低能离子注入双酶产生菌Spj0104的诱变选育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成、半合成抗生素的研究,是探索和开发新抗生素的最重要的途径之一。而D-对羟基苯甘氨酸(D-pHPG)是半合成p-内酰胺类抗生素的重要前体,是目前制药行业竞争激烈的产品之一,化学法制备D-pHPG带来严重的污染和毒害,而酶法是较好的方法。酶法是利用D-海因酶(DHase)将苯海因(DL-pHPH)转化为N-氨甲酰基D-对羟基苯甘氨酸(NC-D-pHPG),N-氨甲酰基-D-氨基酸酰胺水解酶(DCase)则继续将NC-D-pHPG转化为D-pHPG。但现有的菌种产酶活力不高,故选育高产菌株提高酶活以及采用新技术提高酶利用率具有重要的研究价值。
     首先对出发菌株Spj0104的酶活水平进行了验证,随之开展低能N+离子注入技术的研究,对出发菌株运用单因子实验以确定最佳能量与剂量,采用正交法对低能离子注入的参数进行了优化,并在最优条件下对于一次注入后诱变选育获得的优良菌株Spi03和经过微波诱变后的优良菌株Sp902进行了二次离子注入。最后对于筛选到的高产菌株Sp208进行了发酵条件的优化和遗传稳定性检测。以下是整个实验结果:
     (1)在显微镜下Spj0104呈短杆状,生长周期比较长,在0-21h为生长延滞期;从21h开始,OD600迅速增加,直到57h,不再增大,且保持相对稳定的状态,此为对数生长期;57-69h OD值相对稳定,处于稳定生长期。通过HPLC法测定经DHase和DCase催化后生成的终产物D-pHPG的含量,测定出该菌株的酶活为0.118955 u/mL。
     (2)在低能离子注入的准备工作中先要对待诱变的菌液风干处理。在30min时,菌膜完全干燥,至50min时,菌膜彻底干燥。随着时间的增加,菌株由于缺乏水分和养料,致使存活率越来越低,所以当菌膜吹至30min时即可进行离子注入处理。
     (3)对低能N+离子注入的能量和剂量分别在固定了脉冲和间隔时间,多次不同剂量重复的前提下作了单因子实验,确定了最适合的能量为30KeV。在30KeV能量条件下,设计了多梯度的剂量,不同剂量下的存活率曲线为“马鞍形曲线”。在马鞍形曲线的“马鞍”两侧选取了60×1014ions/cm2,80×1014ions/cm2, 100×1014ions/cm2,120×1014ions/cm2,140×1014ions/cm2这几个剂量,试验结果综合考虑酶活、存活率等几个参数,确定最佳剂量为60×1014ions/cm2。在确定了最佳能量和剂量的基础上,采用了四因素三水平的正交实验,对能量、剂量、脉冲和间隔时间进行正交优化设计。得出了最适诱变参数为:能量20KeV,剂量40×1014ions/cm2,脉冲时间15S,间隔时间15S。
     (4)一次离子注入后筛选到一株优良菌株Spi03,酶活达到了0.2422 u/mL。再将其在最佳离子注入条件下进行二次离子注入诱变,同时将经过微波诱变筛选到的菌株Sp902号进行离子注入处理,分别筛选到了Sp208酶活为0.3271u/mL和Sp201酶活为0.2382u/mL,分别比原来提高了35.53%和28.41%,
     经过微波和离子注入复合诱变的菌株在形态上变化很大,负突变株较多。从众多的菌株中还筛选到一株菌株Sp206酶活为0.1536,虽然总酶活降低,但是DHase的酶活有较大的提高。
     (5)对发酵培养基成分作了正交实验和分析,得出了优化的培养基配方为:玉米浆3.0%;葡萄糖1.5%;诱导剂3.0%;氯化钠0.3%;(NH4)SO40.1%;MgSO4 0.05%;CoCl2 0.01%。对于影响发酵单位的发酵条件温度、初始pH、装量和发酵周期安排了正交实验设计,得到了最佳的发酵条件为温度30℃,初始PH7.0,装量40mL,发酵周期22h。发酵周期较原来提前了2h,缩短了发酵周期。Sp208菌株在最佳的发酵培养基成分和发酵条件下培养,酶活达到了0.402u/mL,提高了22.89%。传代5次,遗传稳定性较好。
Study on synthetic and semi synthetic antibiotic is one of the important ways to explore and develop new antibiotic. D-hydroxyphenylglycine (D-pHPG) is the most important precursor used for the synthesis of semi synthetic lactam types of antibiotic and the product attracting keen competition in the field of pharmacy. Enzyme method is rather better than the chemical one which brings severe pollution and poison. In enzyme method, P-hydroxyphenyldantoin (p-HPH) was transformed into N-Carbamoyl-D-P-hydroxy-phenyldantoin (NC-D-pHPG) by Dhydantoinase (DHase), and then NC-D -pHPG was transformed into D-pHPG by Ncarbamyl Danimo-acid amidohydrolase (DCase). Since the enzyme activity of the existing strain was too low, it was very significant to improve the enzyme activity of the strain by breeding high-yield strain and increasing the enzyme using rate with new techniques.
