementation in seafloor, were the major conditions for the development of the anachronistic facies at the P-T boundary. On the other hand, the external factors such as violent megamonsoon and frequent storms result in the erosion and rework to the sediments, which finally resulted in the reoccuring of the abundant types of anachronistic facies at this time.
     After the mass extinction, feedback effecting to the earth system by barren biosphere got weaker. Due to the lack of effective restricting by biosphere, the chaotic earth system further deteriorated and finally arrived its extreme. As the representative of the abnormal deposits, anachronistic facies were just the response to an extreme natural environment. Therefore, this process that the biosphere adjusts the earth system was named as Gaia effection.
引文
[1]Barron E J.1989. Severe storms during Earth history. Geol. Soc. Am. Bull,101: 601-612.
    [2]Baud A, Cirilli S, Marcoux J. Biotic response to mass extinction:The lowermost Triassic microbialites[J]. Facies,1997,36:238-242.
    [3]Baud A, Richoz S, Marcoux J. Calcimicrobial cap rocks from the basal Triassic units of the Taurus (SW Turkey), an anachronistic facies before the biotic recovery. Comptes Rendus[J]. Palevol,2005,4(6-7):569-582.
    [4]Baud A, Richoz S, Pruss S. The lower Triassic anachronistic carbonate facies in space and time [J]. Global and Planetary Change,2007,55:81-89.
    [5]Becker, Poreda, Hunt et al.,Impact Event at the Permian-Triassic boundary:Evidence from extraterrestrial noble gases in fulerrenes[J], Sci, 2001(291):1530-1533
    [6]Berner R A.2006. GEOCARBSULF:A combined model for Phanerozoic atmospheric 02 and CO2:Geochimica et Cosmochimica Acta,70:5653-5664.
    [7]Besse, J., Torq, F., Gallet, Y., Ricou, L. E., Krystyn, L., Saidi, A.,1998. Late Permian to Late Triassic paleomagnetic data from Iran:constraints on the migration of the Iranian block through the Tethyan Ocean and initial destruction of Pangaea. Geophysical Journal International 135,77-92.
    [8]Bowring S A, Erwin D H, Jin Yu-gan, Martin M W, Davidek K, Wang Wei. U/Pb zircon Geochronology and tempo of the end-Permian mass extinction[J].Science, 1998.280:1039-1045
    [9]Burchette T P, Wright V P.1992. Carbonate ramp depositional system. Sedimentary Geology,79:3-57.
    [10]Campbell, Czamanske, Fedorenko, et al., Synchronism of the Siberian Traps and the Permian-Triassic boundary[J]. Sci,1992(258):1760-1763
    [11]Corsetti, Baud, Marenco, Richoz,,2005. Summary of Early Triassic carbon isotope records. Comptes Rendus Palevol 4 (6-7),473-486.
    [12]D.L. Kidder, T.R. Worsley, Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery, Palaeogeogr. Palaeoclimatol. Palaeoecol.203 (2004) 207-237.
    [13]Davaud E, Girardclos S. Recent freshwater ooids and oncoids from western Lake Geneva (Switzerland):indications of a common organicallymediated origin [J]. Journal of Sedimentary Research,2001,71:423-429.
    [14]Davies G R, Moslow T F, Sherwin M D. The Lower Triassic Montney Formation, west-central Alberta, Bull. Can. Pet [J]. Geol.1997,45:474-505.
    [15]Duke. W. L. Hurmmocky cross—stratification, tropical hurricanes, and intense winter storms [J]. Sedimentology,1985,32:167—194.
    [16]Erwin D H. The end-Permian mass extinction and Early Triassic recovery. Catastrophic events Conference abstract vol. Lunar and Planetary Institute Contribution[J],2000,105:43-44.
    [17]Erwin D H. The Great Paleozoic Crisis, Life and Death in the Permian, Columbia University Press[J], NewYork,1993:327.
    [18]Ezaki Y, Liu J, Adachi N. Earliest Triassic Microbialite Micro-to Megastructures in the Huaying Area of Sichuan Province, South China:Implications for the Nature of Oceanic Conditions after the End-Permian Extinction[J]. PALAIOS,2003, 18:388-402.
