微生物絮凝剂产生菌的选育及絮凝特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的絮凝剂具有价格低,絮凝效果好等优点,但存在一些缺点如:饮用水中残留的铝易导致老年痴呆症;聚丙烯酰胺类絮凝剂单体对人体有毒害作用,易引发癌症等。因此,开发安全无毒、高效的、无二次污染的新型环保絮凝剂,对相关水处理工艺和生产工艺的改进、人类健康和环境保护都有着很重要的现试意义。20世纪80年代后期,随着生物技术的发展,一类新型的水处理剂—微生物絮凝剂应运而生,对它的研究也越来越受到国内外的关注。本文从土壤中选能产生微生物絮凝剂产生菌,并在此基础上对微生物絮凝剂的絮凝特性、机理和应用等展开初步研究。
     从土壤中筛选出了8株具有絮凝活性的菌株,经复筛后得到2株絮凝活性较高的微生物絮凝剂产生菌,命名为C1和C5。以C1和C5为研究对象,分别考察了培养基中碳源、氮源、无机盐以及培养基初始pH值和培养温度等理化因素对絮凝活性的影响。研究结果表明,C1菌株产絮凝剂的最适条件为:分别以浓度为2%的葡萄糖和0.2%的牛肉膏为最适碳源和氮源,其他条件:初始pH6.0,培养温度30℃,培养时间为72h。所产絮凝剂对0.4%高岭土悬浊液的絮凝效率可达90.4%;C5菌株的最适培养基为:以浓度为1%的葡萄糖和0.2%的谷氨酸为最适碳源和氮源,初始pH 7.5,培养温度36℃,培养时间为72 h。所产絮凝剂对0.4%高岭土悬浊液的絮凝效率可达92.0%,显示出良好的应用前景。
     通过正交实验确定C1菌株的最适絮凝条件为:发酵液投加量2.0mL,絮凝时pH 7.0,CaCl_2溶液的投加量为4.0ml,静置时间为60min;确定的C5菌株的最适絮凝条件为:发酵液投加量2.5 mL,絮凝时pH 6.0,CaCl_2溶液投加量为5mL,静置时间为100min。
     利用丙酮提取法,从发酵液中提取絮凝剂,并研究了其主要成分。通过苯酚—硫酸法、茚三酮反应确定微生物C1所产絮凝剂主要成分为多糖,C5所产絮凝剂主要成分为多糖和蛋白质。这两种絮凝剂对生物染料次甲基兰的脱色率可达98.5%和99.0%,其良好脱色性能使絮凝剂具有广阔的应用前景。并通过优化实验,确定了最适脱色条件。
     为了降低微生物絮凝剂的生产成本,以发酵培养基为基础,采用其他一些物质作为菌株培养的替代碳源、氮源。实验结果显示,用乙醇作为碳源时,C1和C5的絮凝活性分别达到84.4%和82.8%;以豆饼、黄豆粉和豆芽汁分别替代酵母膏作为C1的氮源后,絮凝活性分别为83.0%、84.1%和83.0%;当C5的氮源为豆芽汁后絮凝活性为81.8%,效果均优于使用酵母膏。
Organic and inorganic flocculants have been used widely due to their low pricesand good effect. However, their disadvantages have drawn people's attention.Aluminium remaining in drinking water easily leads to senile dementia. Themonomer of polyacrylamide can't be degraded and it's both neurotoxic andoncogenic for human body. Microbial flocculants are safe and biodegradablemacromolecular flocculants secreted by microorganisms. Their degradation productsare harmless to the ecosystem and humans. The development of a new biodegradablebioflocculant with strong flocculating activity is attracting wide research interest.Therefore, researchers are showing a growing concern on the development of MBF.
     Eight strains of microbial flocculant-producing microorganisms are isolatedfrom soil. After rescreening, Two strain named C1 and C5 with high and stableflocculating activity is obtained. The factors affecting the production andflocculating activity of microbial flocculant, such as carbon sources, nitrogensources, complex nitrogen sources, inorganic salts, initial pH value and culturetemperature are investigated. The results of C1 indicates that the optimum carbonsources, nitrogen sources, initial pH value and culture temperature are 2% glucose,0.2% beef extract, pH 6.0 and 30℃, respectively. The strain of C1 produces a highactivity flocculant, with flocculating rate of 90.4% against 0.4% kaolin claysuspension under the optimum cultural conditions. The results of C5 indicated that the optimum carbon sources, nitrogen sources, initial pH value and culturetemperature are 1% glucose, 0.2% glutamic acid, pH 7.5 and 36℃. The strain of C5produced a high activity flocculant, with flocculating rate of 92.0% against 0.4%kaolin clay suspension under the optimum cultural conditions.
