纳米金共振散射相关光谱及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光相关光谱是一种高灵敏的单分子探测方法,被广泛应用于生命科学及其相关的领域,特别是在核酸杂交检测,基因表达分析,生物分子的相互作用及细胞内的一些生物化学过程的研究中发挥着其它方法无可替代的作用。由于大多数化合物特别是生物分子本身没有荧光(或荧光很弱),用荧光方法(如荧光相关光谱)研究这些化合物时通常需要用荧光染料或荧光量子点进行标记。然而,有机荧光染料的化学稳定性和光稳定性较差,在某些生物应用中受到一定的限制。另外,目前制备的荧光量子点大都由Cd, Pb, Hg, Te, Se等有毒元素组成,不能用于生物体内的检测。
     金纳米粒子由于其表面效应、体积效应和量子尺寸效应表现出特殊的光学性质,如强的散射特性和吸收特性。另外金纳米粒子生物相容性好、易于与生物分子连接的特性,是一种具有广泛应用前景的生物探针。目前金纳米探针已成功地应用于核酸杂交检测,免疫分析以及细胞成像等领域。现有的检测方法主要有:比色法、紫外光谱法、散射法和动态光散射法,这些方法都有自己的优缺点。主要的缺点在于检测的灵敏度不高,而且都是集合的方法。本论文基于荧光相关光谱基本原理和激光共焦构型,利用金纳米粒子具有非常强的光散射特性,建立了共振散射相关光谱新方法(Resonance Light Scattering Correlation Spectroscopy,RLSCS)。将这一方法成功地应用于金纳米粒子的平动和转动行为的研究,浓度的表征。同时应用于DNA杂交检测和蛋白质的相互作用研究。主要工作包括以下几个方面:
     1.共振散射相关光谱是基于纳米粒子(如金纳米粒子)的共振散射特性建立的一种单颗粒探测新方法。我们参照荧光相关光谱理论模型,将金纳米粒子共振散射光近似地按照荧光相关光谱中的荧光来处理,建立了散射相关光谱的理论模型,提出了共振散射相关光谱概念。基于激光共焦构型,建立共振散射相关光谱探测系统。对该系统的基本参数进行了系统的研究和优化。显著地减小了系统的检测体积(小于1飞升),提高检测系统的信/背(信号/背景信号)比。该系统能够获得粒径大于15纳米金颗粒的共振散射相关光谱。建立的模型与实验数据很好的吻合。
     2.基于散射相关光谱建立了一种表征金纳米粒子的平动扩散和转动扩散及其浓度的新方法。我们系统的研究了各种因素对金纳米粒子的平动扩散和转动扩散行为的影响。发现当不同波长激光照射时,仅在激光波长处在共振散射峰位置(纳米金的共振散射波长为600纳米附近)时,金纳米粒子的转动扩散可以被共振散射相关光谱探测。为了证实散射相关光谱曲线中快速运动属于转动扩散,设计了改变针孔孔径的实验,我们发现孔径由35微米增大到110微米时,其平动扩散时间由2.39毫秒相应地增大到3.74毫秒;而转动扩散时间却保持6.06微秒不变,这一实验结果与预测相吻合。基于纳米粒子的平动扩散时间计算了纳米金的动力学半径,其动力学半径与电镜测定结果基本相吻合。从共振散射相关光谱中获得检测体积内的粒子个数,用已知扩散系数的荧光染料测定共振散射相关光谱的检测体积,据此,我们建立了金纳米粒子的浓度测定方法,其测定结果与电镜测定方法基本相吻合。研究结果表明共振散射相关光谱是表征纳米粒子的一种有效的新方法。
     3.我们将共振光散射相关光谱应用到核酸杂交检测中,建立均相DNA杂交探测新方法。我们首先将两个不同片段的寡核苷酸探针通过巯基引入到纳米金表面,将其与两个片段互补的靶目标DNA加入到体系中,然后用共振光散射相关光谱检测纳米金聚集体的扩散时间和光散射强度来表征纳米金的聚集程度。研究发现随着靶目标DNA的含量不断增加,纳米金聚集体的扩散时间和散射光强度也相应的增加。用单个碱基错配的靶目标DNA加入到体系中,发现其扩散时间和散射光强度也相应的增加,但与完全互补的靶目标DNA相比,其增加的程度要弱一些。该方法检测限达到0.1 nM,与比色法相比,检测限提高了100倍左右。研究结果表明共振光散射相关光谱能够很好的区分DNA碱基序列,同时还可以用于DNA含量的检测,当靶目标DNA的浓度在0-36 nM时,聚集体的扩散时间与核酸浓度有较好的线性关系。与比色法的2-3小时相比,该方法是一种快速检测方法,检测时间也只需要5分钟左右。
     4.将纳米金共振光散射相关光谱应用于生物分子的相互作用研究。以过氧化酶-生物素与亲和素相互作用为免疫反应模型,通过监测反应体系中纳米金聚集体的扩散时间来确定纳米金与过氧化酶生物素最佳吸附的pH值以及生物素与亲和素反应的最佳pH值。用辣根过氧化酶-生物素通过化学吸附作用修饰到纳米金的表面,加入链霉亲和素(有四个结合位点)结合生物素使得纳米金偶联在一起,通过监测纳米金聚集体的扩散时间测定纳米金的聚集程度。随着链霉亲和素的浓度增加,实验发现金纳米粒子聚集体的扩散时间也相应的延长,当链霉亲和素的浓度达到65 nM时(恰好链霉亲和素与生物素的化学计量比为1︰4),聚集体的扩散时间达到最大值。当链霉亲和素为260 nM和780 nM时,发现聚集体扩散时间反而随着链霉亲和素浓度的增加而减小。当链霉亲和素大大过量时,链霉亲和素迅速地包覆在生物素化的纳米金表面,从而部分抑制了纳米金的交联。通过对纳米金聚集动力学的研究,证实了辣根过氧化酶生物素与亲和素诱导的纳米金聚集过程符合反应限制模型。
Fluorescence correlation spectroscopy (FCS) has been widely applied in biological and biomedical fields, especially in DNA hybridization detection, gene expression and interaction of bio-molecules. So far, FCS becomes an indispensable tool to study some biological events in cells at single molecular level because of its high sensitivity and very small detection volume. However, most of bio-molecules have no native fluorescence (or very weak), and thus, they need to be labeled with organic dye or inorganic nanocrystal quantum dots when fluorescence methods such as FCS method are used. However, some applications are limited by their bleaching or blinking properties of organic fluorescent dyes. Additionally, quantum dots are not suitable for some applications in vivo because most of quantum dots are composed of toxic elements such as Cd, Pb, Hg, Te and Se.
     The gold nanoparticles (GNPs) have been regarded as an ideal nano-probe with potential applications in diagnosis and bio-assay due to their unique optical and chemical properties. The labeling procedure of GNPs method is fair simple. The GNPs can conjugate to most of biomolecules such as nucleotides and proteins by adsorption. Meanwhile, the bioactivity of biomolecules was no significant change during labeling process, and GNPs conjugates with biomolecule are fairly stable and have no toxicity. To date, GNPs have been widely applied in the DNA detection and immunoassay detection. In this dissertation, we first build a resonance light scattering correlation spectroscopy (RLSCS) system based on the principle of fluorescence correlation spectroscopy and laser confocal configuration. All kinds of parameters in the RLSCS system were systematically optimized. The confocal detection volume in RLSCS was about 1 fl. And then, RLSCS method was successfully applied for characterizing translational and rotational diffusion, particles size and concentration of GNPs. Finally, RLSCS method also was applied in DNA hybridization detection and interaction of proteins using GNPs as probes. The main work includes as following:
     (1) RLSCS is a new single particle method, which is based on the resonance light scattering properties of gold nanoparticles. Following the principle of FCS, we consider resonance scattering light in RLSCS as fluorescence in FCS and build a theoretical model of RLSCS. The setup of RLSCS is built on the laser confocal configuration. All kinds of parameters are studied and optimized systematically. The detection volume obtained was about 1 fL. The RLSCS of gold nanoparticles for particles size larger than 15 nm can be obtained by this method. Our theoretical model of RLSCS is very well in agreement with experimental data.
