山核桃外果皮几种化学成分及对植物生长影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山核桃(C.cathayensis)是我国浙、皖两省山区的重要干果。给产区农民带来巨大经济效益的同时,取仁弃之的山核桃外果皮严重污染了当地的农业生态环境。针对山核桃废弃物外果皮的主要无机成分和有机成分及其对农作物的生物活性效应进行了系统研究。主要研究结果如下:
     1.采取干、湿两种消化方法分解山核桃外果皮有机物,利用原子吸收分光光度法分析到山核桃外果皮含有钾、钙、铁、锰、锌、镁、铜等灰分元素,其中钾含量高达1.61%,可制备工业钾盐。热处理法制备碳酸钾的研究表明:山核桃外果皮粒度d<10mm,600℃高温灰化6hr,钾得率约达30%;纯化粗碱经600℃煅烧0.5hr,碳酸钾含量高达98%。化学合成法制备焦磷酸钾的研究表明:山核桃外果皮灰分与磷酸质量比2.24:1~2.30:1,中和反应pH9.0,磷酸氢二钾在500℃聚合1.5 hr,焦磷酸钾含量达97%以上。
     2.利用气相色谱-质谱联用仪分析到山核桃外果皮含有酚类、脂肪酸、醇类、酯类、烃类、酮类、甾体、维生素E、喹啉等多种有机成分,其中酚类物质含量较高。对主要酚类黄酮、鞣质和醌化合物的提取分离进行了研究,醌化合物提取分离的最适条件是:70%乙醇、料液比1:10(g/mL)、60℃水浴4hr,醌提取得率达0.84%;硅胶柱分离、液固比3:1(mL/g)、吸附时间30min,醌化合物纯度达86.08%。鞣质化合物提取分离的最适条件是:50%乙醇溶剂、料液比1:12(g/mL)、60℃水浴2hr,鞣质提取得率达26.89%。采用咖啡碱成盐沉淀、甲醇溶解,经氯仿、乙酸乙酯等有机溶剂萃取除去杂质,鞣质纯度达86.42%。黄酮化合物提取分离的最适条件是:70%乙醇、料液比1:15(g/mL)、60℃水浴3hr,黄酮提取得率达0.997%;硅胶柱分离、液固比3:1(mL/g)、吸附时间30min,用20、40、60、70、80、90%乙醇以2mL/min的流速洗脱,黄酮解吸率为89.46%,纯度达84.40%。
     3.山核桃外果皮浸提液对作物种子萌发有低浓度促进、高浓度延缓或抑制的生物效应,0.1g/mL浸提液能显著促进小麦、玉米、绿豆、大豆的种子萌发、胚根和胚轴的伸长,小麦与绿豆种子萌发的处理比对照增加了38%和24%,胚根增长幅度分别为21%、26%、29%、32%,差异达显著或极显著;从1.5g/mL开始,小麦、玉米、绿豆种子萌发强烈受阻,发芽率分别比对照降低了100%、43%和49%,处理与对照差异显著;胚根、胚轴伸长受抑效应增强,但对浸提液的敏感性胚轴不如胚根。
     4.0.1g/mL浓度的浸提液能提高作物种子a-淀粉酶活性、呼吸速率、降低吲哚乙酸氧化酶活性,增加可溶性糖、氨基酸、吲哚乙酸含量,加快蛋白质和淀粉转化速率;高于0.5g/mL的浓度处理,a-淀粉酶活性下降、吲哚乙酸氧化酶活性增强,种子呼吸速率减弱,细胞内吲哚乙酸减少,淀粉-可溶性糖、蛋白质-氨基酸的转化过程减慢。总体上,四种作物的种子萌发对山核桃外果皮浸提液的敏感顺序是小麦>绿豆>玉米>大豆。
     5.四种幼苗根系对矿质元素的吸收大都表现出低浓度促进、高浓度抑制的效应,0.1、0.5g/mL浓度的浸提液能适当降低幼苗新生根系的电导率,提高根系活力和硝酸还原酶的活性;适宜浓度浸提液促进了玉米对N、K、Ca、Mg、Fe、Mn、Cu的吸收,促进小麦对N、K、Ca、Fe、Cu的吸收,促进大豆对N、K、Mg、Fe、Mn、Cu的吸收,促进绿豆对N、K、Ca、Mg、Fe、Mn和Zn的吸收,因作物种类不同适宜浓度各有差异。
     6.从作物叶片光合性能变化的角度分析影响作物幼苗生长的机理,0.1、0.5g/mL浓度的浸提液可提高小麦等四种作物幼苗叶片的叶绿素a和叶绿素b、叶绿素总量、光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr),适当增加细胞间隙内部的CO_2浓度(Ci),以0.1g/mL处理效果最明显。四种作物幼苗的鲜重与干重明显高于对照,0.1g/mL浸提液处理的小麦和大豆干物质积累最多,0.5g/mL浸提液处理的玉米和绿豆干物质积累最多。高于0.5g/mL处理,叶绿素a和叶绿素b、叶绿素总量、光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)均有较大幅度的降低,叶绿素a/b比值则有小幅度的上升,细胞间隙内部的CO_2浓度(Ci)快速提高。研究认为,高浓度浸提液造成幼苗叶片光合速率下降,叶肉因素限制是主要原因,可能与浸提液抑制光合作用暗反应的酶活性、使CO_2同化过程受阻以及叶绿素含量下降引起光能吸收和光化学反应速率降低、同化力减少有关。
     7.适宜浓度的黄酮、鞣质、醌类三种活性物质及其组合和山核桃外果皮浸提液都能促进四种作物幼苗的株高、新生根系长度,增长幅度一般高于对照6~17.5%:各种活性物质及其组合的最适浓度不同,处理与对照表现的化感效应达到P<0.01~0.05的差异显著水平;比较了三种活性物质及其组合和山核桃外果皮浸提液对四种作物幼苗细胞膜脂过氧化的影响,分析到适宜浓度的活性物质及其组合能降低幼苗新生根系和新生幼叶细胞膜的相对电导率(降幅为5~14%)、丙二醛(MDA)含量、H_2O_2含量和超氧阴离子自由基(O_2~-·)含量;增加过氧化物酶(POD)、过氧化氢酶(CAT)、超氧物歧化酶(SOD)的活性,提高新生根系和幼叶的呼吸强度和新生根系的活力,对作物幼苗细胞膜脂过氧化的影响顺序是:一种活性物质<二种活性物质组合<三种活性物质组合≤山核桃外果皮浸提液,说明山核桃外果皮浸提液对四种作物幼苗生长产生的化感效应是多种活性物质协同作用的结果。适宜浓度的活性物质及其组合通过提高细胞保护酶系统催化的氧化还原反应能力,有效清除细胞内的活性氧有害物质,是增加细胞膜结构稳定性的内在原因。
     8.研究了大田栽培牡丹大胡红7、8月份叶片的光合速率日变化动态:7月上旬测定日午间,光合速率(Pn)大幅度下降,Pn日变化呈双峰型,出现明显的光合午休:8月上旬光合午休比7月份加重,Pn日变化呈“一降不起型”。两个月份测定日Pn下降时,气孔导度(Gs)降幅很小,细胞间隙内部CO_2浓度(Ci)不降反升,叶肉因素限制是光合午休的主要原因。叶绿素荧光测定显示,午间PSⅡ最大光化学效率(Fv/Fm)、PSⅡ实际光化学效率(ΦPSⅡ)明显下降,光化学猝灭系数(qP)分别下降34.4%、37.9%,非光化学猝灭(NPQ)分别增加44.4%和49%,叶绿体PSⅡ的电子传递活性大幅度下降,吸收光能用于非光化学反应的比例大幅度增加,牡丹叶片发生了严重的光合作用光抑制。
     9.利用0.06mg/mL的山核桃胡桃醌溶液喷施牡丹植株,处理叶片的光合速率比对照提高10.5%~12.8%,8月份的Pn最高值比对照推迟1h出现;对照叶片的Fv/Fm两个月分别降低51%和89%,处理叶片分别降低20%和26%;对照叶片ΦPSI分别下降49.5%和67%,处理叶片下降18.1%和19.9%,下午7、8月份对照叶片ΦPSⅡ恢复较差或接近早晨水平,处理叶片则完全恢复:7月份对照和处理的qP分别下降39%和10%,8月分别下降43%和11.6%;7月份NPQ分别上升49.3%和17.3%,8月份上升49%和14.3%。研究认为,适宜浓度的胡桃醌能缓解牡丹叶片光合作用的光抑制、减轻光合午休,并能较好地修复强光损伤的叶绿体,提高牡丹叶片对光能的利用率。
C.cathayensis,a Juglandaceae Carya Nutt plant,is an important nut in Zhejiang and Anhui mountain areas.While C.cathayensis brings great economic benefits to peasants,the discarded C.cathayensis exocarp severely pollute local agricultural ecological environment.This research aims to study the main inorganic and organic constituents in C.cathayensis exocarp and their bioactive influence on plants.