     The enzyme activity of the starting strain Spj0104 was validated at first. Then low energy ion implantation and single factor experiments were used to find the optimal energy and dosage. With the reference parameters of energy and dosage orthogonal optimization plan was designed and carried out. Under the optimal condition Spi03 selected from the strains under first ion implantation and Sp902 (one of the MW mutants) were arranged new ion implantation. High-yield strain was screened out among all the mutants. Moreover by orthogonal optimization the culture medium and culture condition were investigated, and then the result of optimization was used to fermentation. In the end genetic stability was conformed. The results of all experiments show as follow:
     (1) Spj0104 appears like short bacilliform under microscope. Its growth period was rather too long with delaying time from 0 to 21 h. In the logarithm time,21h to 57h, the value of OD6oo increased quickly. While in the stable time,57h to 69h, it kept relatively steady. The enzyme activity was 0.118 955 u/mL determined by HPLC method.
     (2) In the preparation work of low energy ion implantation, the material should be dried with asepsis air. At 30 min, velum was dry and at 50 min, it was completely dry. The more time increased, the lower the living rate of the strain was. Therefore,30min was the optimal time of drying.
     (3) Single factor experiments were made basing on fixed pulse, fixed interval time and different dosages of repetition.30KeV was confirmed as the optimal energy. At 30KeV, the curve of the living rates of the strains under variable dosages in the experiment looked like a saddle. According to the papers reported, several dosages (60×1014ions/cm2, 80×1014ions/cm2,100×1014ions/cm2,120×1014ions/cm2,14×1014ions/cm2) that at the two sides of "the saddle" were chosen to investigate the changes of the mutants. Taking enzyme activity, living rate,etc. into consideration,60×1014ions/cm2 was the best dosage. On the basis of optimal energy and dosage, orthogonal optimization was made on energy, dosage, pulse and interval. The results showed the optimal condition was 20KeV,40x1014ions/cm2,15S pulse and 15S interval。
     (4) Good strain Spi03 whose enzyme activity was 0.2422u/mL, was a mutant strain suffered from ion implantation and Sp902 was a mutant strain had been treated by MW.Both of them were treated with low energy ion implantation. Two good strains Sp208 and Sp201 were screened out. Their enzyme activities are 0.327lu/mL and 0.2382u/ml respectively, and increasing by 35.53 and 28.41 percent.
     The mutant strains treated by MW and ion implantation changed a lot in forms and many of them were low enzyme producing strain. Strain Sp206, enzyme activity was 0.1536 u/mL. Though total enzyme activity descended, DHase activity increased a lot.
     (5) The optimal fermentation medium listed below:Corn steep liquor 3.0%, Glucose 1.5%; Inducement 3.0%;Nacl 0.3%;(NH4) SO40.1%; MgSO40.05%;CoCl20.01%.The optimal fermentation conditions were temperature of 30℃, initial pH of 7.0, capacity of 40mL and fermentation time of 22h. The fermentation time was 2h shorter than the original. Being cultured under optimal medium and fermentation conditions, the strain Sp208's enzyme activity reached 0.402u/mL, increasing by 22.89 percent. Five generations'of culture showed good genetic stability.