     (2) We developed a new method to characterize concentration, translational and rotational diffusion of GNPs with RLSCS technology. We systematically studied the effects of some parameters on translational and rotational diffusion. We discovered that the intensity of scattering light and the polarization anisotropy of GNPs were significantly dependent on the illumination wavelength of laser and shape of GNPs. In the resonance scattering band, the polarization anisotropy and the scattering light intensity are very strong to successfully obtain the rotational information of GNPs by RLSCS. Far from the resonance scattering band, the rotational information of GNPs can not be tracked. The RLSCS method was successfully used to characterize the rotational and translational behaviors of GNPs and gold nanorods in solution using 632.8 nm He-Ne laser as light source. Meanwhile, the concentration of GNPs was characterized by RLSCS according to the particle numbers in the known illumination volume. The numbers of GNPs in the confocal detection volume were obtained from the resonance light scattering autocorrelation function and the confocal detection volume was determined by the translational diffusion coefficient of a known fluorescent dye.
     (3) The RLSCS technology was successfully applied in DNA hybridization. In this experiment, the two different oligo-DNA was introduced onto the surface of GNPs with thiol functional group. The aggregation of GNPs was formed by adding complementary target DNA. The diffusion time and intensity of scattering-light from GNPs can be monitored by RLSCS. The degree of aggregation became larger with the concentration increase of target oligo DNA. RLSCS discriminated complementary target DNA and single-base mismatch DNA through the diffusion time and intensity of scattering light from GNPs. The limit of detection for target oligonucleotides reach 0.1 nM using 21 nm gold nanoparticles modified with oligonucleotides as probes. Meanwhile, it can offer quantitative analysis for DNA concentration range from 0-48 nM.
     (4) The interaction between HRP-biotin and streptavidin was characterized by RLSCS with GNPs as probes. This interaction was regard as an immune assay model. The optimal environment pH value 8.4 for HRP-biotin covalent conjugation to the surface of GNPs was obtained by RLSCS as well as the pH value in the reaction system. The degree of aggregation was increasing with increase of the concentrations of streptavidin. It is interesting that the average translational diffusion time reached the maximum value when streptavidin concentration is 65 nM. However, the average translation diffusion time will gradually decrease when the concentration of streptavidin will be increased continually from 65 nM to 780 nM. It found that it reached the optimum stoichimetric ratio when the streptavidin concentration was 65 nM. The surface of HRP-biotinylated GNPs was rapidly occupied by large quantity of streptavidin molecules when streptavidin concentration was over 65 nM, which inhibit the cross link between GNPs. The RLSCS was applied in studying the dynamic of reaction. We found the aggregation of GNPs induced by interaction of HRP-biotin and streptavidin coincided with the reaction-limited aggregation modeling.
引文
[1] Weiss, S., Fluorescence spectroscopy of single biomolecules. Science 1999, 283, (5408), 1676-1683.
    [2] Zhang, P.; Ren, J., Advances in Fluorescence Correlation Spectroscopy and Its Applications in Single Molecule Detection. Chinese Journal of Analytical Chemistry 2005, 33, (6), 875-880.
    [3] Liang, S.; Dong, X., Progress in single molecule detection. Chinese Journal of Analytical Chemistry 2006, 34, (3), 421-426.
    [4] Richard, B.; John, G.; and Martin, M., Review of Techniques for Single Molecule Detection in Biological Applications. National Physical Laboratory 2001, 2, 6-38.
    [5] Chen, B. Y.; Yeh, M. K.; Tai, N. H., Accuracy of the spring constant of atomic force microscopy cantilevers by finite element method. Analytical Chemistry 2007, 79, (4), 1333-1338.
    [6] Zavala, G., Atomic force microscopy, a tool for characterization, synthesis and chemical processes. Colloid and Polymer Science 2008, 286, (1), 85-95.
    [7] Custance, O.; Morita, S., Materials science - How to move an atom. Science 2008, 319, (5866), 1051-1052.
    [8] Ternes, M.; Lutz, C. P.; Hirjibehedin, C. F.; Giessibl, F. J.; Heinrich, A. J., The force needed to move an atom on a surface. Science 2008, 319, (5866), 1066-1069.
    [9] Runguang, S., Analytical technology of modern electron microscope and its appl ication in biology. Journal of Shaanxi Normal University 1999, 27, (1), 39-46.
    [10] Sharp, S. L.; Warmack, R.; Goudonnei, J. P.; Lee, T.; Ferrell, T. L., Spectroscopy and Imaging Using the Photon Scanning-Tunneling Microscope. Acc. Chem. Res. 1993, 26, 377-382.
    [11] Avouris, P., Atom-resolved surface chemistry using the scanning tunneling microscope. J. Phys. Chem. 1990, 94, 2246-2256.
    [12] Fan, F. R.; Bard, A. J., Electrochemical Detection of Single Molecules. Science 1995, 267, (5199), 871-874.
    [13] Gheber, L. A.; Hwang, J.; Edidin, M., Design and optimization of a near-field scanning optical microscope for imaging biological samples in liquid. Appl. Opt. 1998, 37, (16), 3574-81.
    [14] Tamiya, E.; Iwabuchi, S.; Nagatani, N.; Murakami, Y.; Sakaguchi, T.; Yokoyama, K.; Chiba, N.; Muramatsu, H., Simultaneous topographic and fluorescence imagings of recombinant bacterial cells containing a green fluorescent protein gene detected by a scanning near-field optical/atomic force microscope. Anal. Chem. 1997, 69, (18), 3697-701.
    [15] Gao, H.; Oberringer, M.; Englisch, A.; Hanselmann, R. G.; Hartmann, U., The scanning near-field optical microscope as a tool for proteomics. Ultramicroscopy 2001, 86, (1-2), 145-50.
    [16] Magde, D.; Elson, E.; Webb, W. W., Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy. Physical Review Letters 1972, 29, (11), 705.
    [17] Hess, S. T.; Webb, W. W., Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophysical Journal 2002, 83, (4), 2300-2317.
    [18] Eigen, M.; Rigler, R., Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. U S A 1994, 91, (13), 5740-7.
    [19] Rigler, R.; Mets,ü.; Widengren, J.; Kask, A. P., Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion European Biophysics Journal 1993, 22, (3), 169-175.
    [20] Rigler, R., Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology. J. Biotechnol. 1995, 41, (2-3), 177-86.
    [21] Brinkmeier, M.; Dorre, K.; Riebeseel, K.; Rigler, R., Confocal spectroscopy in microstructures. Biophysical Chemistry 1997, 66, (2-3), 229-239.
    [22] Schwille, P.; Meyer-Almes, F. J.; Rigler, R., Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 1997, 72, (4), 1878-86.
    [23] Chen, Y.; Muller, J. D.; Tetin, S. Y.; Tyner, J. D.; Gratton, E., Probing ligand protein binding equilibria with fluorescence fluctuation spectroscopy. Biophys. J. 2000, 79, (2), 1074-84.
    [24] Fahey, P. F.; Koppel, D. E.; Barak, L. S.; Wolf, D. E.; Elson, E. L.; Webb, W. W., Lateral diffusion in planar lipid bilayers. Science 1977, 195, (4275), 305-6.