     1.Adopting wet digestion and dried digestion method respectively to decompose C.cathayensis exocarp,as well as the atomic absorption spectrometry to analyze the inorganic constituents in C.cathayensis exocarp,the result shows that there are ash elements—K,Ca,Fe, Mn,Zn,Mg,Cu,etc.—in C.cathayensis exocarp,among which,the content of K is about 1.61%. The research of adopting thermal treatment to prepare potassium carbonic acid shows that with material diameter<10mm,ashing temperature 600℃,ashing time 6hr,the yield ratio of K is about 30%;with purified alkali calcination temperature 600℃,calcination time 0.5 hr,the content of potassium carbonic acid can be up to 98%.Adopting chemical synthesis to prepare pyrophosphate potassium,the result shows that the quality ratio of ash to phosphoric acid 2.24: 1~2.30:1,pH in neutralization reaction 9.0,dipotassium hydrogen phosphate polymerization temperature 500 and time 1.5hr,the content ofpyrophosphate potassium can be up to 97%.
     2.Adopting GC-MS,the result shows that there are many organic components in C.cathayensis exocarp—phenol,fatty acid,mellow,ester,hydrocarbon,ketone,sterides, vitamin E,quinoline etc,of which the content of phenol is relatively higher.This research extracts and separates flavone,tannin,quinones,and gets the optimal extraction condition of quinones:with 70%ethanol,solid-liquid ratio 1:10,temperature 60,and reflux time 4 hours, the extraction ratio of quinones is 0.84%;separating silica gel,liquid-solid ratio 3:1,absorption time 30 min,the purity of quinones compound is 86.08%.The optimal extraction condition of tannin is:using 50%ethanol as solvent,solid-liquid ratio 1:12(g/mL),lixiviation temperature 60,and lixiviation time 2 hours,the extraction ratio of tannin is 26.89%;using theine to produce salt precipitation,methanol to dissolve,removing impurity through fractional extraction by different polar organic solvent of aether,chloroform and ethyl acetate,the tannin purity is 86.42%.The optimal extraction condition of flavones is:70%ethanol,solid-liquid ratio 1:15 (g/mL),extraction time 3 hours,extraction temperature 60℃,the maximum extraction ratio of flavone compound is 0.997%;separating silica gel,liquid-solid ratio 3:1(mL/g),absorption time 30 min,gradiently eluted by 20,40,60,70,80,90%ethanol at the speed of 2mL/min,the recovery of flavone is 89.46%,and its purity is 83.76%.
     3.The study showed that after treatment with the lixiviation drench of C.cathayensis exocarp,the seed germination is accelerated at low concentration and delayed or inhibited at high concentration.The 0.1g/ml lixiviation drench obviously promotes seed germination and radicles elongation of wheat,corn,soybean and mung bean.The wheat and mung bean seeds germination rates are increased by 38%and 24%;the elongation of their radicles is increased by 21%、26%、29%、32%respectively,and the difference is significant.From 1.5g/ml on,the seed germination of wheat,corn and mung bean are greatly inhibited,with germination rate decreased by 100%,43%and 49%respectively.Meanwhile,the lixiviation drench exerts more inhibition on the elongation of radicles and hypocotyls.In addition,hypocotyls are less sensitive to the lixiviation drench than radicles.
