OFDM系统中基于效用函数的多业务资源调度算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于无线频谱资源的稀缺,无线通信业务和应用的快速发展受到了极大的限制。这给无线通信系统频谱效率的提升带来了重要的影响。正交频分复用(OFDM)技术作为减轻频率选择性衰落和码间干扰的一个有效手段被广泛的应用先进的无线通信系统中。它也为不同用户间的子载波分配提供了更加灵活的方式。OFDM系统中的资源调度算法的研究也得到了广泛的关注。
     基于OFDM的认知无线电(CR)网络被认为是解决频谱稀少问题的有效的候选方案。而高级长期演进(LTE-A)系统也必将是未来通信系统的大势。作为LTE-A系统的四大关键技术之一,协作式多点传输(CoMP)通过把其他基站发射的干扰信号转变成有用信号的方式,极大了减轻了小区间的干扰和改善了边缘小区用户的体验性能。
     首先,在CR网络中,根据凸优化理论提出了拉格朗日对偶的方法,以此来最优化子载波调度和功率分配的问题。为了进一步简化计算,通过把线性整数优化问题扩展成连续的凸优化问题,我们提出来一个支持多业务的最大效用(CR-MUMS)的低复杂度的联合子载波调度算法。
     其次,在以上调度算法给系统带了良好增益的情况下,进一步·在基于OFDM的LTE-A系统中引入了单用户多输入多输出(SU-MIMO)的CoMP模式。在动态的扇区选择机制下,不同用户终端间的无线资源块的竞争转化成了传输速率的竞争。与大多数研究设定的满缓存数据模型不同,我们加入了具体的业务模型。为了进一步优化协作方案,我们在协作模式的判定过程中也增加了业务的服务质量(QoS)要求。
     最后的仿真结果表明,提出来的低复杂度的联合调度算法比传统的改进的最大加权时延和比例公平算法显示了更有优势的系统性能,包括系统的总吞吐量和用户的平均数据传输速率。引进CoMP机制后,小区的平均吞吐量和边缘用户的传输速率得到了进一步的提升。
Due to the scarcity of spectrum resources, the rapid development of wireless services and applications is severely limited, which exerts a great influence on major increases in achievable spectral efficiency. Orthogonal Frequency Division Multiplexing (OFDM) technology is an effective method to alleviate the frequency selective fading and inter-symbol interference and is widely used in advanced wireless telecommunications. Due to the flexibility to assign subcarriers between different users, OFDM access method has been suggested as a candidate for wireless communication systems. The problem of resource allocation for homogeneous services in OFDM-based spectrum sharing systems has been widely studied.
     OFDM based cognitive radio (CR) has been viewed as a promising technique to solve spectrum scarcity problem of the future wireless communication system. While long term evolution advanced(LTE-A) wireless system will be widely used in the future. As one of the key technology, coordinated multi-point (CoMP) transmission/reception strategy was proposed to mitigate inter-cell interference (ICI) by applying the signals transmitted from other cells to assist the transmission instead of acting as interference.
     Firstly, in CR networks, the Lagrangian dual method is proposed according to convex optimization theory,, in which the joint subcarrier assignment and power allocation are performed to achieve the optimal solution. To simplify the computation complexity, a low complexity dynamic subcarrier allocation algorithm, named Max Utility for Multiple Services on Cognitive Radio (CR-MUMS), is formulated to extend the non-linear integer optimization to a continuous convex optimization.
     Then based on these good performance of attribution algorithm, I further introduce the CoMP mode for single-user multi-input multi-output (CoMP-SU-MIMO) scenario in Long Term Evolution Advanced (LTE-A) system. With the CoMP mechanism the resource block (RB) competition of different users is transformed into transmission rate competition. Service model is introduced in LTE-A system-level simulation platform instead of full-buffer model. To better the solution, the quality of service (QoS) property is added into the judgment of CoMP mode to achieve the optimal performance of sector throughput and cell-edge users (UEs) rates.
     Final simulation results illustrate that the proposed algorithm with low computational complexity provides better optimal performance than Modified Largest Weighted Delay First (M-LWDF) and Proportional Fair (PF) algorithms. After introducing CoMP mechanism in LTE-A system, both the average sector throughput and cell-edge users'transmission rate have been greatly improved.