    [19]Fagerstrom J A. The Evolution of Reef communities[M]. New York:John wiley &Sons,1987:1-600
    [20]Galfetti T, Bucher H, Martini R, et al.2008. Evolution of early outer platform paleoenvironment in the Nanpanjiang Basin (South China) and their significance for the biotic recovery [J]. Sedimentary Geology,204:36-60.
    [21]Grotzinger, J. P., and Knoll, A. H.,1995, Anomalous carbonate precipitates: Is the Precambrian the key to the Permian?:Palaios, v.10, p.578-596
    [22]Hallam, A. Why was there a delayed radiation after the end-Palaeozoic extinctions? [J]. Historical Geology,1991,5,257-262.
    [23]Hallam A,Wignall P B, Mass Extinctions and Their Aftermath[M]. New York:Oxford University Press,1997:320
    [24]Holser, Magarizt, Events near the Permian-Triassic boundary. Mod.Geol.1987(11) 155-180
    [25]Horacek M, Richoz S, Brandner R, Krystyn L, Spotl C. Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys:The δ 13C record from marine sections in Iran[J]. Palaeogeography, Palaeoclimatology, Palaeoecology 2007(252):355-369.
    [26]Isozaki, Y.Permo-Triassic boundary superanoxia and stratified superocean: Records from the lost deep sea[J]. Science,1997,276:235-238.
    [27]Ito, M. Ishigaki, et al.2001. Temporal variation in the wavelength of hummocky cross-strati¢cation:Implications for storm intensity through Mesozoic and Cenozoic. Geology 29,87-89.
    [28]Jin Yu-gan, Wang Yue, Wang Wei, Erwin D H. Pattern of marine mass extinction near the Permian-Triassic boundary in South China[J]. Science,2000,289, 432-436.
    [29]Judith Totman Parrish. Climate of the Supercontinent Pangea[J]. The Journal of Geology.1993, volume 101, p.215-233.
    [30]Kaiho, Kajiwara, Nakano et al., End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle [J], Geology, 2001 (29):815-818
    [31]Karl Kriner, Daniel Vachard,2009. The Lower Triassic Werfen Formation of the Karawanken Mountains (Southern Austria) and its disaster survivor microfossils, with emphasis on Postcladella n. gen. (Foraminifera, Miliolata, Cornuspirida). Revue de Micropaleontologie. pp:1-27
    [32]Kershaw S, Guo L, Swift A, Fan J.?Microbialites in the Permian-Triassic Boundary Interval in Central China:Structure, Age and Distribution[J]. Facies,2002, 47:83-90.
    [33]Kershaw S, Li Y, Crasquin-Soleau S, Feng Q, Mu X, Collin P Y, Reynolds A, Guo L. Earliest Triassic microbialites in the South China block and other areas: controls on their growth and distribution[J]. Facies,2007,53:409-425.
    [34]Kershaw S, Zhang T, Lan G. A ?microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1999, 146:1-18.
    [35]Kidder D L, Worsley T R. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery, Palaeogeogr. Palaeoclimatol [J]. Palaeoecol,2004, 203:207-237.
    [36]Kim J. G and Lee, Y. I. Marine diagenesis of Lower Ordovician carbonate sediments (Dumugol Formation), Korea:cementation in a calcite sea[J]. Sedim. Geol., 1996,105,241-257.
    [37]Knoll A. H, Bambach RH, Canfield D E, et al. Comparative Earth history and late Permian mass extinction[J]. Science,1996,273(26):452-457
    [38]Knoll A H, Bambach R K, Payne J L, et al., Paleophysiology and end-Permian mass extinction[J]. Earth and Planetary Science Letters,2007.256:295-313
    [39]Kozur H. W. Some aspects of the Permian-Triassic boundary (PTB) and of the possible causes for the biotic crisis around this boundary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1998,143,227-272.
    [40]Kreisa P D.1981. Storm-generated sedimentary structures in subtidal marine facies with example from the middle and upper Ordovician of south western Virginia [J]. Sedi Petrol,51(3).
    [41]Krull, Lehrmann, Druke, et al., Stable carbon istope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate plateforms,Nanpanjiang Basin, SouthChina[J]. Palaeogeography, Palaeoclimatology, Plaeoecology2004(204) :297-315
    [42]Krull, Retallack,δ13C depth profiles from Paleosols across the Permian-Triassic boundary; evidence for methane release, Geol [J]. Soc. Am. Bull. 2000,112,1459-1472.