     4.The study indicates that the 0.1 g/ml lixiviation drench stimulates the activity ofα-amylase and inhibits that of IAA oxidase.Consequently the respiratory rate of the seeds,the content of soluble sugar,amino acid,and indoleacetic acid(IAA) increase;the content of starch and protein decreases,and their conversion rates accelerate.In addition,the lixiviation drench with its concentration higher than 0.5g/ml reduces the activity ofα-amylase and stimulates that of IAA oxidase.Hence the respiratory rate of the seeds decreases,cellular IAA decreases,and the conversion process from starch to soluble sugar and that from protein to amino acid decelerate. Generally the sensitivity of seed germination of the above four crops to the lixiviation drench goes in a descending order as follows:wheat>mung bean>corn>soybean.
     5.The lixiviation drench with low concentration promotes the absorption of the mineral elements of the seedling root systems,while the lixiviation drench with high concentration inhibits the absorption.The 0.1g/ml lixiviation drench and the 0.5g/ml lixiviation drench decrease the electric conductivity of the seedling root system,increase the activity of root system and nitrate reductase.With optimal concentration the lixiviation drench improves the absorption of nitrogen(N),potassium(K),calcium(Ca),magnesium(Mg),ferrum(Fe),manganese(Mn), and copper(Cu) of corn,the absorption of N,K,Ca,Fe,and Cu of wheat,the absorption of N,K, Mg,Fe,Mn,and Cu of soybean,and the absorption of N,K,Ca,Mg,Fe,Mn,and zinc(Zn) of mung bean.The optimal concentration of lixiviation drench varies according to different crops.
     6.The research analyzes the way in which photosynthetic performance of the leaves influences the seedling growth.The 0.1g/ml lixiviation drench and the 0.5g/ml lixiviation drench have increased the content of chlorophyll a and chlorophyll b and the total chlorophyll content, photosynthetic rate(Pn),stomatal conductance(Gs),and transpiration rate(Tr) in the seedling leaves of the above four crops,and adequately increased the intercellular CO_2 concentration(Ci), with the 0.1g/ml lixiviation drench producing the most remarkable effect.The fresh weight and dry weight of their seedlings are obviously heavier than the control.The wheat and soybean treated with 0.1g/ml lixiviation drench accumulate the most dry substances,while the corn and mung bean treated with 0.5g/ml lixiviation drench accumulate the most dry substances. Treatment with the concentration higher than 0.5g/ml results in great decrease in the content of chlorophyll a and chlorophyll b and the total chlorophyll content,photosynthetic rate(Pn), stomatal conductance(Gs),and transpiration rate(Tr),and results in slight increase in the ratio of chlorophyll a:chlorophyll b,and rapid increase in the intercellular CO_2 concentration(Ci).The research believes that the lixiviation drench with high concentration,particularly the mesophyll limitation to photosynthesis,causes the decrease of photosynthetic rate of the seedling leaves. The reason for this may be that the lixiviation drench restrains the enzymatic activity in the dark reaction so as to hinder the assimilation of CO_2 or that the decrease of chlorophyll reduces the absorption of light energy,lowers the photochemical reaction rate,and decreases the assimilatory power.
     7.The study indicates that optimal concentration of flavone,tannin,quinones and their combinations as well as the lixiviation drench of C.cathayensis exocarp,can enhance the height of wheat,corn,soybean,and mung bean seedlings and the length of their nascent root systems, 6%to17.5%higher than the control in general.The allelopathy between the experiment and control has significant difference with P<0.01~0.05 in terms of various active substances and their combinations.The research compares influences of three active substances and their combinations as well as lixiviation drench of C.eathayensis exocarp on the peroxidation of cellular membrane lipids of these four seedlings,and finds that active substances and their combinations with optimal concentration can decrease relative electric conductivity(the range of decreasing is 5%to 14%),and the content of MDA,hydrogen peroxide,and superoxide anion radical(O_2~-) nascent root systems and spires of seedlings,promote the activity of peroxidase (POD),catalase(CAT),and superoxide dismutase(SOD),increase the respiratory intensity of both nascent root systems and spires,and reinforce the vigor of nascent root systems.The order of influence on peroxidation of cellular membrane lipids of these four seedlings is as follows: unieus active substance<two-active-substance combination<three-active-substance combination≤lixiviation drench of C.cathayensis exocarp,which indicates that allelopathy of lixiviation drench of C.cathayensis exocarp on the above four seedlings is the result of many active substances working together.Active substances and their combinations with optimal concentration can strengthen the stability of cellular membrane structures by improving the ability of oxidation-reduction reaction activated protectase system in cells and effectively clearing harmful active substances in cells.
     8.The research studies the photosynthesis diurnalvariation dynamics of the Da Hu Hong leaf—a type of Da Tian peony—under natural sunlight of July and August:during the noon in early July,the photosynthetic rate(Pn) substantially declines,and the Pn diurnalvariation shows two peaks and there also appears a clear_photosynthetic noon break.On the measure day of early August the photosynthetic noon break is more severe than in July and the Pn diumalvariation of the peony leaves shows a trend of "declining straightly".During the phase when Pn declines at noon on the measure days of the two months,the declination of stomatal conductance is in a small scale,the Ci of CO_2 inside the cell gap does not fall but rises instead and the Mesophyll constraint is the main reason for photosynthetic noon break.Chlorophyll fluorescence test indicates that during noon time of the measure days,Fv/Fm and PSⅡphotochemical efficiency(ΦPSⅡ) decline obviously,the photochemical quenching factor(qP) of the two months decreases by 34.4%and 37.9%respectively;meanwhile,the non-photochemical quenching factor(NPQ) increases by 44.4%and 49%,the electronic transferring activity of chloroplast declines significantly,the absorbed light energy used for non-photochemical reaction substantially increases,and severe photosynthetic photoinhibition happens in peony leaves.