    [25] Fahey, P. F.; Webb, W. W., Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid crystals. Biochemistry 1978, 17, (15), 3046-53.
    [26] Korlach, J.; Schwille, P.; Webb, W. W.; Feigenson, G. W., Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U S A 1999, 96, (15), 8461-8466.
    [27] Ehrenberg, M.; and Rigler, R., Rotational brownian motion and fluorescence intensity fluctuations. Chem. Phys. 1974, 4, 390-401.
    [28] Aragón, S. R.; Pecora, R., Fluorescence correlation spectroscopy and Brownian rotational diffusion. Biopolymers 1975, 14, 119-138.
    [29] Tsay, J. M.; Doose, S.; Weiss, S., Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy. J. Am. Chem. Soc.2006, 128, (5), 1639-47.
    [30] Rigler, R.; Widengren, W.; and Mets,ü., Fluorescence Spectroscopy: New Methods and Applications. ed OWolfbeis 1992, (Berlin: Springer), 13-24.
    [31] Widengren, J.; Mets,ü.; Rigler, R., Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chemical Physics 1999, 250, (2), 171-186.
    [32] Rauer, B.; Neumann, E.; Widengren, J.; Rigler, R., Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin alpha-bungarotoxin with Torpedo californica acetylcholine receptor. Biophys. Chem. 1996, 58, (1-2), 3-12.
    [33] Dorn, I. T.; Neumaier, K. R.; Tampe, R., Molecular recognition of histidine-tagged molecules by metal-chelating lipids monitored by fluorescence energy transfer and correlation spectroscopy. Journal of the American Chemical Society 1998, 120, (12), 2753-2763.
    [34] Sevenich, F. W.; Langowski, J.; Weiss, V.; Rippe, K., DNA binding and oligomerization of NtrC studied by fluorescence anisotropy and fluorescence correlation spectroscopy. Nucleic Acids Research 1998, 26, (6), 1373-1381.
    [35] Pack, C. G.; Nishimura, G.; Tamura, M.; Aoki, K.; Taguchi, H.; Yoshida, M.; Kinjo, M., Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy. Cytometry 1999, 36, (3), 247-253.
    [36] Pack, C. G.; Aoki, K.; Taguchi, H.; Yoshida, M.; Kinjo, M.; Tamura, M., Effect of electrostatic interactions on the binding of charged substrate to GroEL studied by highly sensitive fluorescence correlation spectroscopy. Biochemical and Biophysical Research Communications 2000, 267, (1), 300-304.
    [37] Schuler, J.; Frank, J.; Trier, U.; Schafer-Korting, M.; Saenger, W. A., Interaction kinetics of tetramethylrhodamine transferrin with human transferrin receptor studied by fluorescence correlation spectroscopy. Biochemistry 1999, 38, (26), 8402-8408.
    [38] Xu, H.; Frank, J.; Trier, U.; Hammer, S.; Schroder, W.; Behlke, J.; Schafer-Korting, M.; Holzwarth, J. F.; Saenger, W., Interaction of fluorescence labeled single-stranded DNA with hexameric DNA-helicase RepA: A photon and fluorescence correlation spectroscopy study. Biochemistry 2001, 40, (24), 7211-7218.
    [39] Bismuto, E.; Gratton, E.; Lamb, D. C., Dynamics of ANS binding to tuna apomyoglobin measured with fluorescence correlation spectroscopy. Biophysical Journal 2001, 81, (6), 3510-3521.
    [40] Boonen, G.; Pramanik, A.; Rigler, R.; Haberlein, H., Evidence for specific interactions between kavain and human cortical neurons monitored by fluorescence correlation spectroscopy. Planta Medica 2000, 66, (1), 7-10.
    [41] Van Craenenbroeck, E.; Engelborghs, Y., Quantitative characterization of the binding of fluorescently labeled colchicine to tubulin in vitro using fluorescence correlation spectroscopy. Biochemistry 1999, 38, (16), 5082-5088.
    [42] Kinjo, M.; and Rigler, R., Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy. Nucleic. Acids. Res. 1995, 23, (10 ), 1795-1799.
    [43] Auer, M.; Moore, K. J.; Meyer-Almes, F. J.; Guenther, R.; Pope, A. J.; Stoeckli, K. A., Fluorescence correlation spectroscopy: lead discovery by miniaturized HTS. Drug Discovery Today 1998, 3, (10), 457-465.
    [44] Schwille, P.; Oehlenschlager, F.; Walter, N. G., Quantitative hybridization kinetics of DNAprobes to RNA in solution followed by diffusional fluorescence correlation analysis. Biochemistry 1996, 35, (31), 10182-93.
    [45] Andrade, S. M.; Costa, S. M.; Borst, J. W.; van Hoek, A.; Visser, A. J., Translational and Rotational Motions of Albumin Sensed by a Non-Covalent Associated Porphyrin Under Physiological and Acidic Conditions: A Fluorescence Correlation Spectroscopy and Time Resolved Anisotropy Study. J. Fluoresc. 2008.
    [46] Haupts, U.; Maiti, S.; Schwille, P.; Webb, W. W., Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U S A 1998, 95, (23), 13573-8.
    [47] Schwille, P.; Kummer, S.; Heikal, A. A.; Moerner, W. E.; Webb, W. W., Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc. Natl. Acad. Sci. U S A 2000, 97, (1), 151-6.
    [48] Tyagi, S.; Kramer, F. R., Molecular Beacons: Probes that Fluoresce upon Hybridization. Nature Biotechnology 1996, 14, 303 - 308.
    [49] Bonnet, G.; Krichevsky, O.; Libchaber, A., Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl. Acad. Sci. U S A 1998, 95, (15), 8602-6.
    [50] Goddard, N. L.; Bonnet, G.; Krichevsky, O.; Libchaber, A., Sequence dependent rigidity of single stranded DNA. Phys. Rev. Lett. 2000, 85, (11), 2400-3.
    [51] Rigler, R.; Pramanik, A.; Jonasson, P.; Kratz, G.; Jansson, O. T.; Nygren, P. A.; Stahl, S.; Ekberg, K.; Johansson, B. L.; Uhlen, S.; Uhlen, M.; Jornvall, H.; Wahren, J., Specific binding of proinsulin C-peptide to human cell membranes. Proc. Natl. Acad. Sci. U S A 1999, 96, (23), 13318-13323.
    [52] Pramanik, A.; Rigler, R., Ligand-receptor interactions in the membrane of cultured cells monitored by fluorescence correlation spectroscopy. Biol. Chem. 2001, 382, (3), 371-8.
    [53] Pramanik, A.; Olsson, M.; Langel, U.; Bartfai, T.; Rigler, R., Fluorescence correlation spectroscopy detects galanin receptor diversity on insulinoma cells. Biochemistry 2001, 40, (36), 10839-10845.
    [54] Berland, K. M.; So, P. T.; Gratton, E., Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys. J. 1995, 68, (2), 694-701.
    [55] Politz, J. C.; Browne, E. S.; Wolf, D. E.; Pederson, T., Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc. Natl. Acad. Sci. U S A 1998, 95, (11), 6043-8.
    [56] Wachsmuth, M.; Waldeck, W.; Langowski, J., Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J. Mol. Biol. 2000, 298, (4), 677-89.
    [57] Gennerich, A.; Schild, D., Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used. Biophysical Journal 2000, 79, (6), 3294-3306.
    [58] Dittrich, P.; Malvezzi-Campeggi, F.; Jahnz, M.; Schwille, P., Accessing molecular dynamics in cells by fluorescence correlation spectroscopy. Biological Chemistry 2001, 382, (3), 491-494.