引文
[1]谭伟,张文新,马雨出,LTE的无线资源管理,邮电设计技术,2007(3),pp:62-64
    [2]Nee R V, Prasad.R, OFDM for wireless multimedia communications, Artech House, 2000, pp:154-160
    [3]徐景,胡宏林,周婷,3GPP LTE标准化进展,中兴通信技术,13(2),2007,pp:9-12
    [4]Zixiong Chen, Kai Xu, Fu Jiang, Ying Wang, Ping Zhang, utility based scheduling algorithm for multiple services per user in mimo-ofdm system, IEEE ICC, May 2008
    [5]Cong Shi, Ying Wang, Tao Wang, Lisa Ling, resource allocation for heterogeneous services per user in OFDM distributed antenna systems, IEEE Vehicular Technology Conference, May 2009
    [6]胡钢,3G系统分组域业务源模型的研究与应用[学位论文],西安电子科技大学,2006
    [7]张占全,王天石,分组数据业务模型在三代移动通信系统中的研究,科技风在线,May 2009,pp:11-118
    [8]Borst S, user-level performance of channel-aware scheduling algorithms in wireless data networks, IEEE Information of Communications March 2003, pp:321-331
    [9]3GPP TR 25.814, physical layer aspects for evolved universal terrestrial radio access (UTRA), release 7, September 2006, pp:47-54
    [10]3GPP TSG R1-082812, collaborative MIMO for LTE-Advanced downlink, Alcatel Shanghai Bell, Alcatel-Lucent, August 2008, pp:18-22
    [11]Paulraj A, Nabar R, Gore D, introduction to space-time wireless communications, Cambridge University Press,2003, pp:13-18
    [13]3GPP R1-083229, LTE-A multiple point coordination and its classification, Motorola,2008
    [14]Wenqing Yap, Ying Wang, joint optimization for downlink resource allocation in cognitive radio cellular networks, IEEE Consumer Communications and Networking Conference, May 2011, pp:664-668
    [15]Peng Wang, Xiaofeng Zhong, Liming Xia, a general power allocation algorithm for OFDM-based cognitive radio systems, IEEE International Conference on Communications,2010, pp:1-5
    [16]Issaka Hassane, Abdoul Aziz, Li Renfa, Zeng Fanzi, power allocation for a mobile secondary user in OFDM based cognitive radio, International Journal of Digital Content Technology and its' Applications, vol.5(7),2011, pp:173-181
    [17]Stefania S, LTE-UMTS长期演进理论与实践,人民邮电出版社,2009,pp:160-165
    [18]沈嘉,索士强,全海洋,3GPP长期演进技术原理与系统设计,人民邮电出版社,2008,pp:425-435
    [19]Wenan Zhou, Zhao Li, Jindong Song, an optimal bit loading algorithm in multi-cell multi-user OFDM systems, Journal of Beijing University of Posts and Telecommunications, vol.8(4),2004, pp:212-216
    [20]Report ITU-R M.2134, requirements related to technical performance for IMT-advanced radio interface,2008
    [21]Theodore S, Rappaport T,无线通信原理与应用,第二版,电子工业出版社,2005,pp:109-114
    [22]3GPP TR 36.819.V0.0.1.1, coordinated multi-point operation for LTE physical layer aspects (Release 11),2011
    [23]3GPP R1-083569, further discussion on inter-cell interference mitigation through limited coordination, Samsung.2008
    [24]Qiongyao Li, Pengfei Lu, Zhongyuan Yu, Shijia Ma, Wenan Zhou, Utility-based Scheduling Algorithm for Multiple Services in OFDM Cognitive Radio Networks, IEEE Vehicular Technology Society 2012 Spring,128-93393, May 2012
    [25]3GPP TSG-RAN WGI R1-090613, discussions on CoMP SU-MIMO, Samsung, 2009
    [26]3GPP Rl-083410, Text proposal for RAN1 TR on LTE-Advanced, NTT DOCOMO, 2008
    [27]3GPP TSG-RAN WG1 R1-091415, further discussion of frequency plan scheme on CoMP-SU-MIMO, Potevio,2009
    [28]Papadogiannis A, Gesber D, Hardouin E, a dynamic clustering approach in wireless networks with multi-cell cooperative processing, IEEE International Conference on Communications, May 2008, pp:4033-4037
    [29]Emre Telatar, capacity of multi-antenna gaussian channels, European Transactions On Telecommunications, vol.10(6),1999, pp:585-595
    [30]Fan Huang, Yafeng Wang, Jian Geng, clustering approach in coordinated multi-point transmission/reception System, IEEE Vehicular Technology Conference, Spring 2010
    [31]Song B, Cruz R L, Rao B D, network duality for multiuser MIMO beamforming networks and applications, IEEE Communications Transactions, vol.55,2007, pp:618' 630
    [32]3GPP TR 36.942 V10.2.0,technical specification group radio access network, system scenarios(Release 10).2010