引文
[1]Sharama R. Vohra R M. Biochem Biophys Commun.1997,234:485-488
    [2]许伟.严明.许琳.L-海因酶与D-海因酶的序列及结构比较研究[J].生物加工过程,2004(4):17-21
    [3]于平.海因酶研究新进展[J].生物学杂志.2005,22(2):1-4
    [4]May 0, Siemann M, Pietzsch M, et al. Substrate-de-pendent enantioselectivity of a novel hydantoinase from Arthrobacter aurescens DSM 3745:purification and characterization as new member of cyclic ami-dases [J]. Biotechnol,1998, 61:1-13
    [5]Xu G,West TP. Characterization of dihydropyrimidinase from Pseudomonas stutzeri [J].Arch Micro-biol,1994,161:70-74
    [6]Abendroth J, Niefind K, May 0, et al. The structure o f L-hydantoinase from Arthrobacter aurescens leads to an understanding of dihydropyrimi-dinase substrate and Enantio Specificity [J]. Biochemistry,2002,41:8589-8597
    [7]岳俊杰.王月兰.周秀菊,等.节秆菌K1108乙内酰脲酶三维结的模建和分析[J].生物技术通讯,2003,14(3):182-184
    [8]RN.帕特尔.立体选择性生物催化[M].北京:化学工业出版社,2004,226-229
    [9]Takahashi S,Yamada Y. Process for preparing optically active hydantoins [P]. EP 0175312 A2,1986.
    [10]Xu Z,Liu Y,Back J,et al. Crystal structure of D-hydarloinase from urkholderia pickettii at a Resolution of 2.7 Angstroms:insights into the Molecular basis of enzyme thermostability [J]. Bacteria,2003,185:4038-4049.
    [11]Wallach D, Guisolia S. The purification and properties of hydropyrimidine hydrase[J].Bio chem,1957,226(1):227
    [12]Yokozeki K, Naka mori Sie manaka S, et al. Optimal conditions for the enzymatic production of D-amino acid from the corresponding 5-substituted hydantoins[J]. Agri Biol Chem,1987,51:355
    [13]Ikenaka Y, Nanba H, Yajima K,et al. Screening、characterization and cloning of the gene for N-carbamyl-D-amino acid amidohydrolase from thermotolerant soil bacteria.[J]. Biosci Biotechnol Biochem,1998,62:882
    [14]Olivieri R, Fascetti E, Aangelini L, et al. Microbial transformation of racemic hydantoins to D-amino acid[J]. Biotech Bioeng,1981,23:2173
    [15]Runser S, Chinski N, Ohleyer E. D-p-Hydroxyphenylglycine production from D L-5-p-hydroxyphenylhydantoin by Agrobacterium sp. [J].Appl Microbial Biotechnology,1990,33:382
    [16]Nakai T, Hasegawa T, Yamashita E, et al. Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases [J].Structure,2000,8(2):729
    [17]Louwrier A, Knowles C. The purification and characterization of a novel D-specific carbamoylase enzyme from an Agrobacterium sp.[J].Enzyme Microb Techmol,1996,19:562