    [59] Kim, S. A.; Schwille, P., Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience. Current Opinion in Neurobiology 2003, 13, (5), 583-590.
    [60] Jung, J.; Van Orden, A., Folding and unfolding kinetics of DNA hairpins in flowing solutionby multiparameter fluorescence correlation spectroscopy. J. Phys. Chem. B 2005, 109, (8), 3648-57.
    [61] Walter, N. G.; Schwille, P.; Eigen, M., Fluorescence correlation analysis of probe diffusion simplifies quantitative pathogen detection by PCR. Proc. Natl. Acad. Sci. U S A 1996, 93, (23), 12805-10.
    [62] Wennmalm, S.; Edman, L.; Rigler, R., Conformational fluctuations in single DNA molecules. Proc. Natl. Acad. Sci. U S A 1997, 94, (20), 10641-6.
    [63] Rigler, R.; Foldes-Papp, Z.; Meyer-Almes, F. J.; Sammet, C.; Volcker, M.; Schnetz, A., Fluorescence cross-correlation: a new concept for polymerase chain reaction. J. Biotechnol. 1998, 63, (2), 97-109.
    [64] Korn, K.; Gardellin, P.; Liao, B.; Amacker, M.; Bergstrom, A.; Bjorkman, H.; Camacho, A.; Dorhofer, S.; Dorre, K.; Enstrom, J.; Ericson, T.; Favez, T.; Gosch, M.; Honegger, A.; Jaccoud, S.; Lapczyna, M.; Litborn, E.; Thyberg, P.; Winter, H.; Rigler, R., Gene expression analysis using single molecule detection. Nucleic Acids Research 2003, 31, (16), e89.
    [65] Van Orden, A.; Cai, H.; Goodwin, P. M.; Keller, R. A., Efficient detection of single DNA fragments in flowing sample streams by two photon fluorescence excitation. Analytical Chemistry 1999, 71, (11), 2108-2116.
    [66] Clamme, J. P.; Azoulay, J.; Mely, Y., Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two photon fluorescence correlation spectroscopy. Biophysical Journal 2003, 84, (3), 1960-1968.
    [67] Oehlenschlager, F.; Schwille, P.; Eigen, M., Detection of HIV-1 RNA by nucleic acid sequence-based amplification combined with fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U S A 1996, 93, (23), 12811-6.
    [68] Schwille, P.; Bieschke, J.; Oehlenschlager, F., Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys. Chem. 1997, 66, (2-3), 211-28.
    [69] Bieschke, J.; Giese, A.; Schulz-Schaeffer, W.; Zerr, I.; Poser, S.; Eigen, M.; Kretzschmar, H., Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. Proc. Natl. Acad. Sci. U S A 2000, 97, (10), 5468-73.
    [70] Lu, H. P.; Iakoucheva, L. M.; Ackerman, E. J., Single-molecule conformational dynamics of fluctuating noncovalent DNA - Protein interactions a in DNA damage recognition. Journal of the American Chemical Society 2001, 123, (37), 9184-9185.
    [71] Koltermann, A.; Kettling, U.; Bieschke, J.; Winkler, T.; Eigen, M., Rapid assay processing by integration of dual-color fluorescence cross-correlation spectroscopy: high throughput screening for enzyme activity. Proc. Natl. Acad. Sci. U S A 1998, 95, (4), 1421-6.
    [72] Winkler, T.; Kettling, U.; Koltermann, A.; Eigen, M., Confocal fluorescence coincidence analysis: an approach to ultra high-throughput screening. Proc. Natl. Acad. Sci. U S A 1999, 96, (4), 1375-8.
    [73] Carl Zeiss Inc., The manuscript of Fluorescence Correlation Spectroscopy. Manuscript 2000.
    [74] Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites J. Am. Chem. Soc. 1993, 115, (19), 8706-8715.
    [75] Chan, W. C.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S., Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002, 13, (1),40-6.
    [76] Dabbousi, B. O.; RodriguezViejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G., (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry B 1997, 101, (46), 9463-9475.
    [77] Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S., Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology 2001, 19, (7), 631-635.
    [78] Dong, C. Q.; Qian, H. F.; Fang, N. H.; Ren, J. C., Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy. J. Phys. Chem. B 2006, 110, (23), 11069-11075.
    [79] Dong, C.; Bi, R.; Qian, H.; Li, L.; Ren, J., Coupling fluorescence correlation spectroscopy with microchip electrophoresis to determine the effective surface charge of water-soluble quantum dots. Small 2006, 2, (4), 534-8.
    [80] Zhang, P. D.; Li, L. A.; Dong, C. Q.; Qian, H. F.; Ren, J. C., Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy. Analytica Chimica Acta 2005, 546, (1), 46-51.
    [81] Heuff, R. F.; Swift, J. L.; Cramb, D. T., Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities. Phys. Chem. Chem. Phys. 2007, 9, (16), 1870-80.
    [82] Storhoff, J. J.; Mirkin, C. A., Programmed materials synthesis with DNA. Chem. Rev. 1999, 99, (7), 1849-1862.
    [83]赵凯华;钟锡华,光学2003,北京大学出版社,北京.
    [84]吴奇;高均,海外高分子科学的新进展1997,化学工业出版社,北京.
    [85]傅献彩;沈文霞;姚天扬,物理化学1990,高等教育出版社,北京.
    [86] Sinclair, D.; LaMer, V. K., Light scattering as a measure of particle size in aerosols. Chem. Rev. 1949, 44, (2), 245-267.
    [87]彭敬东,共振瑞利散射光谱在天然药物分析中的应用研究.西南大学博士学位论文2005,重庆.
    [88]赵华文,光散射技术在免疫分析中的应用研究.西南大学博士学位论文2006,重庆.
    [89] Pasternack, R. F.; Collings, P. J., Resonance light scattering: a new technique for studying chromophore aggregation. Science 1995, 269, 935-939.
    [90] Yguerabide, J.; Yguerabide, E. E., Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J. Cell. Biochem. 2001, 37, 71-81.
    [91] Khlebtsov, B. N.; Bogatyrev, V. A.; Dykman, L. A.; Khlebtsov, N. G., Spectra of resonance light scattering of gold nanoshells: Effects of polydispersity and limited electron free path. Optics and Spectroscopy 2007, 102, (2), 233-241.
    [92]蒋治良;刘凤志;刘绍璞;卢欣,氯金酸罗丹明S缔合纳米微粒体系的共振散射增强与荧光猝灭研究.分析化学2003, 31(11), 1364-1368.
    [93]李振中;蒋治良;杨光;卢丹;刘绍璞;,罗丹明6G缔合微粒共振散射光谱法测定过氧化氢.光谱学与光谱分析2005, 25, (8), 1286-1288.
    [94]蒋治良;刘庆业;刘绍璞;,金原子团簇的共振散射光强度函数研究.西南师范大学学报2001, 26, (2), 174-178.
    [95]陈绍芬;黄承志;谭克俊,光散射法快速灵敏测定和表征啤酒酵母.高等学校化学学报, 2006, 27, (6), 1023-1027.
    [96]赵小辉;黄承志,蛋白质与十二烷基硫酸钠相互作用的光散射偏振特性.科学通报2006, 51, (23), 2729-2732.
    [97]蒋治良;张声森;梁爱惠;黄思玉,免疫纳米金催化氯金酸与盐酸羟胺反应:共振散射光谱检测超痕量免疫球蛋白G.高等学校化学学报, 2008, 38, (6), 504-510.
    [98]梁爱惠;张南南;蒋治良;刘荣进;,银纳米微粒共振散射光谱法测定羟基自由基及其应用.中国科学(B) 2008, 38, (1), 35-42.