    [43]Kutzbach and Gallimore, Pangaean climates:megamonsoons of the megacontinent[J]. Journal of Geophysical Research, D3.1989, v94:3341-3357.
    [44]Kutzbach J E, Guetter P J, Washington W M.1990. Simulated circulation of an idealized ocean for Pangaean time, Paleoceanography,5:299-317.
    [45]Labandeira, Sepkoski J. J.,Jr., Insect diversity in the fossil record [J]. Sci. 1993(261):310-315
    [46]Lehrmann D J, Wan Y, Wei J, Yu Y, Xiao J. Lower Triassic peritidal cyclic limestone:an example of anachronistic carbonate facies from the Great Bank of Guizhou, Nanpanjiang Basin, Guizhou province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001,173:103-123.
    [47]Lovelock J E.1972. Gaia as seen through the atmosphere [J]. Atmospheric Environment,6:579-580.
    [48]Marsaglia, K. M., Klein, G.D. The paleogeography of Paleozoic and Mesozoic storm depositional systems[J]. J.Geol.1983,91:117-142.
    [49]Micha Horacek et al.2007. Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys:The δC record from marine sections in Iran. Palaeogeography, Palaeoclimatology, Palaeoecology 252 (2007) 355-369
    [50]Michael E. Brookf ield, Richard J. Twichett. Craig Goodings.2003. Palaeogeography, Palaeoclimatology, Palaeoecology 198 (2003) 353-371
    [51]Mundil, Metcalfe, Ludwig et al., Timing of the Permian-Triassic biotic crisis: implications from new zircon U/Pb age data (and their limitations) [J]. Earth Planet. Sci. Lett.2001(187):131-145
    [52]Mundil R, Ludwig K R, M etcalfe I, Renne P R. Age and timing of the Permian mass extinctions:U/Pb dating of closed—system zircons[J]. Science,2004,305: 1760-1763
    [53]P. B. Wignall, R. J. Twitchett, Extent, duration, and nature of the Permian-Triassic superanoxic event, in:C. Koeberl, K. C. MacLeod (Eds.), Catastrophic events and mass extinctions:Impacts and beyond, Geol[J]. Soc. Am. Spec. Pap.356, Boulder, CO,2002, pp.395-413.
    [54]P. B. Wignall, R. J. Twitchett. Oceanic anoxia and the end Permian mass extinction[J]. Science,1996,272:1155-1158.
    [55]P. B. Wignall, A. Hallam, Anoxia as a cause of the Permian/Triassic mass extinction:facies evidence from northern Italy and the western United States, Palaeogeogr. Palaeoclimatol [J]. Palaeoecol,1992,93:21-46.
    [56]Parrish J T, Ziegler A M, Scotese C R. Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic[J]. Palaeogeogr. Palaeoclimatol. Palaeoecol,1982,40:67-101.
    [57]Parrish J T. Climate of the supercontinent Pangea, J[J]. Geol.101:215-233.
    [58]Payne, J. L., Lehrmann, D. J., et al. Large perturbations of the carbon cycle during recovery from the end-Permian mass extinction[J]. Science,1993,305:506-509.
    [59]Payne,J.L., Lehrmann, D. J. Wei, J.Y.,et al., Large perturbations of the carbon cycle during recovery from the end-Permian extinction[J]. Sci,2004(305):506-509
    [60]Pruss S B, Bottjer D J, Corsetti FA, Baud A. A global marine sedimentary response to the end-Permian mass extinction:Examples from southern Turkey and the western United States[J]. Earth-Science Reviews.2006,78:193-206.
    [61]Pruss, S.B., Bottjer, D. J. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction[J]. Palaios,2004a,19:559-571.
    [62]Pruss. S. B., Bottjer, D. J. Late Early Triassic microbial reefs of the western United States:a description and model for their deposition in the aftermath of the end-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004b,211(1-2),127-137.