     9.Spraying the peony leaves with 0.06mg/mL juglone solution,the result indicates that Pn is more obvious than the control,the maximum Pn of the two months enhances 10.5%and 12.8% respectively than the control,and the maximum Pn in August appears one hour later than the control;Fv/Fm of the two months drops by 51%and 89%respectively and the processed leaf reduces by 20%and 26%separately,the contrastΦPSⅡof the two months decreases by 49.5% and 67%respectively,while the processed leaves only decreases by 18.1%and 19.9%;in the afternoon of July and August,ΦPSⅡof the leaf in control restores poorly or almost to the morning level,while the processed leaf can recover completely;in July,the compared qP and processed qP drop by 39%and 10%respectively and in August,they drop by 43%and 11.6% respectively;NPQ in July rises by 49.3%and 17.3%respectively and in August,it rises by 49% and 14.3%respectively.The research believes that juglone with optimal concentration can relieve peony leave photosynthetic photoinhibition,alleviate photosynthetic noon break,restore damage to the chloroplast and enhance the peony leaves' utilizing ratio of light.
引文
[1]吴伟文,麻耀强,吴伟志论杭州市山核桃产业的发展与对策[J]浙江林业科技.200323(3):57-60
    [2]邓朝义 贵州山核桃属植物的研究[J]贵州林业科技.1994,22(4):43-49
    [3]涂必江 山核桃在大别山的野生分布状况[J]安徽林业.1999,(3):16
    [4]张同清,漓江,吕芳德等 我国引种美国山核桃历程及资源现状研究[J]经济林研究.2003,21(4):107-109
    [5]何方 山核桃生念习性和引种问题[J]浙江林业科技.1988,(8):28-32
    [6]黎章矩 山核桃生长发育年周期的研究[J]浙江林学院学报.1982,(1):54-56
    [7]黎章矩 山核桃芽、梢发育状况与结果关系的研究[J]浙江林学院学报.1985,2(2)27-32
    [8]黎章矩,钱莲芳 山核桃科研成就和增产措施[J]浙江林业科技.
    [9]项步乾,唐小华,项瑜 山核桃秋播育苗实验[J]林业科技开发.2002,(6):41-42
    [10]汪金祥 山核桃秋播育苗技术要点[J]安徽林业.2003,(6):14
    [11]钱尧林 培育山核桃粗壮苗主要技术措施[J]杭州科技.2000(3):35-36
    [12]朱玉球,廖望仪,黄坚钦山核桃愈伤组织诱导的初步研究[J]浙江林学院学报.2001,18(2):115-118
    [13]郑炳松,刘力,黄坚钦 山核桃嫁接成活的生理生化特性分析[J]福建林学院学报.2002,(4):320-324
    [14]黄坚钦,方伟,丁雨龙 植物生长调节物质对山核桃嫁接的效用[J]南京林业大学学报.2002,26(4):78-80
    [15]陆美芳 坚果类食物的营养保健功能[J]营养保健.2004,(8):1-3
    [16]王冀平,李亚南,马建伟 山核桃仁中主要营养成分的研究[J]食品科学.1998,19(4):44-46
    [17]黄坚钦,章滨森,王正加等 中国山核桃属植物种问亲缘关系RAPD分析[J]西南林学院学报.2003,23(4):1-3
    [18]张同清,何方,吕芳德等 美国山核桃群体遗传多样性的 RAPD 分析[J]经济林研究.2001,19(2):1-6
    [19]麦克丹尼尔斯 坚果栽培[M]朱金兆等译 北京,中国林业出版社.1990,15-45
    [20]吕芳德,杨帆,张日清 山核桃属部分种的核型分析[J]中南林学院学报.2001,(1):47-49
    [21]王正加,黄友军,郭传友等 大别山山核桃种群遗传多样性研究[J]植物生态学报2006,30(3):534-538
    [22]王卫民,赵关本,梁炳沂等.山核桃外皮的丌发利用[J]杭州科技.1992(5):26
    [23]周学辉,蒋业科.水蒸气活化法制山核桃壳活性炭研究[J]林产化工通讯.1999,33(5)3-7
    [24]丁之恩,周学辉等.微波-催化剂法制取山核桃壳活性炭的研究[J]经济林研究.2003,21(4):47-50
    [25]张伟星 雷柏荣 徐冠玉 临安山核桃蒲摇身变成环保炭飘洋过海赚大钱 浙江日报.2005,10,25
    [26]程晓建,黄坚钦,郑炳松 山核桃研究进展[J]浙江林业科技.2002,22(3):19-24
    [27]刘湘,汪秋安 天然产物化学[M]高等学校教材 化学工业出版社.2005,第一版 75-77
    [28]张存莉,马柏林,傅建熙等.黑刺菝葜根茎中黄酮成分的分析鉴定[J]西北林学院学报.2000,15(1):57-59
    [29]许刚,张虹,胡剑.竹叶中黄酮提取方法的研究[J]分析化学研究商报.2000,28(7):857-859
    [30]高素莲,王雪梅.甘草中黄酮类化合物的提取分离与测定[J]安徽大学学报.2000,24(4):70-74
    [31]杨黎燕,杨秉勤,郎惠云决明子葸醌提取方法的研究[J]西部粮油科技.2003,(2):59-61
    [32]卢锦花 中药有效成分提取分离技术[M]化学工业出版社.2005,第一版 162-168
    [33]曹平 天然抗氧化剂抑制油脂氧化的研究进展[J]中国油脂.2005,30(7):49-53
    [34]陈向明,王华苓,马芹芬 山核桃外蒲壳浸提物对食用油脂的抗氧化性研究[J]中国粮油学报.2007,22(6):109-112
    [35]刘翠哲,刘喜纲,王汝兴 大黄中总蒽醌的提取工艺研究进展[J]天津药学.2004,16(4):40-42
    [36]金波,李薇,蔡伟 大黄总蒽醌提取与纯化工艺的研究[J]时珍国医国药.2005,16(8): 756-758
    [37]王丽敏,刘娟,卢春风 块根老鹳草中总鞣质的积累动态分析[J]中国野生植物资源2003,22(6):62-63
    [38]张青,郑毅 有机溶剂萃取野生枫香的鞣质及含量测定[J]江西化工2005,(3):71-74
    [39]王满力,陈桐 柱色谱法分离地榆中的鞣质和皂甙[J]色谱1994,12(4).1
    [40]王洪记 碳酸钾工业发展近况[J]沈阳化工2000,29(3):160-162
    [41]冯炎龙,徐荣章.利用山核桃、油桐、油茶蒲壳生产碳酸钾和焦磷酸钾[J]浙江树人大学学报,2002,2(3):71-72
    [42]李家柱 电镀工业清洁生产的发展趋势[J]表面工程资讯,2004,4(19):1
    [43]王少东,脱朝伟 核桃楸青果皮抗肿瘤作用的药理研究[J]辽宁中医杂志,1990,(11):37-39
    [44]张野平,杨志博,苏静州等 胡桃醌抗肿瘤作用的研究[J]沈阳药学院学报,1987,4(3):166-169
    [45]Kim S H,Lee K S,Son J K,et al.Cytotoxic compounds from the roots of Juglans mandshurica[J]J Nat Prod,1998,61(5):643-645
    [46]杜旭,李玉文,倪雁等 中药青核桃镇痛作用研究与展望[J]中国中药杂志,2000,25(1):7-10
    [47]易醒,谢明勇,肖小年胡桃科植物化学及生物活性研究概况[J]中草药,2001,32(6):559-561