    [99] Pecora, R., Dynamic light scattering measurement of nanometer particles in liquids. Journal of nanoparticle Research 2000, 2, 123-131.
    [100] Rodriguez-Fernandez, J.; Perez-Juste, J.; Liz-Marzan, L. M.; Lang, P. R., Dynamic light scattering of short Au rods with low aspect ratios. Journal of Physical Chemistry C 2007, 111, (13), 5020-5025.
    [101] Liu, X.; Dai, Q.; Austin, L.; Coutts, J.; Knowles, G.; Zou, J.; Chen, H.; Huo, Q., A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 2008, 130, (9), 2780-2.
    [102] Dai, Q.; Liu, X.; Coutts, J.; Austin, L.; Huo, Q., A one-step highly sensitive method for DNA detection using dynamic light scattering. J. Am. Chem. Soc. 2008, 130, (26), 8138-9.
    [103] Suissa, M.; Place, C.; Goillot, E.; Freyssingeas, E., Internal dynamics of a living cell nucleus investigated by dynamic light scattering. Eur. Phys. J. E Soft Matter 2008.
    [104] Turkevich;J.; P.C., S.; Hillier, J., Nucleation and Growth Process in the Synthesis of Colloidal Gold. Discuss. Faraday. Soc. 1951, 11, 55-57.
    [105] Frens, G., Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20-22.
    [106] Daniel, M. C.; Astruc, D., Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, (1), 293-346.
    [107] Giersig, M.; Mulvaney, P., Preparation of ordered colloid monolayers by electrophoretic deposition Langmuir 1993, 9, (12), 3408-3413.
    [108] Johnson, S. R.; Evans, S. D.; Mahon, S. W.; Ulman, A., Synthesis and characterisation of surfactant-stabilised gold nanoparticles. Supramolecular Science 1997, 4, (3-4), 329-333.
    [109] Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Comm. 1994, 7, 801-802.
    [110] Brown, K. R.; Natan, M. J., Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 1998, 14, (4), 726-728.
    [111] Jana, N. R.; Gearheart, L.; Murphy, C. J., Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 2001, 17, (22), 6782-6786.
    [112] Zhou, Y.; Wang, C. Y.; Zhu, Y. R.; Chen, Z. Y., A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chemistry of Materials 1999, 11, (9), 2310-+.
    [113] Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C., Gold nanorods: Electrochemical synthesis and optical properties. Journal of Physical Chemistry B 1997, 101, (34), 6661-6664.
    [114] Sun, Y. G.; Xia, Y. N., Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, (5601), 2176-2179.
    [115] Madjet, M.; Guet, C.; Johnson, W. R., Comparative study of exchange-correlation effects onthe electronic and optical properties of alkali-metal clusters. Phys. Rev. A 1995, 51, (2), 1327-1339.
    [116] Sonichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.; Wilson, O.; Mulvaney, P., Drastic Reduction of Plasmon Damping in Gold Nanorods. Physical Review Letters 2002, 88, (7), 077402.
    [117] Mulvaney, P., Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir 1996, 12, 788-800.
    [118] Link, S.; El-Sayed, M. A., Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry 2000, 19, (3), 409-453.
    [119] Tokareva, I.; Minko, S.; Fendler, J. H.; Hutter, E., Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. Journal of the American Chemical Society 2004, 126, (49), 15950-15951.
    [120] Yguerabide, J.; Yguerabide, E. E., Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - I. Theory. Analytical Biochemistry 1998, 262, (2), 137-156.
    [121] Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. Journal of Physical Chemistry B 2006, 110, (14), 7238-7248.
    [122] Link, S.; El-Sayed, M. A., Size and temperature dependence of the plasmon absorption of Colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, (21), 4212-4217.
    [123] Taton, T. A.; Mirkin, C. A.; Letsinger, R. L., Scanometric DNA array detection with nanoparticle probes. Science 2000, 289, (5485), 1757-60.
    [124] Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, (5329), 1078-81.
    [125] Mirkin, C. A.; Taton, T. A., Materials chemistry - Semiconductors meet biology. Nature 2000, 405, (6787), 626-627.
    [126] Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L., One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120, (9), 1959-1964.
    [127] Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L., DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 1998, 120, (48), 12674-12675.
    [128] Nam, J. M.; Park, S. J.; Mirkin, C. A., Bio-barcodes based on oligonucleotide-modified nanoparticles. J. Am. Chem. Soc. 2002, 124, (15), 3820-1.
    [129] Park, S. J.; Taton, T. A.; Mirkin, C. A., Array-based electrical detection of DNA with nanoparticle probes. Science 2002, 295, (5559), 1503-6.
    [130] Watson, K. J.; Park, S. J.; Im, J. H.; Nguyen, S. T.; Mirkin, C. A., DNA-block copolymer conjugates. J. Am. Chem. Soc. 2001, 123, (23), 5592-3.
    [131] Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, (6592), 607-9.
    [132] Storhoff, J. J.; Lazarides, A. A.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L.; Schatz, G. C.,What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 2000, 122, (19), 4640-4650.
    [133] Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K.; Han, M. S.; Mirkin, C. A., Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, (5776), 1027-30.
    [134] Baptista, P.; Doria, G.; Henriques, D.; Pereira, E.; Franco, R., Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. J Biotechnol 2005, 119, (2), 111-7.
    [135] Liu, J.; Lu, Y., A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125, (22), 6642-3.
    [136] Liu, J.; Lu, Y., Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal. Chem. 2004, 76, (6), 1627-32.
    [137] Liu, J.; Lu, Y., Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 2004, 126, (39), 12298-305.
    [138] Sato, K.; Hosokawa, K.; Maeda, M., Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc. 2003, 125, (27), 8102-3.
    [139] Li, H. X.; Rothberg, L., Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, (39), 14036-14039.
    [140] Li, H.; Rothberg, L. J., DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal. Chem. 2004, 76, (18), 5414-7.
    [141] Gourishankar, A.; Shukla, S.; Ganesh, K. N.; Sastry, M., Isothermal titration calorimetry studies on the binding of DNA bases and PNA base monomers to gold nanoparticles. J. Am. Chem. Soc. 2004, 126, (41), 13186-7.
    [142] Chowdhury, M. H.; Julian, A. M.; Coates, C. J.; Cote, G. L., Detection of differences in oligonucleotide-influenced aggregation of colloidal gold nanoparticles using absorption spectroscopy. J. Biomed. Opt. 2004, 9, (6), 1347-57.
    [143] Dulkeith, E.; Ringler, M.; Klar, T. A.; Feldmann, J.; Munoz Javier, A.; Parak, W. J., Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano. Lett. 2005, 5, (4), 585-9.
    [144] Zhang, R.; Wang, X.; He, N., Specific binding of dacarbazine to DNA bases and oligonucleotides based on gold nanoparticles. J. Nanosci. Nanotechnol. 2005, 5, (8), 1245-8.
    [145] Seela, F.; Jawalekar, A. M.; Chi, L.; Zhong, D.; Fuchs, H., Gold DNA-conjugates: ion specific self-assembly of gold nanoparticles via the dG-quartet. Nucleosides Nucleotides Nucleic Acids 2005, 24, (5-7), 843-6.
    [146] Wang, L. H.; Liu, X. F.; Hu, X. F.; Song, S. P.; Fan, C. H., Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chemical Communications 2006, (36), 3780-3782.
    [147] Nie, B.; Shortreed, M. R.; Smith, L. M., Quantitative detection of individual cleaved DNA molecules on surfaces using gold nanoparticles and scanning electron microscope imaging. Anal. Chem. 2006, 78, (5), 1528-34.