    [63]Racki G, Silica secreting biota and mass exinctions:survival patterms and processes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1999,154(1-2): 107-132
    [64]Rampino, Prokoph, Adler, Tempo of the end-Permian event:High-resolution cyclostratigraphy at the Permian-Triassic boundary[J], Geology 2000(28): 643-646
    [65]Raup, Sepkoski, Periodicity of extinction in the geologic past. Proc. Proc. Natl. Acad. [J]Sci,1984(81):801-805
    [66]Retallack, Permian-Triassic life crisis on land[J]. Sci,1995(267):77-81
    [67]Retallack, Seyedolali, Krull et al., Search for evidence of impact at the Permian-Triassic boundary in Antarctica and Australia [J]. Geology,1998(26): 979-982
    [68]R. M. Hotinski, K. L. Bice, L. R. Kump, R. G. Najjar, M. A. Arthur, Ocean stagnation and end-Permian anoxia, Geology2001 (29):7-10.
    [69]R.M. Hotinski, L.R. Kump, R. G. Najjar, Opening Pandora's Box:The impact of open system modeling on interpretations of anoxia, Paleoceanography 15 (2000) 267-279.
    [70]Richoz, S., Stratigraphie et variations isotopiques du carbonedans le Permien superieur et le Trias inferieur de la Neotethys (Turquie, Oman et Iran). PhD Sciences Thesis, University of Lausanne, Lausanne.2004.241 pp.
    [71]Rodland, Bottjer, Biotic recovery from the end-Permian mass extinction:behavior of the inarticulate brachiopod Lingula as a disaster taxon. [J].Palaios, 2001,16(1):95-101
    [72]Royer D L, Berner R A, Montanez I P, Tabor N J, Beerling D J.2004. C02 as the primary driver of Phanerozoic climate, GSA Today 14:4-10.
    [73]Scotese C R.1994. Early Triassic paleogeographic map, in:Klein G D(Ed.), Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith and Breakup of a Supercontinent, Geol. Soc. Am., Spec. Pap.288, Boulder, CO:7.
    [74]Sengor, A. M. C.,1984. The Cimmeride Orogenic System and the tectonics of Eurasia. Geological Society of America, Special Paper 195,1-82.
    [75]Sepkoski J J, Bambaeh R K, Droser M L. Secular changes in Phanerozoic event bedding and the biological imprint. In:Einsele G, Ricken W, Seilacher A (eds.) [J]. Cycles and Events in Stratigraphy. Heidelberg:Spinger-Verlag.1991,298-312.
    [76]Sepkoski J J, Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna. In:Einsele G, Seilacher A, eds. Cyclic and Event Stratification. Berlin: Springer-Verlag,1982,371-385
    [77]Sepkoski,Jr. J. J., Some implication of mass extinction for the evolution of complex life. In:Papagiannis, M. D. (Ed), The Search for Extraterrestrial Life:Recent Development. Reidel, Dordrecht:223-232
    [78]Sarkar, Yoshioka,Ebihara,et al..Geochemical and organic carbon isotope studies across the continental Permo-Triassic boundary of Raniganj Basin, Eastern India. Palaeogeogy, Palaeoclimatol, Palaeoecol[J].2003(191):1-14
    [79]Stanley, Yang, A double mass extinction at the end of Paleozoic Era [J].Sci,1994(266):1340-1344
    [80]Twitchett R J, Krystyn L, Baud A, Wheeley JR, Richoz S. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia[J]. Geology,2004,32:805-808.
    [81]Twitchett, Looy, Morante, et al., Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis[J]. Geology,1994 (22):580-584
    [82]Wignall,P B, Hallam, A, Xulong, L, Fengqing, Y., Palaeoenvironmental changes across the Permian/Triassic boundary at Shangsi[J]. Hist. Biol.1995(10):175-189
    [83]Wignall, P B, Hallam, A, Anoxia as a cause for the Permian/Triassic mass extinction:Facies evidence from northern Italy and the western United States [J], Palaeogeogy, Palaeoclimatology,Palaeoecol.1992(93):21-46
    [84]Wignall, P B, Hallam, A, Griesbachian(Earliest Triassic)Palaeoenviromental changes in the Salt Range, Pakiastan and Southeast China and their bearing on the Permo-Triassic mass extinction [J]. Palaegeography, Palaeocimatology, Palaeoecology.1993(102):215-237
    [85]Wignall, P. B, Morante, Newton, The permo-Triassic transition in Spizbergen:δ 13Corg chemostratigraphy. Fe and Sgeochemistry, facies, fauna and trace fossils. Geol.Mag.1998(135):47-62
    [86]Wignall, P B, Twichett, Oceanic anoxia and the End Permian mass extinction [J].Sci,1996(272):1155-1158
    [87]Wignall, P B, Twitchett R J. Extent, duration, and nature of the Permian-Triassic superanoxic event, in:C. Koeberl, K. C. MacLeod (Eds.), Catastrophic events and mass extinctions:Impacts and beyond, Geol[J]. Soc. Am. Spec. Pap.356, Boulder,2002:395-413.