     Through orthogonal test of C1, the optimal flocculating conditions are found tobe: 2.0 mL of microbial flocculant dosage, pH7.0, 4mL of 1% CaCl_2 and 60 min ofsettling time. Through the orthogonal test of C5, the optimal flocculating conditionsare found to be: 2.5 mL of microbial flocculant dosage, pH6.0, 5 mL of 1% CaCl_2and 100 min of settling time.
     The flocculants are extracted from culture broth using acetone solvent. Theflocculants of C1 is mainly composed of amylose. The flocculants of C5 is mainlycomposed of amylose and protein. That is determined by Phenol-Sulfuric acidreaction and Ninhydrin reaction. The flocculants has heat stability. Thedecolorization rate of Methylene Blue by the treatment of microbial flocculantsachieve to 98.5% and 99.0%. It has good flocculating effect on decoloring and claysuspension. And through following test, the optimal technologic conditions arefound. The results show that the flocculating mechanism resulted from thecombination of protein with kaolin clay by bridge at the active position of theflocculation and charge effect neutralization.
     In order to decrease the cost of microbial flocculant, the cheap substitutive ofethanol for carbon source are developed for C1 and C5, which are based on fermentmedium. The flocculanting activities are up to 84.4% and 82.8%. The optimumsubstitutive mediums of C1 for nitrogen source are bean cake、soybean powder andbean sprout extract. The flocculanting activity are 83.0%、84.1% and 83.0%. Theoptimum substitutive medium of C5 for nitrogen source is bean sprout extract. Theflocculanting activity achieves to 81.8%.
引文
[1] 常青.水处理絮凝学[M].北京:化学工业出版社,2003:50-160.
    [2] 郑怀礼.生物絮凝剂与絮凝技术[M].北京:化学工业出版社,2004:91-194.
    [3] 常青.絮凝科学的研究与进展[J].环境科学,1993,15(1):69-72.
    [4] 卢红梅,钟宏.赤泥沉降用新型高分子絮凝剂的结构表征及分析[J].矿冶工程,2003,23(4):35-38.
    [5] 石常省,谢广元,吴玲.絮凝剂在压滤脱水中的作用[J].选煤技术,2003,(3):19-21.
    [6] 何慧琴,童仕唐.水处理中絮凝剂的研究进展[J].应用化工,2001,30(6):14-16.
    [7] 张育新,康勇.絮凝剂的研究现状及发展趋势[J].化工进展,2002,21(11):799-804.
    [8] 陈金媛,陈梅兰,孙国良.高分子絮凝剂用于造纸黑液处理的研究[J].工业水处理,2002,22(5):42-44.
    [9] 江锋,黄晓武,胡勇有.胞外生物高聚物絮凝剂的研究进展(上)[J].给水排水,2002,28(8):83-89.
    [10] 江锋,黄晓武,胡勇有.胞外生物高聚物絮凝剂的研究进展(下)[J].给水排水2002,28(9):88-91.
    [11] Salehizadeh H, Shojaosadati S A. Extracellular biopolymeric flocculants Recent trends and biotechnological importance[J]. Biotechnology Advances, 2001, 19: 371-385.
    [12] 周凤山,王世虎,李继勇,等.含硅多核无机高分子絮凝剂研究进展[J].油田化学,2002,19(4):391-394.
    [13] 杜冬云,周珊,王代之,等.硅铁复合型絮凝剂的实验研究[J].湖北化工,2002,(5):7-9.
    [14] 邱俊明,邱祖民.聚硅酸类絮凝剂的研究进展[J].江西科学,2003,21(1):38-41.
    [15] 刘立华,郑雅杰,龚竹青.聚合铁盐絮凝剂的研究进展与发展趋势[J].现代化工,2002,,2(10):18-21.
    [16] 汤鸿霄,无机高分子絮凝剂的科学与技术进展[J].水处理信息报道,1997,(4):36-43.
    [17] 张国杰,王栋,程时远.有机高分子絮凝剂的研究进展[J].化学与生物工程,2004,(1):10-13.
    [18] 史继斌,陈文宾,吴艳.絮凝剂的研究进展[J].IM&P化工矿物与加工,2004,(10):1-5.