    [148] Wu, Z. S.; Jiang, J. H.; Fu, L.; Shen, G. L.; Yu, R. Q., Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal. Biochem. 2006, 353, (1), 22-9.
    [149] Raschke, G.; Kowarik, S.; Franzl, T.; Sonnichsen, C.; Klar, T. A.; Feldmann, J.; Nichtl, A.; Kurzinger, K., Biomolecular recognition based on single gold nanoparticle light scattering. Nano. Letters. 2003, 3, (7), 935-938.
    [150] Sastry, M.; Lala, N.; Patil, V.; Chavan, S. P.; Chittiboyina, A. G., Optical absorption study of the biotin-avidin interaction on colloidal silver and gold particles. Langmuir 1998, 14, (15), 4138-4142.
    [151] Aslan, K.; Luhrs, C. C.; Perez-Luna, V. H., Controlled and reversible aggregation of biotinylated gold nanoparticles with streptavidin. Journal of Physical Chemistry B 2004, 108, (40), 15631-15639.
    [152] Kohut, A.; Voronov, A.; Peukert, W., Organization of functionalized gold nanoparticles by controlled protein interactions. Particle & Particle Systems Characterization 2006, 22, (5), 329-335.
    [153] Slim, M.; Durisic, N.; Grutter, P.; Sleiman, H. F., DNA-protein noncovalent cross-linking: Ruthenium dipyridophenazine biotin complex for the assembly of proteins and gold nanoparticles on DNA templates. Chembiochem 2007, 8, (7), 804-812.
    [154] Hou, S. Y.; Chen, H. K.; Cheng, H. C.; Huang, C. Y., Development of zeptomole and attomolar detection sensitivity of biotin-peptide using a dot-blot goldnanoparticle immunoassay. Analytical Chemistry 2007, 79, (3), 980-985.
    [155] Thanh, N. T.; Rees, J. H.; Rosenzweig, Z., Laser-based double beam absorption detection for aggregation immunoassays using gold nanoparticles. Anal. Bioanal. Chem. 2002, 374, (7-8), 1174-8.
    [156] Hirsch, L. R.; Jackson, J. B.; Lee, A.; Halas, N. J.; West, J. L., A whole blood immunoassay using gold nanoshells. Anal. Chem. 2003, 75, (10), 2377-81.
    [157] Ao, L.; Gao, F.; Pan, B.; He, R.; Cui, D., Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles. Anal. Chem. 2006, 78, (4), 1104-6.
    [158] Roll, D.; Malicka, J.; Gryczynski, I.; Gryczynski, Z.; Lakowicz, J. R., Metallic colloid wavelength-ratiometric scattering sensors. Analytical Chemistry 2003, 75, (14), 3440-3445.
    [159] Aslan, K.; Holley, P.; Davies, L.; Lakowicz, J. R.; Geddes, C. D., Angular-ratiometric plasmon-resonance based light scattering for bioaffinity sensing. J. Am. Chem. Soc. 2005, 127, (34), 12115-21.
    [160] Aslan, K.; Geddes, C. D., Microwave-accelerated ultrafast nanoparticle aggregation assays using gold colloids. Analytical Chemistry 2007, 79, (5), 2131-2136.
    [1] Zhang, P.; Ren, J., Advances in Fluorescence Correlation Spectroscopy and Its Applications in Single Molecule Detection. Chinese Journal of Analytical Chemistry 2005, 33, (6), 875-880.
    [2] Schwille, P.; Haustein, a. E., Fluorescence correlation spectroscopy what actually is FCS. Fluorescence Correlation Spectroscopy Manuscript, 1-44.
    [3] Zhang, P. D.; Ren, J. C., Investigation on the Setup of Fluorescence Correlation Spectroscopy for Single Molecule Detection. Chinese Journal of Analytical Chemistry 2005, 33, (7), 899-903.
    [4] Krichevsky, O.; Bonnet, G., Fluorescence correlation spectroscopy: the technique and its applications. Reports on Progress in Physics 2002, 65, (2), 251-297.
    [5] Elson, E. L., Fluorescence correlation spectroscopy measures molecular transport in cells. Traffic 2001, 2, (11), 789-96.
    [6] Pasternack, R. F.; Collings, P. J., Resonance light scattering: a new technique for studying chromophore aggregation. Science 1995, 269, 935-939.
    [7] Yguerabide, J.; Yguerabide, E. E., Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J. Cell. Biochem. 2001, 37,71-81.
    [8] Raschke, G.; Kowarik, S.; Franzl, T.; Sonnichsen, C.; Klar, T. A.; Feldmann, J.; Nichtl, A.; Kurzinger, K., Biomolecular recognition based on single gold nanoparticle light scattering. Nano. Letters. 2003, 3, (7), 935-938.
    [9] Yguerabide, J.; Yguerabide, E. E., Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - I. Theory. Analytical Biochemistry 1998, 262, (2), 137-156.
    [10] Magde, D.; Elson, E.; Webb, W. W., Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy. Physical Review Letters 1972, 29, (11), 705.
    [11] Sabanayagam, C. R.; Lakowicz, J. R., Fluctuation correlation spectroscopy and photon histogram analysis of light scattered by gold nanospheres. Nanotechnology 2007, 18, (35), 355402-355408.
    [12] van Dijk, M. A.; Tchebotareva, A. L.; Orrit, M.; Lippitz, M.; Berciaud, S.; Lasne, D.; Cognet, L.; Lounis, B., Absorption and scattering microscopy of single metal nanoparticles. Physical Chemistry Chemical Physics 2006, 8, (30), 3486-3495.
    [13] Khlebtsov, B. N.; Bogatyrev, V. A.; Dykman, L. A.; Khlebtsov, N. G., Spectra of resonance light scattering of gold nanoshells: Effects of polydispersity and limited electron free path. Optics and Spectroscopy 2007, 102, (2), 233-241.
    [14] Cottancin, E.; Celep, G.; Lerme, J.; Pellarin, M.; Huntzinger, J. R.; Vialle, J. L.; Broyer, M., Optical properties of noble metal clusters as a function of the size: Comparison between experiments and a semi-quantal theory. Theoretical Chemistry Accounts 2006, 116, (4-5), 514-523.
    [15] Kim, Y. J.; Johnson, R. C.; Li, J. G.; Hupp, J. T.; Schatz, G. C., Synthesis, linear extinction, and preliminary resonant hyper-Rayleigh scattering studies of gold-core/silver-shell nanoparticles: comparisons of theory and experiment. Chemical Physics Letters 2002, 352, (5-6), 421-428.
    [16] Njoki, P. N.; Lim, I. I. S.; Mott, D.; Park, H. Y.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C. J., Size correlation of optical and spectroscopic properties for gold nanoparticles. Journal of Physical Chemistry C 2007, 111, (40), 14664-14669.
    [17] Rigler, R.; Mets,ü.; Widengren, J.; Kask, A. P., Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion European Biophysics Journal 1993, 22, (3), 169-175.
    [18] http://www.invitrogen.com/.
    [19] Carl Zeiss Inc., The manuscript of Fluorescence Correlation Spectroscopy. Manuscript 2000.
    [1] Ghosh, S. K.; Pal, T., Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 2007, 107, (11), 4797-862.
    [2] Daniel, M. C.; Astruc, D., Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, (1), 293-346.
    [3] Storhoff, J. J.; Mirkin, C. A., Programmed materials synthesis with DNA. Chem. Rev. 1999, 99, (7), 1849-1862.
    [4] Wang, Z.; Hu, J.; Jin, Y.; Yao, X.; Li, J., In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clin. Chem. 2006, 52, (10), 1958-61.