    [88]Wignall, P B, Twitchett R J. Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end-Permian mass extinction[J]. Sedimentology,1999,46:303-316.
    [89]Wilson K M, Pollard D, Hay W W, Thompson S L, Wold C N.1994. General circulation model simulations of Triassic climates:preliminary results, in:Klein G D (Ed.), Pangea:Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith and Breakup of a Supercontinent, Geol. Soc. Am. Spec. Pap.288, Boulder, CO:91-116.
    [90]Woods A D, Bottjer D J, Mutti M, et al. Lower Triassic large sea-floor carbonate cements:their origin and a mechanism for the pro-longed biotic recovery from the end-Permian mass extinction[J]. Geology,1999,27:645—648
    [91]Woods A D. Paleoceanographic and paleoclimatic context of Early Triassic time [J]. C. R. Palevol.,2005,4:463-472.
    [92]Y. Isozaki. Permo-Triassic boundary superanoxia and stratified superocean: Records from the lost deep sea, Science,1997,276:235-238.
    [93]Y. Isozaki. Superanoxia across the Permo-Triassic boundary:Record in accreted deep-sea pelagic chert in Japan, in:A. F. Embry, B. Beauchamp, D.J. Glass (Eds.), Pangea:Global Environments and Resources, Canadian Society of Petroleum Geologists, Calgary, AB, Canada,1994, pp.805-812.
    [94]Zhang, Q., Xu, D., Inquiring into indicators and origin of catastrophic events at stratigraphic boundaries[J]. Southeast Asian Earth Sci.1996(13):373-378
    [95]鲍志东.贵州关岭永宁、六枝郎岱中、下三盛统岩石学及沉积环境分析.见冯增昭,鲍志东,李尚武等.中国南方早、中三盛世岩相古地理[M].北京:石油工业出版社,1997,165-173
    [96]曹长群,郑全锋.2009.煤山二叠纪-三叠纪过渡期事件地层时序的微观地层记录.中国科学D辑:地球科学,39(4):481-487.
    [97]陈吉涛,韩作振,张晓蕾等.鲁西芙蓉统条带状灰岩早期成岩变形构造—竹叶状砾屑灰岩形成机理探讨[J].中国科学D辑:地球科学.2009.39(12):1732-1743
    [98]陈曦,王成善,黄永建.古新世—始新世极热事件与地球系统的自我调节:Gaia理论的应用[J].地学前缘.2006.6(32):171-176
    [99]冯增昭,鲍志东,李尚武等.中国南方早、中三盛世岩相古地理.北京:石油工业出版社,1997.1-162
    [100]冯增昭,王英华,李尚武.中国南方早、中三叠世岩相古地理[M].1994,北京:石油工业出版社:1-162.
    [101]黄思静.蠕虫状灰岩及其成因[J].成都地质学院学报,1984,3:60-68
    [102]黄思静.上扬子二叠系一三叠系初海相碳酸盐岩的碳同位素组成与生物绝灭事件[J].地球化学.1994,23(1):60-68.
    [103]姜月华,岳文浙,业治铮,魏乃颐.蠕虫状灰岩特征和成因新探.矿物岩石[J],1992,12(1):1-7
    [104]金若谷,黄恒铨.四川广元上寺二叠系—三叠系界线剖面沉积特征及环境演变[A];地层古生物论文集(第十八辑).1987,[C]:32-75
    [105]李子舜,詹立培,朱秀芳,等.古生代—中生代之交的生物灭绝和地质事件:四川广元上寺二叠系—三叠系界线和事件的初步研究[J].地质学报,1986:6(1).
    [106]马永生,陈洪德,王国力,等.中国南方层序地层与古地理[M].北京:科学出版社,2009:20-23.
    [107]钱守荣.蠕虫状灰岩成因新解[J].淮南矿业学院学报,1995,15(3):15-19.