    [19] 岳钦艳,赵华章,高宝玉.有机高分子絮凝剂P(DMDAAC—VT-MS)和P(DMDAAC-AM-VT-MS)的合成及絮凝性能研究[J].工业水处理,2001,21(3):16-20.
    [20] 秦丽娟,陈夫山.有机高分子絮凝剂的研究进展及发展趋势[J].上海造纸,2004,35(1):41-43.
    [21] Mohamed I, Khalil, Amal A, et al. Evaluation of some starched rivativess containing amide groups as flocculants[J], starch—Strike, 2001, 53: 323-329.
    [22] Song B K, Cho M S o Yeon K J, et al. Dispersion polymerization of acrylamide with quatemary ammonium catuinic comonomer in aquous solution[J]. Journal of Applied Polymer Science, 2003, 87(7): 1101-1108.
    [23] Inchausti I, Hemuez E, Pedro M S. Synthesis and characterization of poly acryl amidesin inverse emulsions with anisopar affinic [J]. Journal of Applied Polymer Science. 2001, 202(9): 1837-1843.
    [24] Choms. Yeonkj, Song B K o Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate: Synthesis and characterization[J]. Journal of Applied Polymer Science, 2002, 83.(7): 1397-1405.
    [25] Zhang W H, Hou X H. Plasmainitiated aqueous solution poly—merization of acryiamide[J]. Polymer Advanced Technology, 1999, 10(7): 465-467.
    [26] 吕新之.铝的污染和危害.环境保护[J].1998,5:38-39.
    [27] 郑怀礼.生物絮凝剂与絮凝技术[M].北京.化学工业出版社.2004:47-49.
    [28] 林正欢,李绵贵.天然高分子絮凝剂的研究和应用进展[J].水处理技术,2003,29(6):315—317.
    [29] 王春梅,胡啸林,章忠秀.有机高分子絮凝剂的合成及其应用[J].工业用水与废水,2002,33(1):33—35.
    [30] 陈启杰,陈夫山.可生物降解的改性淀粉絮凝剂的开发和应用[J].西南造纸,2003,32(4):29—31.
    [31] 刘千钓,詹怀宇,刘明华.木质素类絮凝剂的研究进展[J].造纸科学与技术,2002,21(3):24—26.
    [32] 马放,李淑更,金文标等.微生物絮凝剂的研究现状及发展趋势.工业用 水与废水.2002,33(1):7-9.
    [33] 黎载波,王国庆,邹龙生.有机高分子絮凝剂在印染废水处理中的应用[J].工业水处理,2003,23(4):14-17.
    [34] 周国平,罗士平,孙英.接枝羧基淀粉的制备与应用[J].江苏石油化工学院学报,2002,14(1):13-15.
    [35] 王欣.聚丙烯酰胺-淀粉接枝共聚物的合成与应用[J].辽宁化工,2001,30(4):164-165.
    [36] 王杰,肖锦,詹怀宇.两性高分子絮凝剂的制备及其应用研究[J],环境化学,2001,20(2):185-190.
    [37] 陈津端,罗道成,刘能铸,等.用改性壳聚糖对城市未达标排放污水进行再处理[J],湖南工程学院学报,2004,12(2):61-63.
    [38] 袁毅桦,赖兴华,陈纯馨,等.壳聚糖对印染废水的絮凝作用和脱色效果[J]。应用化学,2000,17(2):217—218.
    [39] 马放,杨基先,金文标,等.环境生物制剂的开发与应用[M].北京:化学工业出版杜、环境科学与工程出版中心.2004,206-248.
    [40] 刘杏,邵林广,张丽芳.生物絮凝剂的研究现状及发展趋势[J].孝感学院学报,2001,21(6):39-42.
    [41] 黄民生,孙萍,朱莉。微生物絮凝剂的研制及其絮凝条件[J].环境科学.2000,21(1):23-25.
    [42] 杨延梅,周富春.微生物絮凝剂——絮凝剂发展的新方向[J]重庆交通学院学报,2002,2(1):129-132.
    [43] 周安娜,朱静.第三代絮凝剂——微生物絮凝剂[J].食品工业科技,2004,25(2):148-150.
    [44] 刘佳,赵晓祥.新型生物絮凝剂的研究[J].四川环境.2005,24(3):60-78.
    [45] 邓述波,等.微生物絮凝剂MBFA9的絮凝机理研究[J].水处理技术,2001,27(1):23-25.
    [46] 游映玖.微生物絮凝剂的研究现状和成果[J].环境科学与技术,2002,25(1):43-48.