    [5] Yguerabide, J.; Yguerabide, E. E., Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J. Cell. Biochem. 2001, 37, 71-81.
    [6] Dykman, L. A.; Bogatyrev, V. A.; Khlebtsov, B. N.; Khlebtsov, N. G., A protein assay based on colloidal gold conjugates with trypsin. Analytical Biochemistry 2005, 341, (1), 16-21.
    [7] Ao, L. M.; Gao, F.; Pan, B. F.; He, R.; Cui, D. X., Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles. Analytical Chemistry 2006, 78, (4), 1104-1106.
    [8] Thanh, N. T.; Rees, J. H.; Rosenzweig, Z., Laser-based double beam absorption detection for aggregation immunoassays using gold nanoparticles. Anal. Bioanal. Chem. 2002, 374, (7-8), 1174-8.
    [9] Kalogianni, D. P.; Koraki, T.; Christopoulos, T. K.; Ioannou, P. C., Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms. Biosens. Bioelectron. 2006, 21, (7), 1069-76.
    [10] Rosi, N. L.; Mirkin, C. A., Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, (4), 1547-62.
    [11] Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, (6), 2115-20.
    [12] Paciotti, G. F.; Kingston, D. G. I.; Tamarkin, L., Colloidal gold nanoparticles: A novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Development Research 2006, 67, (1), 47-54.
    [13] Xu, C. S.; Cang, H.; Montiel, D.; Yang, H., Rapid and quantitative sizing of nanoparticlesusing three-dimensional single-particle tracking. Journal of Physical Chemistry C 2007, 111, (1), 32-35.
    [14] McHale, K.; Berglund, A. J.; Mabuchi, H., Quantum dot photon statistics measured by three-dimensional particle tracking. Nano. Lett. 2007, 7, (11), 3535-9.
    [15] Cang, H.; Wong, C. M.; Xu, C. S.; Rizvi, A. H.; Yang, H., Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts. Applied Physics Letters 2006, 88, (22), 223901-1.
    [16] Levi, V.; Gratton, E., Chromatin dynamics during interphase explored by single-particle tracking. Chromosome. Res. 2008, 16, (3), 439-49.
    [17] Ragan, T.; Huang, H.; So, P.; Gratton, E., 3D particle tracking on a two-photon microscope. J Fluoresc 2006, 16, (3), 325-36.
    [18] Turkevich;J.; P.C., S.; Hillier, J., Nucleation and Growth Process in the Synthesis of Colloidal Gold. Discuss. Faraday. Soc. 1951, 11, 55-57.
    [19] Frens, G., Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20-22.
    [20] Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L., One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120, (9), 1959-1964.
    [21] Nikoobakht, B.; El-Sayed, M. A., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials 2003, 15, (10), 1957-1962.
    [22] Link, S.; Burda, C.; Nikoobakht, B.; El-Sayed, M. A., Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. Journal of Physical Chemistry B 2000, 104, (26), 6152-6163.
    [23] Murphy, C. J.; San, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. Journal of Physical Chemistry B 2005, 109, (29), 13857-13870.
    [24] Jana, N. R.; Gearheart, L.; Murphy, C. J., Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 2001, 17, (22), 6782-6786.
    [25] Jana, N. R.; Gearheart, L.; Murphy, C. J., Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials 2001, 13, (18), 1389-1393.
    [26] Yang, Y. H.; Gao, M. Y., Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Advanced Materials 2005, 17, (19), 2354-2358.
    [27] Kask, P.; Piksarv, P.; Pooga, M.; Mets, U.; Lippmaa, E., Separation of the rotational contribution in fluorescence correlation experiments. Biophysical Journal 1989, 55, 213-220.
    [28] Widengren, J.; Mets, U.; Rigler, R., Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chemical Physics 1999, 250, (2), 171-186.
    [29] Tsay, J. M.; Doose, S.; Weiss, S., Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy. J. Am. Chem. Soc. 2006, 128, (5), 1639-47.
    [30] Pelton, M.; Liu, M. Z.; Kim, H. Y.; Smith, G.; Guyot-Sionnest, P.; Scherer, N. E., Optical trapping and alignment of single gold nanorods by using plasmon resonances. Optics Letters2006, 31, (13), 2075-2077.
    [31] Krichevsky, O.; Bonnet, G., Fluorescence correlation spectroscopy: the technique and its applications. Reports on Progress in Physics 2002, 65, (2), 251-297.
    [32] Kuttner, Y. Y.; Kozer, N.; Segal, E.; Schreiber, G.; Haran, G., Separating the contribution of translational and rotational diffusion to protein association. J. Am. Chem. Soc. 2005, 127, (43), 15138-44.
    [33] Stanton, S. G. P., R. , Resonance enhanced dynamic Rayleigh scattering. J. Chem. Phys. 1981, 75, (12), 5615-5626.
    [34] Rigler, R.; Mets,ü.; Widengren, J.; Kask, A. P., Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. European Biophysics Journal 1993, 22, (3), 169-175.
    [35] Alivisatos, P., The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, (1), 47-52.
    [36] Sonnichsen, C.; Alivisatos, A. P., Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano. Letters. 2005, 5, (2), 301-304.
    [37] Hansen, P. M.; Bhatia, V. K.; Harrit, N.; Oddershede, L., Expanding the optical trapping range of gold nanoparticles. Nano Letters 2005, 5, 1937-1942.
    [1] Rosi, N. L.; Mirkin, C. A., Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, (4), 1547-62.
    [2] Ghosh, S. K.; Pal, T., Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 2007, 107, (11), 4797-862.
    [3] Daniel, M. C.; Astruc, D., Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, (1), 293-346.
    [4] Storhoff, J. J.; Mirkin, C. A., Programmed materials synthesis with DNA. Chem. Rev. 1999, 99, (7), 1849-1862.
    [5] Maxwell, D. J.; Taylor, J. R.; Nie, S. M., Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemical Society 2002, 124, (32), 9606-9612.
    [6] Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, (5329), 1078-81.
    [7] Eaton, P.; Doria, G.; Pereira, E.; Baptista, P. V.; Franco, R., Imaging gold nanoparticles for DNA sequence recognition in biomedical applications. IEEE Trans Nanobioscience 2007, 6, (4), 282-8.
    [8] Sonnichsen, C.; Alivisatos, A. P., Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano. Letters. 2005, 5, (2), 301-304.
    [9] Nie, B.; Shortreed, M. R.; Smith, L. M., Quantitative detection of individual cleaved DNA molecules on surfaces using gold nanoparticles and scanning electron microscope imaging. Anal. Chem. 2006, 78, (5), 1528-34.
    [10] Han, G.; You, C. C.; Kim, B. J.; Turingan, R. S.; Forbes, N. S.; Martin, C. T.; Rotello, V. M., Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew. Chem. Int. Ed. Engl. 2006, 45, (19), 3165-9.
    [11] Dulkeith, E.; Ringler, M.; Klar, T. A.; Feldmann, J.; Munoz Javier, A.; Parak, W. J., Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano. Lett. 2005, 5, (4), 585-9.
    [12] Chiu, C. S.; Gwo, S., Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates. Anal. Chem. 2008, 80, (9), 3318-26.
    [13] Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, (6592), 607-9.
    [14] Mirkin, C. A.; Taton, T. A., Materials chemistry - Semiconductors meet biology. Nature 2000, 405, (6787), 626-627.
    [15] Demers, L. M.; Ginger, D. S.; Park, S. J.; Li, Z.; Chung, S. W.; Mirkin, C. A., Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 2002, 296, (5574), 1836-8.
    [16] Lee, K. B.; Park, S. J.; Mirkin, C. A.; Smith, J. C.; Mrksich, M., Protein nanoarrays generated by dip-pen nanolithography. Science 2002, 295, (5560), 1702-5.