    [48]Aynehchi Y,Dehpour A R,Mahmoodian M Juglone the echtiotoxic principle of Pterocarya fraxinifolia[J]Phytochemisty,1973,12:3001-3002
    [49]Ortega,R.C.,Anaya,A.L.,and Ramos,L.Effects of allelopathic compounds of corn pollen on respiration and cell dibision of watermelon.J.Chem.Ecol.1988,14:71-86
    [50]Hejl,A.M.,Einhellig,RA.,and Rasmussen,J.A.Effects ofjuglone on growth,phyotosynthesis,and respiration.J.Chem.Ecol.1993,16:931-939
    [51]Balke,N.E.Effects of allelochemicals on mineral uptake and associated physiological processes.ACS Symp.Ser.1985,268:161-178
    [52]谢明勇,李磊青钱柳化学成分和生物活性研究概况[J]中草药2001,32(4):365-366
    [53]Rice,E.L.Allelopathy.Academic Press,Orlando,FL.1984
    [54]孔垂华,徐涛,胡飞胜红蓟化感物质之问相互作用的研究[J]植物牛态学报.1998,22(3):403-408
    [55]Yu,JQ,Matsui Y.Phytotoxic substances in root exudates of cucumber[J].Chem.Eeol.1994,20(1):21-30
    [56]王大力,祝心如三裂叶豚草的化感作用研究[J]植物生态学报1996,20(4):330-337
    [57]孔垂华,李德建,骆世明尿囊素的合成及其对作物的生化他感作用[J]生态科学1995,13(2):88-90
    [58]Aspund,R.O.Some quantitative aspects of phytotxicity of monoterpenes.Weed Sci.1969,17:454-455
    [59]Glass,A.D.M.Yhe alMopathic potential of phenolic acids associated with the rhizosphere of Pteridium aquilinum.Can.J.Bot.1976,54:2440-2444
    [60]Roshchina V V,Roshchina V D.The excretory function of higher plant[A].New York:Spinger-verlag.1993:213-215
    [61]聂呈荣,曾任森,骆世明等.三裂叶蟛蜞菊对水稻化感作用的初步研究[J]作物学报,2004,30(9):942-946
    [62]Cruz R.,Anaya A.L,Hemandez B.E.,et al.Effects of allelochemical stress produced by Sicyos deppei on seedling root ultrastructure ofPhaselus vulgaris and Cucurbita ficifolia.J.Chem.Ecol.,1998,24(12):2039-2057
    [63]Chon,S.U.,Nelson C.J.Effects of experimental procedures and conditions on bioassay sensitivity of alfalfa autotoxicity.Comm.Soil Sci.Plant Anal,2001,32:1607-1619
    [64]Aliotta,G.,Cafeiro,G.,Fiorentino,A.lnhibition of radish germination and root growth by coumarin and phenylpropanoids.J.Chem Ecol.1993,19:175-183
    [65]聂呈荣,曾任森,黎华寿等.三裂叶蟛蜞菊对花生化感作用的生理生化机理[J]花生学报,2002,31(3):1-5
    [66]Muscolo A.,Panuccio M.R.,Sidari M..The effect of phenols on respiratory enzymes in seed germination--respiratory enzyme activities during germination of Pinus laricio seeds treated with phenols extracted from different forest soils.Plant Growth Regul,2001,35:31-35
    [67]Hejl,A.M.,Einhellig,F.A.,and Rasmussen,J.A.Effects ofjuglone on growth,phyotosynthesis,and respiration.J.Chem.Ecol.1993,16:931-939
    [68]Einhellig,F.A.Mechanism of action of allelochemicals in allelopathy.ACS Symp.Ser.1995,582:96-116
    [69]Baleroni C R S,Ferrarese M L L,Souza N E,et al.Lipid accumulation during canola seed germination in response to cinnamic acid derivatives.Biol Plant,2000,43:313-316
    [70]李杨瑞.植物的生化互作现象[J].土壤,1993,25(15):248-251
    [71]Mersie,W.,and Singh,M.Phenolic acids affect photosynthesis and protein synthesis by isolated leaf of velvet-leaf.J.Chem.Ecol.1993,19:1293-1301
    [72]Wink,M.,and Latz-Bruning,B.Allelopathic properties of alkaloids and other natural products:Possible modes of action.ACS Symp.Ser.1995,582:117-126
    [73]李寿田,周健民,王火焰等.植物化感作用机理的研究进展[J].农村生态环境,2001,17(4):52-55
    [74]Sato,T.,Kiuchi,F.,and Sankawa.Inhibition ofphenylalanine ammonia-lyase by cinnamie acid derivatives and related compounds.Phytochem.1982,21:845-850
    [75]Einhellig F.A.Mechanism of action of allelochemicals in allelpothy.Allelopathy,1995,1:97-115
    [76]林文雄,何华勤,郭玉春等.水稻化感作用及其生理生化特性研究[J].应用生态学报2001,12(6):871-875
    [77]Einhellig F.A.Mechanism and mode of action ofallelochemicals.In"The Science of Allelopathy"(A.R.Putnam and C.S.Tang,Eds.),Wiley,New York,1986
    [78]Lee,T.T.,Starratt,A.N.,and Jevenikar,J.J.Regulation of enzymic oxidation of indole-3-acetic acid by phenols:Structure-activity relationships.Phytochem.1992,21:517-523
    [79]刘秀芬,胡晓军.化感物质阿魏酸对小麦幼苗内源激素水平的影响[J].中国农业生态学报,200l,9(1):86-88.