    [47] Zajic J E. Eva Knetting. Developments in industrial microbiology [M]. Wshington D C: American Institute of Biological Science.1971, 87-98.
    [48] Nakarmura J, Miyashiro S, Hirose Y. Screening, isolation and some properties of microbial cell flocculants [J] Agric Biol Chem, 1976, 40(2): 377-383.
    [49] Takagi H. Purification and chemical properties of a flocculant produced by Poecilomyces sp [J]. Agric Biol Chem, 1985, 49(11): 3159-3164.
    [50] Kurane R, Takeda K, Suzuki T. Screening for and characteristic of microbial flocculants [J]. Agric Biol Chem, 1986, 50(9): 2301-2307.
    [51] Kurane R. Microbial flocculant from Alcaligenes cupidus KT201[J]. Agric Biol Chem, 1991, 55(11): 2793-2799.
    [52] 王镇,等.几株絮凝荆产生菌的特性研究[J].微生物学报,1995,35(2):121-129.
    [53] 柴晓利,等.微生物絮凝剂的提纯及应用研究[J].工业水处理,2000,20(6):23-25.
    [54] 胡筱敏,等.微生物絮凝剂BS-5的筛选及其特性[J].东北大学学报(自然科学版),2005,26(7):691-694
    [55] 王国惠,李春茂等.微生物絮凝剂产生菌的筛选与特性研究[J].微生物学杂志,2006,26(3):26-29
    [56] Forsburg A W, Nurse P. Cell cycle regulation in the yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe[J]. AnnuRev Cell Biol, 1991, 7: 300-319.
    [57] 东秀珠,蔡妙莫,等编著.常见细菌系统鉴定手册[M].北京:科学出版社.2001.
    [58] I. L. Shih, Y. T. Van. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresource Technology, 2001, 78 (5): 267-272.
    [59] Suh H, et al. Characterization of biolflocculant produced by Bacillus sp DP-152[J]. J Ferment Bioeng, 1997, 84(2): 108-112.
    [60] Vijayalashmi S P & Raichur A M. The utility of Bacillus subtilis as a bioflocculant for fine coal[J]. Colloids and Surfaces B: Biointerfaces, 2003, 29(1): 265-275.
    [61] Masanori Fujita,et al. Characterization of a bioflocculant produced by Citrobacter sp TKF04 from acetic and propionic acids [J] J Biosci and Bioeng, 2000, 89(1): 40-46.
    [62] Ning He, et al. Identification of a novel bioflocculant from a newly isolated Corynebacterium glutamicum[J]. BiochemEngJ. 2002, 11(2): 137-148.
    [63] 张旭,等.一株高产、高效絮凝剂菌株的分离鉴定及其絮凝活性研究[J].四川大学学报(自然科学版),2004,41(1):203-207.
    [64] Sousa M,et al. Difference in flocculantion mechanism of Kluyveromyces marxianus and Saccharomyces cerevisiae [J]. Bio Technol Lett,1992, 14(3): 213-218.
    [65] Yokoi H, et al. Biopolymer flocculant produced by a Pseudomonas sp[J]. Biotechnology Techniques.1998, 12(7): 511-514.
    [66] Nakarmura J, Miyashiro S, Hirose Y. Screening, isolation and some properties of microbial cell flocculants [J] Agric Biol Chem, 1976, 40(2): 377-383.
    [67] Kurane R. et al . Production of a biofloeculant by Rhodococcus erythropolis S-1 grown on alcohols[J]. Biosci Biotechnol Biochem, 1994, 58(2): 428-429.
    [68] Takeda M, Kurane R, Koizumi J, et al. A protein bioflocculant produced by Rhodococcus erythropolis[J]. Agric. Biol. Chem., 1991, 55: 2663-2664.
    [69] Shimofuruya H, et al. The production of flocculating substance(s) by Streptomyces grieus[J] Biosci Biotechnol Biochem, 1996, 60(3): 498-500.
    [70] 成文,等.4种微生物絮凝剂特性的研究[J].精细化工,2004,21(2):141-143,152.
    [71] Hayashi O, Yamada H, Miyazaki T. Changes of hexosamine and acetyl contens during cultivation of extracellullar galactomine-containing polymer from Aspergillus parasiticus[J]. Agric Biol Chem, 1976, 40(8): 1643-1645.
    [72] Nam JS, Kwon GS, Lee SO,Hwang JS, Lee JD, Yoon BD. Bioflocculant produced byAspergillus sp JS-42[J] Biosci Biotechnol Biochem, 1996, 60(2): 325-327.