    [18]Moller A, Sydatk C,Schulze M, et al.Stereo and substrate specificity of a D-hydantoinase and a D-N-carbamyl amino acid amidochydrolase of Arthr obactor crystallopoietes Am 2[J].Enzyme Microbial Technol,1988,10:618
    [19]Yasuhiro I,Hirokazu N, Kazuyoshi Y, et al. Thermostability reinforcement through a combination of thermostability-related mutations of N-carbamyl-D-amino acid amidohydrolase [J]. Biosci Biotechnol Biochem,1999, 63(1):91
    [20]Nanba H, Takahashi S, et al. Isolation of Agrobacterium sp strain KNK 712 that produces N-carbamyl-D-amino acid amidohudrolase, cloning of the gene for this enzyme and properties of the enzyme.[J]. Biotech Biochem,1998,62 (5): 875
    [21]Wang WC, Hsu WH, Chien FT, et al. Crystal structure and sitedirected mutagenesis studies of N-carbamyl-D-animo acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft[J].Mol Bio,2001,306:251
    [22]赵莉霞,封霞,范俊虎,等.N-氨甲酰-D-氨基酸酰胺水解酶基因的克隆与表达[J].高技术通讯,2002,1:32-36
    [23]Nakai T, Hasegawa T,Yamashita E, et al. Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases[J].structure,2000,8(7):729
    [24]赵莉霞,范俊虎,等.N-氨甲酰-D-氨基酸酰胺水解酶研究进展[J].国外医药抗生素分册,2002,23(6):255-257
    [25]孙万儒.产二氢嘧啶酶的菌种筛选和发酵条件的研究[J].微生物学报,1983,23(2):133-142
    [26]MorinA, Hummel W, KulaM-R. Rapid desertion of mmicrobial hydantoinase on solid medium [J]. BiotechnolLett,1986,8(8):573-576
    [27]江宁,任永娥,强亚静,等.用底物类似物抗性法筛选海因酶高产菌株[J].微生物学报,1995,35(3):342-345
    [28]罗雪,冯瑞山,胡卓逸.海因酶产生菌的微孔快速筛选法[J].华西医大学报,2001,32(3):462-463
    [29]Nanba H, Ikenaka Y et al. Isolation of Agrobacterium sp. Strain KNK712 that produces N-Carbamly-D-amino acid amidohydrolase, cloning of the genes for this enzyme, and properties of the enzyme [J]. Biosci Biotechnol Biochem, 1998,62(5):875-881
    [30]Grifantini R, Galli G, Carpani G, et al. Efficient convertion of 5-substituted hudantion to D-a-amino acids using recombinant Escherichia coli strains [J]. Microbiology,1998,144:947-954
    [31]Oh KH, Nam SH, Kim HS. Directed evolution of N-Carbamyl-D-amino Acid amidohydrolase for simultaneous improvement of oxidative and thermal stability [J]. Biotechnol prog.2002,18:473-477
    [32]杨华.重要医药中间体-对羟基苯甘氨酸[J].化工中间体,2003,14:43-45
    [33]沈同、王镜岩.生物化学[M].高等教育出版社1990:381-383
    [34]抗生素及抗感染药物.药品集[C].上海科学技术出版社,1980,150
    [35]抗生素科学的进展[J].中国药学杂志.1997,32(11):698-670
    [36]陈代杰.微生物药物的研究开发[J].中国医药工业杂志,1997,28(3):115-118
    [37]褚志义.生物合成药物学[M].北京:化学工业出版社,2000,8:582-608
    [38]郝常明、张文莉.浅谈半合抗母核裂解设计[J].医药工程设计,1998,3:56-59
    [39]王茱耕.头孢类抗生素母核的改造[J].精细与专用化学品,2003,4(3):13-14
    [40]温家柱、蔡梅初、王占良.7-ADCA及其相关侧链的开发[J],河北化工,2002,(3): 5-7