    [33]Hitachi Ltd, a UE initiated frequency partitioning based CoMP scheme for downlink cellular communications,3GPP TSG-RAN WG1 R1-100173,2010
    [34]Liu Jing, Chang Yongyu, Pan Qun, a novel transmission scheme and scheduling algorithm for CoMP-SU-MIMO in LTE-A system, IEEE Vehicular Technology Conference, Fall 2010
    [35]Hyoung Piwasy, Sunghyun Coey, Saewoong Besul, scheduler design for multiple traffic classes in ofdma networks, IEEE International Conference on Communications, 2006, pp:790-795
    [36]Zhou Jiang, Yu Ge, Yue Li, max-utility wireless resource management for best effort traffic, IEEE Transactions on Wireless Communications, vol.4(1),2005, pp:100-111
    [37]Karakayali M K, Foschini G J, Valenzuela R A, network coordination for spectrally efficient communications in cellular systems, IEEE Transfer. Wireless Communications, vol.13(4), August 2006, pp:56-61
    [38]Hyoung P W, Sunghyun C, Saewoong B, scheduler design for multiple traffic classes in ofdma networks, IEEE International Conference on Communications, Jul 2006
    [39]Prabhjot Kaur, Moin Uddin, Arun Khosla, adaptive bandwidth allocation scheme for cognitive radio, International Journal of Advancements in Computing Technology, vol. 2(2),2010, pp:35-41
    [40]M K Karakayali, G J Foschini, R A Valenzuela, network coordination for spectrally efficient communications/in cellular systems, IEEE Transactions on wireless communications, vol.13(4), August 2006, pp:56-61
    [41]Jie Zhang, Rui Chen, Andrews G J, Heath R W, coordinated multi-cell MIMO systems with cellular block diagonalization, Asilomar Conference on Signals Systems and Computers, November 2007, pp:1669-1673
    [42]Haykin Sirrey, Thomson Divos, Reed Joen, spectrum sensing for cognitive radio, Proceedings of the IEEE, vol.97(5), pp:849-877
    [43]Mitola Jeus, Mitre Corp, cognitive radio for flexible mobile multimedia communications, IEEE Mobile Multimedia Communications,1999, pp:3-10
    [44]Farhang Boujeny, Kempter Rio, multicarrier communication techniques for spectrum sensing and communication in cognitive radios, IEEE Communications Magazine, vol.46, No.4,2008, pp:80-85
    [45]Haijian Zhang, Le Ruyet, Terre Madio, spectral efficiency analysis in OFDM and OFDM/OQAM based cognitive radio networks, IEEE Vehicular Technology Conference, 2012, pp:26-29
    [46]Josep Colom Ikuno, Martin Wrulich, Markus Rupp. system level simulation of LTE networks, IEEE Vehicular Technology Conference, Spring 2010
    [47]陈怀琛,吴大正,高西全,MATLAB及在电子信息课程中的应用,第3版,电子工业出版社,2006,pp:1-8
    [48]Bansal Goel, Hossain Medir, Bhargava Kucis, optimal and suboptimal power allocation schemes for OFDM-based cognitive radio systems, IEEE Transactions on Wireless Communications,2008, pp:4710-4718
    [49]Shaowei Wang, efficient resource allocation algorithm for cognitive OFDM systems, IEEE Communications Letters, vol.14(8),2012, pp:725-727
    [50]Ngo D T, Tellambura C, resource allocation for ofdm-based cognitive radio multicast networks, IEEE Wireless Communications and Networking Conference, April 2009
    [51]Qiongyao Li, Pengfei Lu, Zhongyuan Yu, Shijia Ma, Wenan Zhou, A Novel Scheduling Algorithm Supporting Multiple Services in OFDM-based Cognitive Radio Networks, International Journal of Digital Content Technology and its Applications, Vol. 6(9),2012, pp:250-260
    [52]Mamoru Sawahashi, Yoshihisa Kishiyama, Akihito Morimoto, coordinated multipoint transmission/reception techniques for LTE-Advanced, IEEE Wireless Communications, vol.6,2010, pp:26-34
    [53]D Giancristofaro, correlation model for shadow fading in mobile radio channels, Electron.Letters, vol.32(11),1996, pp:858-959
    [54]Holger Claussen, efficient modelling of channel maps with correlated shadow fading in mobile radio systems, IEEE International Symposium on Personal Indoor and Mobile Radio Communications,2005, pp:512-516
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.