    [108]钱守荣.蠕虫状灰岩中的同生变形构造及其成因[J].安徽地质,1996,6(1):38-41
    [109]时志强,伊海生,曾德勇,等.上扬子地区下三叠统飞仙关组一段:P/T事件后从停滞海洋到动荡海洋的沉积记录[J].地质论评,2010b(6):769-780
    [110]时志强,曾德勇,熊兆军,张华,赵安坤.2010a.三叠纪巨型季风在上扬子地区的沉 积记录.矿物岩石地球化学通报,29(2):164-172
    [111]孙枢,王成善.2008.Gaia理论与地球科学系统,地质学报,82(1):1-8.
    [112]童金南,华南古生代末大灭绝后的生态系复苏[J].地球科学,1997,22(4):373-376
    [113]童金南,殷鸿福.早三叠世生物与环境研究进展[J].古生物学报,2009,48(3):497-508.
    [114]童熙盛,唐勇.1990.重庆凉风垭飞仙关组风暴流沉积.沉积学报,8(3):121-126.
    [115]汪啸风,陈孝红.2005.中国各地质时代地层划分与对比[M].北京:地质出版社:379.
    [116]王新平,杨守仁,马学平等.江苏镇江大力山三益系岩石学特征及沉积环境分析.见:冯增昭,王英华,李尚武主编.下扬子地区中、下三盛统青龙群岩相古地理研究[M].昆明:云南科技出版社,1988,124-133
    [117]王永标,童金南,王家生,周修高.2005.华南二叠纪末大绝灭后的钙质微生物岩及古环境意义.科学通报,50(6):552-558.
    [118]吴亚生,YANG W,姜红霞,范嘉松.2006b.江西修水二叠纪.三叠纪界线地层海平而下降的岩石学证据.岩石学报,22(12):3039-3046.
    [119]吴亚生,姜红霞,廖太平.重庆老龙洞二叠系-三叠系界线地层的海平面下降事件[J].岩石学报,2006a,22(9):2405—2412.
    [120]谢树成,殷鸿福,曹长群,王春江,赖旭龙.2009.二叠纪—三叠纪之交地球表层系统的多幕式变化:分子地球生物学记录.古生物学报,48(3):487—49.
    [121]徐道一.月球和类地行星的化学成分的统计分析[J].空间科学学报.1985,5(1).
    [122]许效松,刘宝珺,赵玉光.中国南大陆古地理与Pangea对比[J].岩相古地理.1996. Vol.16, No.2.
    [123]杨遵仪,吴顺宝,杨逢清.关于我国南方海相二叠-三叠系的界线问题和接触关系[J].地球科学—武汉地质学院学报,1981,14(1):4-15.
    [124]张杰.F扬子地区早三叠世蠕虫状灰岩及其成因研究[M].中国地质大学硕士学位论文,2008
    [125]张景华,戴进业,田树刚.四川北部广元上寺晚二叠世—早三叠世的牙形石生物地层[J].国际交流地质学术论文集[C].北京:地质出版社,1984.
    [126]赵小明,牛志军,童金南,等.早三叠世生物复苏期的特殊沉积—“错时相”沉积[J].沉积学报,2010,28(12):314-323.
    [127]赵小明,童金南,姚华舟等.华南早三叠世错时相沉积及其对复苏期生态系的启示[J].中国科学D辑:地球科学,2008,38(12):1564-1574.
    [128]赵永胜,王多义,胡志水.四川盆地西缘早三叠世早期碳酸盐重力流沉积与环境[J].沉积学报,1994,12(2):1-9.
    [129]朱洪发,陈亚中,葛万兴等.镇江大力山中、下三叠统沉积特征及环境分析[J].矿物岩石,1990,10(3):58-66.
    [130]朱洪发,王恕一.苏南、皖南三盛纪瘤状灰岩、蠕虫状灰岩的成因.石油实验地质[J],1992,14(4):454-460
    [131]朱井泉.四川华鉴山三盈系嘉陵江组碳酸盐岩岩相、相组及沉积环境分析.见冯增昭,鲍志东,李尚武等.中国南方早、中三叠世岩相古地理[M].北京:石油工业出版社,1997,196-207
    [132]左景勋,童金南,赵来时,中国南方早三叠世岩相古地理分异演化与板块运动的关系[J].地质科技情报,2003,122(2):29-34
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.