    [41]王晓丽.半合成青霉素、头孢菌素及其侧链[J].沈阳化工,1995:38-42
    [42]孙华林.D-对羟基苯甘氨酸的制备及开发前景[J].云南化工,2001,28(2):41-42
    [43]张静、涂伟萍.DL-对羟基苯甘氨酸的合成研究[J].应用化工,2003,32(5): 64-67
    [44]Olivieri R, Fascetti E, Angelinil,et al. Biotechnology and Bio-Engineering[M]. 1981,23:2173-2183
    [45]张衍坤等.用sp.2262菌制备D-对羟基苯甘氨酸反应动力学[J].化工学报,2000,51(1):57-62
    [46]山西省生物研究所.“酶法生产D-对羟基苯甘氨酸工艺研究”通过鉴定验收[J].生物工程进展,2000,20(5):3
    [47]王文龙、杨清源.阿莫西林中间体D(-)-对羟基苯甘氨酸拆分路线选择[J].科技情报开发与经济,2002,12(1):18-23
    [48]李志强、胡卓逸、刘景晶.用基因工程菌酶法和化学法制备D-对羟基苯甘氨酸[J].中国生物化学与分子生物学报.2003,19(2):151-155
    [49]齐延红、丁玉华、连惠勇,等.D-对羟基苯甘氨酸的酶法生产工艺研究[J].中国医药工业杂志,2001,32(3):105-107
    [50]李隽、胡卓逸、蔡萍.二氢嘧啶酶产生菌的筛选及发酵条件的研究[J].药物生物技术,1999,6(2):90-94
    [51]胡永红、蔡兴怀、陈育如等.酶法合成中对羟基苯甘氨酸的检测[J].中国生化药物杂志,1997,18(4):190-193
    [52]李建生.D-对羟基苯甘氨酸的技术开发和市场分析[J].精细与专用化学品,2000,1:11-12
    [53]王京平,智瑞彩.左旋对羟基苯甘氨酸的技术进展[J].河北化工,1999,4:1-4
    [54]D-对羟基苯甘氨酸生产技术有突破[R].沈阳化工,2004,29(3):180
    [55]周德庆.微生物学教程[M].高等教育出版社,1980,8
    [56]齐秀兰等.妥布霉素产生菌诱变育种的研究[J].微生物学杂志,1995,15(1):9-13
    [57]王筱虹等.原生质体紫外诱变技术筛选红霉素高产菌株的研究[J].中国药科大学学报,2000,31(4):201-303
    [58]白兰芳,等.西罗莫司产生菌Streptomyces hygroecopocus WY—93D[J]诱变育种与代谢研究.中国抗生素杂志,2001,26(1):35-38
    [59]张小飞,刘友全,莫章桦.恶臭假单胞菌诱变与底物类似物抗性筛选[J].中南林学院学报,2005(6):77-79
    [60]王保义,王长广.电磁场非热生物效应机理研究[J].电子科技导报,1997,2:5-7
    [61]Chipley JL. Effects of microvave irradiation on microorganisms [J]. Advance of Applied Microbiology,1980,26:129-145
    [62]Mezykowski T. Response of Aspergillus nidulans and Physarum polycephalum to microwave irradiation [J]. Journal Microwave Power,1980,15(2):75-78
    [63]Belvins RD Crenshlwa RCJr, Hougland AE, et al.The effects of microwave radiation and heat on specified mutants of Selmonella typhimurium LT2 [J]. Radiation Research,1980,82(3):511-517
    [64]Furia L, Hill DW, Gandhi OP.Effect of millimeter- wave irradiatlon on growth of Saccha romyyces cerevisiae.IEE [J]. Transportation Biomedical Engin-eering,1986,33(11):993-999
    [65]Grundler W Keilmann F.Nonthermal effects of millimeter microwaves on yeast growth[J].Z Naturforsch,1978,33(1-2):15-22
    [66]李永泉.微波诱变选育木聚糖酶高产菌[J].微生物学报2001:17(1)50-53
    [67]刘友全,马英,莫章桦,等.复合诱变选育恶臭假单胞菌高产菌株的研究[J].中南林学院学报,2005(4):62-65
    [68]虞龙,张宁.离子注入微生物诱变育种的研究与应用进展[J].微生物学杂志,2005,3,25(2):80-83
    [69]陈恒雷,吕杰,曾宪贤.离子束诱变育种研究及应用进展[J].生物技术通报,2005(2):10-13
    [70]彭德建.我国首创离子束应用于生物技术[J].科学时报,2002
    [71]余增亮.离子束生物技术引论[M]. 安徽科学技术出版,1998:32-38
    [72]余增亮.离子注入生物效应及育种研究进展[J].安徽农学院学报,1991,18(4):251-257
    [73]袁成凌,余增亮.低能重离子生物学研究进展[J].辐射研究与辐射工艺学报,2004,2,22(1):1-7