    [80]Thomaszewishi M,Thimann K V.Interaction ofphemolic acids,metabllicions and chlating agents on auxin-induced growth[J]Plant phyiol,1996,41:1443-1454.
    [81]Stiles,L.H.,Leather,G.R.,and Chen,P.K.Effects of two sesquiterpene lactones isolated from Artemisia annua on physiology of!emna minor.J.Chem.Ecol.1994,20:969-978
    [82]Patterson,D.T.Effects of allelopathic chemicals on growth and physiological responses of soybean(Glycine max),Weed Sci.1981,29:53-59
    [83]Lyu S W,Blum U.Effects of ferulic acid and allelopathic compound,on net P.K,and water uptake in cucumber seedlings in a split-root system.J.Chem.Ecol.1990,16:2429-2439
    [84]吕卫光,张春兰.化感物质抑制连作黄瓜生长的作用机制[J].中国农业科学,2002,35(1):106-109.
    [85]Alsaadawi,I.S.,A1-Hadithy,S.M.,and Arif,M.B.Effects of three phenolic acids on chlorophyll content and ion uptake in cowpea seedlings.J.Chem.Ecol.1986,12:221-227
    [86]Marci,R.,Vianello,A.,and Pennazio,S.Allelopathy of sunflower.Physiol plant.1986,67:136-140
    [87]Balke,N.E.Effects ofallelochemicals on mineral uptake and associated physiological processes.ACS Symp.Ser.1985,268:161-178
    [88]Einhellig,F.A.Effects of allelopathie chemicals on crop productivity,ACS Syrup.Set.1985,276:109-130
    [89]Powels S B.Photoinhibition of photosynthesis induced by visible light.Annu Rev Plant Physiol,1984,35:15-44
    [90]Ogren E,Sjostrom M.Estimation of the effect of photoinhibition on the carbon gain in leaves of a willow canopy.Planta,1990,181:560-567
    [91]郭连旺,许大全,沈允钢.田间小麦叶片光合作用的光抑制不伴随D1蛋白的净损失[J].植物学报,1996,38:196-202
    [92]郭连旺,许大全.自然条件下珊瑚树叶片光合作用的光抑制[J].植物生理学报,1994,20:46-54
    [93]Bjorkman O.Some viewpoints on photosynthetic response and adaptation to environmental stress.In:Briggs W R(ed).Photosynthesis.New York:Alan R Liss Inc,1989,45-58
    [94]Sapozhnikov D I,Krasovskaya T A,Maevskaya A N.Change in the interrelationship of the basic carotenoids of the plastids of green leaves under the action of light.Dokl Akad Nauk USSR,1957,113:465-467
    [95]Yamamoto H Y,Nakayama T O M,Chichester C O.Studies on the light and dark in terconversions of leaf xanthophylls.Arch Biochem Biophys,1962,97:168-173
    [96]Pfundel E,Bilger W.Regulation and possible function of the violaxanthin cycle.Photosynth Res,1994,42:89-109
    [97]Horton H,Ruban A V,Rees D,Pascal A A,Noctor g,Young A J.Control of the light harvesting function of chloroplast membranes by aggregation of the LHC Ⅱchlorophyll-protein complex.FEBS Lett,1991,292:1-4
    [98]Li X-P,Bjorkman O,Shih C,Grossman A R,Rosenquist M.Jansson S,Niyogi K K.AA pimentbinding protein essential for regulation of photosynthetic light harvesting.Nature,2000,403:391-395
    [99]Demmig-Adams B,Adams W W III.Xanthophyll cycle and light stress in nature:uniform response to excess direct sunlight among higher plant species.Planta,1996,198:460-470
    [100]洪双松,许大全.小麦和大豆叶片荧光参数对强光响应的差异[J]科学通报,1997,42:753-756
    [101]Melis A.Functional properties of photosystem II in spinach chloroplasts.Biochim Biophys Acta,1985,808:334-342
    [102]Chow W S.Photoprotection and photoinhibitory damage.Adv Mol Cell Biol,1994,10:151-196
    [103]Kirilovsky D,Etienne A-L.Protection of reaction centerlI from photodamage by low temperature and anaerobiosis in spinach chloroplasts.FEBS Lett,1991,279:201-204
    [104]Anderson J M,Aro E-M.Grana stacking and protection of photosystemlI in thylakoid membranes of higher plant leaves under sustained high irradiance:An hypothesis.Photosynth Res,1994,41:315-326
    [105]Crichley C,Russell A W.Photoinhibition of photosynthesis in vivo:The role of protein turnover in photosystem II.Physiol Plant,1994,92:188-196
    [106]Ort D R,Whitmarsh J.Inactive photosystem II centers:a resolution of discrepancies in photosystem Ⅱ quantitation? Photosynth Res,1990,23:101-104
    [107]Heber U,Kirk M R,Borardman N K.Photoreactions of cytochrome b-559 and cyclic electron flow in photosystem Ⅱ of intact chloroplasts.Biochim Biophys Acta,1979,546:292-306
    [108]Falkowski P G,Fujita Y,Ley A,Mauzerall D.Evidence for cyclic electron flow around photosystem Ⅱ in Chlorella pyrenoidosa.Plant Physiol,1986,81:310-312