    [73] 康建雄,等.短梗霉多糖絮凝剂的研究[J].适用技术市场,1995,(12):3-5.
    [74] 石璐,等.高效絮凝剂产生菌的筛选、鉴定及培养条件优化[J].湘潭大学自然科学学报,2003,25(1):50-52.
    [75] Kazuo Sailo, Shunichi Salo, Hirmoi Shimoi. Flocculation mechanism of Hansenula anomala J224[J]. Agric Biol Chem, 1990, 54(4): 1425-1432.
    [76] 宫小燕,等.微生物絮凝剂产生菌的筛选和优化以及在水处理中的应用[J].应用与环境生物学报,2003,9(2):196-199.
    [77] Takagi H. Purification and chemical properties of a flocculant produced by Poecilomyces sp [J]. Agric Biol Chem, 1985, 49(11): 3159-3164.
    [78] Swamy J,Ramsay J m. Evaluation of white rot fungi in the decoloration of textile dyes[J]. Enzyme and Microbial Technology, 1999, 24(3): 130-137.
    [79] 汪德生,张洪林,等.微生物絮凝荆发展现状及应用前景[J].工业水处理,2004,24(9):9-11.
    [80] 杨开,康健雄,张永波微生物絮凝剂用于污水强化一级处理[J].中国给水排水2002,18(2):43-45.
    [81] 李风亭,张善发,赵艳.混凝剂与絮凝剂[M].北京:化学工业出版社,2005.
    [82] 李智良,张本兰,裴健,微生物絮凝剂产生菌的筛选及相关废水絮凝效果实验[J].应用与环境生物学报,1997,3(25):67-70.
    [83] 田小光,张介驰,傅俐,等.硫酸还原菌净化工业废水的研究[J].生物技术,1997,7(1):29-31.
    [84] 陶涛,詹德吴,卢秀清,等.预处理高浓度味精废水的实验研究[J].中国给水排水,2001,27(1):39-42.
    [85] 邓述波,胡筱敏,罗茜.高效微生物絮凝剂的培养条件及特征[J].东北大学学报.1999,20(5):525-528.
    [86] 鲁玉菱.翟素军.微生物絮凝剂的研究进展[J].山东环境.1997,(6):12-16.
    [87] 邓述波.余刚.微生物絮凝剂在给水处理中的应用研究[J].中国给水排水,2001,17:5-7
    [88] A guilaw. Nutrient removal and sludge production in the coagulation flocculation process[J]. Water rest. 2002, 36: 2016-2019.
    [1] 陈坚,堵国成.环境友好材料的生产与应用[M].北京:化学工业出版社,2002,314-343.
    [2] Jin S N, Gi S K, Sang O L, et al. Bioflocculant Produced by Aspergillus sp. S242[J]. Biosci.Biotech.Biochem, 1996, 60(2): 325-327.
    [3] 宫小燕,王竞,周集体.絮凝剂产生菌的筛选及其培养条件优化[J].环境科学研究,1999,12(4):9-11.
    [4] 黄民生,孙萍,朱莉.微生物絮凝剂的研制及其絮凝条件[J].环境科学,2000,21(1):23-26.
    [5] 马放,杨基先,金文标,等.环境生物制剂的开发与应用[M].北京:化学工业出版社、环境科学与工程出版中心,2004:220-229,244-248.
    [6] I. L. Shih , Y. T. Van. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresource Technology, 2001, 78 (5): 267-272.
    [7] 郑怀礼.生物絮凝剂与絮凝技术[M].北京.化学工业出版社.2004:47-49.
    [8] 周礼,张永奎,陈晓,李万全,徐绍霞.一种高效微生物絮凝剂产生菌的筛选及培养基优化[J].环境科学学报,2006,26(4):584-588.
    [9] 宫小燕,王曙光,栾兆坤,贾智萍.微生物絮凝剂产生菌的筛选和优化以及在水处理中的应用[J].应用与环境生物学报,2003,9(2):196-199.
    [10] 黄凯,李小明,曾光明,刘精今,杨麒.微生物絮凝剂产生菌的筛选及其培养条件研究[J].环境科学与技术,2005,28(1):12-13.
    [11] Tao R, Yang ZH, Zeng GM, Deng EJ, Li CH. Screening and indentification of bioflocculant-producing microorganisms and optimal study on culture conditions[J]. China Biotechnology, 2005, 25(8): 76-81.