    [74]Eric J.Hall. Radiobiology for the Radiologist. Fourth Edition [M]. J.B. Lippin-cott Company,1994,10-11
    [75]江素华,谢进,王家楫.新一代微分析及微加工手段—聚焦离子束系统[J].电子工业专用设备,2000,29(4):19-25
    [76]宋云,张怀渝,畅志坚.离子束用于诱变育种的研究进展[J].分子植物育种,2004,2(2):301-305
    [77]刘录祥,程俊源.植物诱变育种新技术研究进展[J].核农学通报,1997,(4):187-190
    [78]石怀彬,等.低能离子注入法在水溶液中合成胞苷酸和脱氧胞苷酸[J].核 化学与放射化学,2001,11,23(4):198-202
    [79]袁世斌,卫增泉.重离子注入生物和药物分子的质量沉积研究技术[J].安徽农业大学学报,2001,18(1):56-59
    [80]余增亮,绍春林,杨剑波.离子刻蚀生物样品的初步研究[J].安徽农业大学学报,1994,21(3):260-264
    [81]韩建伟,余增亮.低能离子对番茄果皮刻蚀与穿透作用的研究[J].生物物理学报,1999,15(3):551-555
    [82]余增亮.离子束与生命科学—一个新的研究领域[J].物理,1997,26(6):333-338
    [83]李永红.离子束的生物效应及诱变机理研究进展[J].河南农业大学学报,2002,6,36(2):159-163
    [84]陈宇,林梓鑫,张峰,等.离子注入微生物的生物效应研究[J].中国抗生素杂志,1998,23(6):415-419
    [85]洪仁远,刘新城,等.离子注入水稻的同功酶研究[J].河南科学,1999,17:42-44
    [86]Yu Z L and Shao C L. Dose effect of the tyrosine sample planted by a low energy N+ Lon Beam[J]. Radiat Phys Chem,1994,43(4):349-351
    [87]惠友权,黄建新,孔锁贤.离子注入选育α-乙酰乳酸脱羧酶菌株[J].西北大学学报(自然科学版),2001,31(3):251-254
    [88]虞龙,潘涛,周剑.氮离子注入柠檬酸生产菌的诱变选育[J].辐射研究与辐射工艺学报,2005,8,23(4):233-236
    [89]宋道军,姚建铭,邵春林,等.离子注入微生物产生“马鞍型”存活率曲线的可能作用机理[J].核技术,1999,22(3):129-132
    [90]曾宪贤,吕杰.离子改良纤维分解细菌及其机理研究[J].新疆大学学报,2005,2,22(1):17-21
    [91]The Royal Society, London Organizer, Japan Science Foundation. London Vise Men's Conference for the Human Frontier Science Program, Apr 1,1987, 398-402
    [92]袁成凌,王纪,等.低能离子注入花生四烯酸产生菌诱变选育及产业化研究[J].高技术通讯,2003,6:22-26
    [93]向砥,李炯,姚建铭,余增亮.离子注入选育高产壮观链霉菌的研究[J].激光生物学报,2002,11(4):276-279
    [94]潘涛,周剑,虞龙.离子注入诱变技术在柠檬酸高产菌选育中的应用[J].化学与生物工程,2005(3):42-44
    [95]姚建铭,朱皖宜,蒋海波.离子注入利福霉素生产菌的研究[A].第二次全国离子注入生物效应学术会议论文集[C].合肥:安徽科技出版社,1993
    [96]毛淑红,靳根明,卫增泉.药用微生物辐照诱变研究进展[J].激光生物学报,2004,1:13-15
    [97]黄文彩,等.离子注入微生物的诱变效应的研究[J].安徽农业大学学报,1994,21(3):282-285
    [98]程备久,等.离子注入法导入棉花外源基因的研究[J].安徽农业大学学报,增刊,1993,19-22
    [99]杨剑波,等.低能离子束介导外源基因进入水稻细胞的研究[J].安徽农业大学学报,1994,21(3),330-335
    [100]吴李君,等.应用低能离子束介导法获得水稻转基因植株[A].第二次全国离子注入生物效应学术会议论文集[C].合肥:安徽科技出版社,1993
    [101]杜严华,丘冠英,李国红,等.低能离子束及Y辐照对小菜蛾颗粒体病毒的影响及剂量效应关系的拟合分析[J].生物物理学报,1997,13(2):267-272
    [102]虞龙,等.低能离子注入在Vc高产菌株选育中的应用[J].激光生物学报,1999,8(3):217-220
    [103]DENG Jianguo etal. ESR study on ion beam irradiated DNA and its basses [J]. Nuc.Tec.1992,15(10):600-605
    [104]李环,韦萍,顾海红,欧阳平凯.D-苯丙氨酸产生菌的诱变育种[J].工业微生物,2003,33(3):6-10
    [105]程备久,周立人.低能离子束辐照生物的剂量效应模型[J].安徽农业大学学报,1995,22(7):206-210
    [106]章明春.工业微生物诱变育种[M].北京:科学出版社,1999,92-94
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.