    [109]Whitmarsh J,Chylla R.Hypothcsis:In leaves inactive PS Ⅱ complexes are converted during illumination to an acti(?) form that drives an electron cycle and quenches fluorescence.Plant Physiol,1990,93:142
    [110]whitmarsh J,Samson G,Poulson M.Photoprotection in photosystem Ⅱ-the role of cytochrome b559.In:Baker N R,Bowyer J R(eds).Photoinhibition of Photosynthesis:from Molecular Mechanisms to the Field.Oxford:Bios Scientific Publishers,1994,75-93
    [111]王颖君,叶济宇.脓青素对光抑制条件下菠菜叶绿体的保护作用[J].植物生理学报,1996,22:123-129
    [112]Prasil O,Kolber Z,berry J A,Falkowski P G.Cyclic electron flow around photosystem Ⅱin vivo.Photosynth Res,1996,48:395-410
    [113]Fork D C,Bose S,Herber S K.Radiationless transitions as a protection mechanism against photoinhibition in higher plants and algae.Photosynth Res,1986,10:327-333
    [114]Krause G H,Behrend U.△pH-dependent chlorophyll fluorescence quenching indicating a mechanism of protection against photoinhibition of chloroplasts.FEBS Lett,1986,200:298-302
    [115]Ogren E.Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching components.Planta,1991,184:538-544
    [116]Shen Y-K,Chow W S,Park Y-I,Anderson J M.Photoinactivation ofphotosystem II by cumulative exposure to short light pulses during the induction period of photosynthesis,Photosynth Res,1996,47:51-59
    [117]Eskling M,Arvidsson P-O,Akerlund H-E.The xanthophylls cycle,its regulation and components.Physiol Plant,1997,100:806-816
    [118]Bjorkman O,Demmig-Adams B.Regulation of photosynthetic light energy capture,conversion,and dissipation in leaves of higher plants.In:Schulze E-D,Caldwell M M (eds).Ecophysiology of Photosynthesis.Berlin:Springer Verlag,1994.17-47
    [119]Kagawa T,Sakai T,Suetsugu N,Oikawa K,Ishiguro S,Kato T,Tabata S,Okada K,Wada M.Arabid0psis NPLI:A phototropin homolog controlling the chloroplast high-light avoidance response.Science,2001,291:2138-2141
    [120]Anderson J M,Osmond C B.Shade-sun responses:compromises between acclimation and photoinhibition.In:Kyle D J,Osmond C B,Amtzen C J(eds).Photoinhibition.Amsterdam:Elsevier Sciences Publishers,1987.1-38
    [121]郭连旺,许大全,沈允钢.棉花叶片光合作用的光抑制和光呼吸的关系[J].科学通报,1995,40:1885-1888
    [122]Park Y-I,Chow W S,Osmond C B,Anderson J M.Electron transport to oxygen mitigates against the photoinactivation of photosystem Ⅱ in vivo.Photosynth Res,1996,50:23-32
    [123]Ruuska S A,Badger M R,Andrews T J,von Caemmer S.Photosynthetic electron sinks in transgenic tobacco with reducted amounts of Rubisco:little evidence for significant Mehler reaction.J Exp Bot,2000,51:357-368
    [124]Niyogi K K.Safety valves for photosynthesis.Curr Opin Plant Biol,2000,3:455-460
    [125]Shyam R,Raghavendra A S,Sane P V.Role of dark respiration in photoinhibition of photosynthesis and its reactivation in the cyanobacterium Anacystis nidulans.Physiol Plant,1993,88:446-452
    [126]Foyer C H,Lelandais M,Kuner K J.Photooxidative stress in plants.Physiol Plant,1994,92:696-717
    [127]许长成,邹琦,孟庆伟,赵世杰.田间大豆叶片活性氧清除酶系统的日变化[J].西北植物学报,1997,17:292-297
    [128]陈寿椿.重要无机化学应用手册[M].上海科技出版社,1982.891-895
    [129]陈嘉浦,谭光薰.磷酸盐的生产应用[M].成都科技出版社,1989(1):12
    [130]张永红,大黄中葸醌类成分提取条件的选择[J].西北药学杂志,1997,12(2):59-61.
    [131]陈向明,俞志敏,金杰山核桃外蒲壳无机成分的分析研究[J].分析实验室,2007,26(8):45-47
    [132]侯秋实,王洪记离子交换法生产碳酸钾工艺的技改与革新[J]无机盐工业,1997,(1):34-36
    [133]张俊先,任照元离子交换法制备碳酸钾工艺的改进[J]江苏化工,1997,25(2):34-35
    [134]电镀手册[M].北京:国防工业出版社,1977
    [135]呼世斌,黄蔷擂无机及分析化学[M]北京:高等教育出版社,1998,160-170
    [136]陈玉婷,杨云,王英华等常用中药化学鉴定[M]北京:化学工业出版社2005,98-100
    [137]国家药典委员会中国药典[M]北京:化学工业出版社2005,
    [138]张野平,杨志博,景永奎等.胡桃醌对肿瘤细胞的增殖抑制作用和抗菌作用[J]沈阳药学院学报,1993,10(4):2 71-274
    [139]兰英,赵锐.核桃楸青果皮水提物对降低小鼠体内丙二醛质量浓度的研究[J]北华大学学报,2000,1(6):476-47
    [140]卢锦花,胡晓玲,岳红等.大孔吸附树脂提取银杏黄酮.应用化学,2002,19(5):486-488
    [141]Gonzalez,de.Parra M.,Anaya,A.L.,Espinosa,Eet al.Allelopathic potential of poqueria trinervia(Compositae)and piquerola A and B[J].Chem.Ecol.1981,7:209-215
    [141]胡飞,孔垂华.胜红蓟化感作用研究,水溶物的化感作用及其化感物质分离鉴定[J].应用生态学报,1997,8(3):304-308
    [142]郑丽、冯玉龙.紫茎泽兰叶片化感作用对10种草本植物种萌发和幼苗生长的影响[J].生态学报,2005,25(10):2782-2787
    [143]张志良,植物生理学实验指导[M]北京:高等教育出版社,1996
    [144]赵世杰,刘华山,董新纯.植物生理学实验指导[M]北京:中国农业科技出版社,1998
    [145]鲍士旦 土壤农化分析[M]北京:中国农业出版社,2000,12
    [146]朱广廉,钟海文,张爱琴.植物生理学实验[M].北京大学出版社,1990.