    [12] Hu J J, Zhou Q Y. Environmental Engineering Microbiology. High Education Press, 1999: 90-91.
    [13] Li L, Dong YH, Hu XM, Zhang Yong. On optimization study of cultivation conditions of a flocculant-producing strain[J]. Journal of Safety and Environment, 2005, 5(4): 42-45.
    [14] Zhang YF, purification and coagulation conditions research of microbial flocculant[J]. Journal Of Huaiyin Teachers College (Natural Science Edition), 2005, 4(4): 331-334.
    [15] 姚俊,姜岷,桑莉,等.微生物絮凝剂产生菌NX-2的筛选和合成条件的研究[J].食品与发酵工业,2004,30(4):6-11
    [16] 李旭,李小明,杨麒,等.一株絮凝剂产生菌的筛选及其絮凝特性研究[J].生物技术,2007,17(1):33-37.
    [17] 马放,李淑更,全文标,等.微生物絮凝剂的研究现状及发展趋势[J].工业用水与废水,2002,33(1):7-9.
    [1] 战广琴,钱万英.生物化学实验[M].北京:中国农业大学出版社,2001:24-28.
    [2] 王辉,贾建波.微生物絮凝剂提纯及絮凝能力的应用研究[J],淮阴工学院学报,2004,13(6):39-42.
    [3] Wang Zh, Wang KX. Studies on bioflocculant-producing microorganisms. Acta Microbiologica Sinica, 1995, 35(2): 121-129.
    [4] Nakamura J, Miyashiro S, Hirosa Y. Screening, isolation and some properties of microbial fiocculant. Agri Boil Chem, 1976, 40(2): 373-383.
    [5] Sousa MJ, Teixeira JA, Mota M. Difference in the flocculation mechanism of Kluyveromyces marxianus and Saccharomyces cerevisiae. Biotechnology Letters, 1992, 14(3): 213-218.
    [6] Shimofuruya H, Koide A, Shirota K, Tsujii T, Nakamura M, Suzuki J. The production of flocculating substance by Streptomyces griseus. Biosci. Biotechnol. Biochem. 1996, 60: 498-500.
    [7] I. L. Shih , Y. T. Van. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresource Technology, 2001, 78 (5): 267-272.
    [8] Salehizadeh H, Shojaosadati SA. Extracellular biopolymeric flocculants recent trends and biotechnological importance. Biotechnology Advances, 2001, 19(5): 371-385.
    [9] 李风亭,张善发,赵艳,混凝剂与絮凝剂[M].北京:化学工业出版社,2005.
    [10] 盛艳玲,张强,盛艳茹,王化军,李诚斌,微生物絮凝剂产生菌的筛选及其絮凝性能影响因素的研究[J],矿冶,2006,15(1):29-32.
    [11] Levin S, Friesen W T Flocculation of colloid particles by water soluble polymers [C] Attia YA, Flocculation in biotechnology and separation systems, Ansterdam: Elsevier, 1987,3-201.
    [12] Nakamura J,et al. Flocculant Produced by Paecilomyces Sp.Taxonomic Study and Culture Condition for Production[J].Agri Biol.Chem, 1985, 49(11): 3151-3157.
    [1] 石璐,寻立祥,唐受印等,高效絮凝剂产生菌的筛选、鉴定及培养条件优化[J],湘潭大学自然科学学报,2003,1(25):50-52.
    [2] 李智良,张本兰,裴健,微生物絮凝剂产生菌的筛选及相关废水絮凝效果实验[J],应用与环境生物学报,1997,3(25):67-70.
    [3] 庄源益,戴树桂.生物絮凝剂对水中染料絮凝效果探讨[J].水处理技术,1997,23(6);349-353.
    [4] 彭晓文等.微生物絮凝剂L-3絮凝性能及废水处理研究[J].环境污染治理技术与设备,2004,5(7):35-38.
    [5] 李风琴等.微生物絮凝剂MHXGS2处理靛蓝印染废水脱色的研究[J].江西化工,2004,(4):121-124.
    [6] 宋文华,胡国臣,颜慧等.蒽醌染料及其中间体絮凝菌的特性[J].城市环境与城市生态,1999,12(1):22-24.
    [7] 袁其朋等.絮凝脱色在低聚木糖分离纯化中的应用[J].食品与发酵工业,2002,28(2):58-61.
    [8] 李楠,邓智年,李贤桢等,微生物絮凝剂在甘蔗糖厂中的应用研究[J],工业微生物,2006,36(1):43-46.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.