    [17] Park, S. J.; Taton, T. A.; Mirkin, C. A., Array-based electrical detection of DNA with nanoparticle probes. Science 2002, 295, (5559), 1503-6.
    [18] Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K.; Han, M. S.; Mirkin, C. A., Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, (5776), 1027-30.
    [19] Taton, T. A.; Mirkin, C. A.; Letsinger, R. L., Scanometric DNA array detection with nanoparticle probes. Science 2000, 289, (5485), 1757-60.
    [20] Du, B. A.; Li, Z. P.; Liu, C. H., One-Step Homogeneous Detection of DNA Hybridization with Gold Nanoparticle Probes by Using a Linear Light-Scattering Technique. Angew. Chem. Int. Ed. 2006, 45, (47), 8022-8025.
    [21] Witten, K. G.; Bretschneider, J. C.; Eckert, T.; Richtering, W.; Simon, U., Assembly of DNA-functionalized gold nanoparticles studied by UV/Vis-spectroscopy and dynamic light scattering. Phys. Chem. Chem. Phys. 2008, 10, (14), 1870-5.
    [22] Wang, L. H.; Liu, X. F.; Hu, X. F.; Song, S. P.; Fan, C. H., Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chemical Communications 2006, (36), 3780-3782.
    [23] Huang, C. Z.; Liao, Q. G.; Gan, L. H.; Guo, F. L.; Li, Y. F., Telomere DNA conformation change induced aggregation of gold nanoparticles as detected by plasmon resonance light scattering technique. Anal. Chim. Acta. 2007, 604, (2), 165-9.
    [24] Ray, P. C., Diagnostics of single base-mismatch DNA hybridization on gold nanoparticles by using the hyper-Rayleigh scattering technique. Angew. Chem. Int. Ed. 2006, 45, (7), 1151-4.
    [25] Turkevich, J.; Stevenson, P.C.; Hillier, J., Nucleation and Growth Process in the Synthesis of Colloidal Gold. Discuss. Faraday. Soc. 1951, 11, 55-57.
    [26] Frens, G., Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20-22.
    [27] Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L., One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120, (9), 1959-1964.
    [28] Cardenas, M.; Barauskas, J.; Schillen, K.; Brennan, J. L.; Brust, M.; Nylander, T., Thiol-speciric and nonspecific interactions between DNA and gold nanoparticles. Langmuir 2006, 22, (7), 3294-3299.
    [1] Ghosh, S. K.; Pal, T., Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 2007, 107, (11), 4797-862.
    [2] Rosi, N. L.; Mirkin, C. A., Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, (4), 1547-62.
    [3] Daniel, M. C.; Astruc, D., Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, (1), 293-346.
    [4] Storhoff, J. J.; Mirkin, C. A., Programmed materials synthesis with DNA. Chem. Rev. 1999, 99, (7), 1849-1862.
    [5] Tshikhudo, T. R.; Wang, Z.; Brust, M., Biocompatible gold nanoparticles. Materials Science and Technology 2004, 20, (8), 980-984.
    [6] Sastry, M.; Lala, N.; Patil, V.; Chavan, S. P.; Chittiboyina, A. G., Optical absorption study of the biotin-avidin interaction on colloidal silver and gold particles. Langmuir 1998, 14, (15), 4138-4142.
    [7] Thanh, N. T. K.; Rosenzweig, Z., Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Analytical Chemistry 2002, 74, (7), 1624-1628.
    [8] Cobbe, S.; Connolly, S.; Ryan, D.; Nagle, L.; Eritja, R.; Fitzmaurice, D., DNA-controlled assembly of protein-modified gold nanocrystals. Journal of Physical Chemistry B 2003, 107, (2), 470-477.
    [9] Connolly, S.; Cobbe, S.; Fitzmaurice, D., Effects of ligand-receptor geometry and stoichiometry on protein-induced aggregation of biotin-modified colloidal gold. Journal of Physical Chemistry B 2001, 105, (11), 2222-2226.
    [10] Costello, S. M.; Felix, R. T.; Giese, R. W., Enhancement of immune cellular agglutination by use of an avidin-biotin system. Clin. Chem. 1979, 25, (9), 1572-80.
    [11] Barbarakis, M. S.; Qaisi, W. G.; Daunert, S.; Bachas, L. G., Observation of hook effects in the inhibition and dose-response curves of biotin assays based on the interaction of biotinylated glucose oxidase with streptavidin. Anal. Chem. 1993, 65, (4), 457-60.
    [12] Pasternack, R. F.; Collings, P. J., Resonance light scattering: a new technique for studying chromophore aggregation. Science 1995, 269, 935-939.
    [13] Yguerabide, J.; Yguerabide, E. E., Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J. Cell. Biochem. 2001, 37, 71-81.
    [14] Tanev, S.; Tuchin, V. V.; Paddon, P., Light scattering effects of gold nanoparticles in cells: FDTD modeling. Laser Physics Letters 2006, 3, (12), 594-598.
    [15] Aslan, K.; Holley, P.; Davies, L.; Lakowicz, J. R.; Geddes, C. D., Angular-ratiometric plasmon-resonance based light scattering for bioaffinity sensing. J. Am. Chem. Soc. 2005, 127, (34), 12115-21.
    [16] Raschke, G.; Kowarik, S.; Franzl, T.; Sonnichsen, C.; Klar, T. A.; Feldmann, J.; Nichtl, A.; Kurzinger, K., Biomolecular recognition based on single gold nanoparticle light scattering. Nano. Letters. 2003, 3, (7), 935-938.
    [17] Savage, M. D.; Mattson, G.; Desai, S.; Nielander, G. W.; Morgensen, S.; Conklin, E. J., Avidin-Biotin Chemistry: A Handbook. 1992, Pierce Chemical Corporation.
    [18] Roll, D.; Malicka, J.; Gryczynski, I.; Gryczynski, Z.; Lakowicz, J. R., Metallic colloid wavelength-ratiometric scattering sensors. Analytical Chemistry 2003, 75, (14), 3440-3445.
    [19] Aslan, K.; Geddes, C. D., Microwave-accelerated ultrafast nanoparticle aggregation assays using gold colloids. Analytical Chemistry 2007, 79, (5), 2131-2136.
    [20] Turkevich;J.; P.C., S.; Hillier, J., Nucleation and Growth Process in the Synthesis of Colloidal Gold. Discuss. Faraday. Soc. 1951, 11, 55-57.
    [21] Frens, G., Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20-22.
    [22] Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L., One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120, (9), 1959-1964.
    [23] Lynch, N. J.; Kilpatrick, P. K.; and Carbonell, R. G., Aggregation of Ligand-Modified Liposomes by Specific Interactions with Proteins I: Biotinylated Liposomes and Avidin Biotechnol. Bioeng. 1996, 50, 151.
    [24] Schulthess, G. K. v.; George B., Benedek; Blois, a. R. W. D., Experimental measurements of the temporal evolution of cluster size distributions for high-functionality antigens cross-linked by antibody. Macromolecular 1983, 16, 434-440.
    [25] Aslan, K.; Luhrs, C. C.; Perez-Luna, V. H., Controlled and reversible aggregation of biotinylated gold nanoparticles with streptavidin. Journal of Physical Chemistry B 2004, 108, (40), 15631-15639.
    [26] Mulvaney, P., Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir 1996, 12, 788-800.
    [27] Weisbecker, C. S.; Merritt, M. V.; and Whitesides, G. M., Molecular Self-Assembly of Aliphatic Thiols on Gold Colloids. Langmuir 1996, 12, 3763-3772.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.