    [147]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,16(6):55-57
    [148]郝再彬,苍晶,徐仲.植物生理实验技术[M].哈尔滨出版社,2002
    [149]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    [150]王浮国.植物生理生化实验指导[M].华东师范大学生物系,1980
    [151]蓝宝卿、李嘉珏、段全绪等《中国牡丹全书》[M].中国科学技术出版社,2002.3
    [152]郑国生,何秀丽.夏季遮阴改善大田牡丹叶片光合功能的研究[J].林业科学,2006,42(4)27-42
    [153]Osmond C B,What is photoinhibition Some insights from comparisons of shade and sun plants.In:Baker NR,Bowyer JR(eds) Photoinhibition of photosynthesis from molecular mechanisms to the field.Oxford:Bios Scientific,1994,1-24
    [154]Asada K,The water-water cycle in chloroplast:scavenging of active oxygens and dissipation of excess photons.Annu Rev Plant Physiol Plant Mol Biol,1999,50:601-639
    [155]Niyogi K K,Photoprotection revisited:genetic and molecular approaches.Annu Rev Plant Physiol Plant Mol Biol,1999.50:333-359
    [156]Ort D R,When there is too much light.Plant Physiol,2001,125,29-32
    [157]唐传核等,类黄酮的最新研究进展--抗氧化研究,生理功能[J]。中国食品添加剂2001,1(5):5-16
    [158]唐传核,植物生物活性物质[M].化学工业出版社,2005,172-213
    [159]Wallig MA,at el,Iduction of rat pancreatic glutathione S-transferase and quinine reductase activities by a mixture of glucosinolate breakdown derivatives found in Brussels sprouts>Food and Chemical Toxicology 1998,36:365-373
    [160]Van Kooten KO,Snel JFH.The use of chlorophyll fluorescence nomenclature in plant stress physiology[J].Photosyn Res.,1990,25:147-150.
    [161]沈允钢,施教耐,许大全.动态的光合作用[M].科学出版社,1998,134-135
    [162]姜闯道,高辉远,邹琦.缺锰降低大豆叶片叶绿素荧光的高能态猝灭[J].植物生理与分子生物学学报,2002a.28(4):287-291
    [163]姜闯道,高辉远,。邹琦.缺铁使大豆叶片激发能的耗散增加[J].植物生理与分子生物学学报,2002b.28(2):127-132
    [164]Bilger W,Bjorkman O.Role of the xanthophylls cycle in photoprotection elucidated by measurements of light induced absorbance changes fluorescence and photosynthesis in leaves of Hedera anriensis[J].Photosynth Res,1990,25:173-18
    [165]Eichelmann H,Laisk A,Cooperation of photosystems II and I in leaves as analyzed by simultaneous measurements of cnlorophyll fluorescence and transmittance at 800nm.Plant Cell Physiol,2000.41:138-147
    [166]Xu D Q,Shen Y G,Light Stress:Photoinhibition of photosynthesis in plants under natural conditions.In Pessarakl M.(ed.)Handbook of plant and crop stress,2ed ed.New York:Marcel Dekker,1999.438-497
    [167]Krause G H,Weise E,Chlorophyll fluorescence and photosynthesis:The Basics.Annu Rev Plant Physiol Plant Mol Biol,1991.42:313-349
    [168]Xu D Q,Wu S,Three phases of dark-recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field condition.Photosynthetica,1996.32:417-423.
    [169]Anderson J M,Park Y I,Chow W S,Photoinactivation and photoprotection of photosystem Ⅱ in nature.Physiologia Plantarum,1997.100:214-223
    [170]Demmig Adams B,Bjorkman O.Comparison of effects of excessive light on chlorophyll fluorescence(77K) and photo yield of O_2 evolution in leaves of higher plants[J].Planta,1987,171:171-184
    [171]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448
    [172]Bertamini M,Krishnasamy M,Nedunchezhian N,Iron deficiency induced changes on the donor side of PSII in field grown grapevine(Vitis vinifera L.cv.Pinot noir) leaves.Plant Science,2002.162:599-605
    [173]Patricia Muller,Xiao-Ping Li,Krishna K Niyogi.Non-Photochemical Quenching.A Response to Excess Light Energy[J].Plant Physiol,2001,125:1558-1566
    [174]Jiang C D,Gao H Y,Zou Q,Characteristics of photosynthetic apparatus in Mn-starved leaves.Photosynthetica,2002.40(2):209-213
    [175]ZHANG Q D,ZHANG J H,LIU H Q,et al.Effects of Limited Irrigation and Different Fertilization Ways on Some Photosynthetic Functions of Flag Leaves in Winter Wheat[J].Plant Nutrition and Fertilizer Science,2000,6(1):24-29
    [176]Komyeyev D,Logan BA,Payton PR et al.Elevated choroplastic glutathione reductase activities decrease chilling-induced photoinhibition by increasing rates of photochemistry,but not the thermal energy dissipation,in transgenic cotton.Funcional Plant Biology,2003,30:101-110
    [177]李新国.低温条件下喜温植物PS Ⅰ和PS Ⅱ的光抑制及其相互关系[博士论文].2003.泰安:山东农业大学
    [178]代金明.大豆叶片衰老过程中PS Ⅱ功能和光破坏防御机制的变化[硕士论文].2003.泰安:山东农业大学
    [179]Yang X H,Zou Q,Wang W.Photoinhibition in shaded cotton leaves after exposing to high light and the time course of its restoration.Acta Botanica Sinica,2001. 43:1255-1259
    [180]李玉胜 宁国山核桃[J].安徽林业,2002,5:39
    [181]丁明玉 倪为为 大黄中鞣质成分的分离与液相色谱/质谱联用分析[J].色谱,2004,22(6):605-608
    [182]Masaharu K,Kouki H,Tadaki H,2002.Photoinactivation and recovery of photosystem Ⅱin Chenopodium album leaves grown at different levels of irradiance and nitrogen availability.Functional Plant Biology,29(7):787-795.
    [183]刘秀芬 根际区他感化学物质分离、鉴定与生物活性的研究[J].生态学报,1996,16(1):1-10
    [184]曾任森,林象联等蟛蜞菊的生化他感作用及生化他感作用物的分离鉴定[J].生态学报,1996,16(1):20-27
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.