异育银鲫和长吻鮠对饲料碳水化合物利用的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究探讨了饲料碳水化合物对不同食性鱼类的营养功能,并比较了杂食性和肉食性鱼类对碳水化合物利用和代谢差异的机制。采用我国普遍养殖的两种经济鱼类,杂食性的异育银鲫(Carassius auratus gibelio (Bloch))和肉食性的长吻鮠(Leiocassis longirostris Günther)作为实验对象。本研究由三个8周生长实验组成,在相同的试验条件下进行。首先,以葡萄糖、蔗糖、糊精、淀粉和纤维素作为碳水化合物源,在异育银鲫和长吻鮠饲料中分别按20%和6%的比例使用,以确定适宜的碳水化合物源;然后以玉米淀粉等能替代饲料鱼油,各设置5个碳水化合物/脂肪(CHO:L)比例,长吻鮠饲料中的CHO:L为0.75、1.48、1.98、2.99和5.07,异育银鲫饲料中的CHO:L比例为0.79、1.33、2.32、3.70和7.51,以确定饲料中适宜的CHO:L 比例。最后,选用我国常见的三种谷物饲料——玉米、糙米和糯米,以及抗性淀粉产品作为淀粉源,测定其中的可消化淀粉和抗性淀粉成分,并分别按25.0%和18.0%总淀粉含量在异育银鲫和长吻鮠饲料中使用,以确定淀粉成分对两种鱼生长和代谢的影响。实验中测定了鱼的特定生长率,饲料效率、血液生化指标、鱼体生化成分、肝体指数、糖原和脂肪含量、葡萄糖异生作用及脂肪生成过程中的关键酶活性。
    实验中所取得的主要结果如下:
    1) 异育银鲫摄食淀粉和纤维素时表现出较高的特定生长率(SGR) 和饲料效率(FE)(P<0.05) ;而长吻鮠摄食糊精和蔗糖时表现出较高的SGR 和FE (P<0.05)。
    2) 异育银鲫的干物质表观消化率(ADCd) 和能量表观消化率(ADCe)随饲料中碳水化合物分子量增大而呈现下降趋势(P<0.05),但淀粉组的ADCd要高于其他组(P<0.05)。长吻鮠的ADCd和ADCe值也随饲料碳水化合物分子量增大而下降(P<0.05),但是葡萄糖组的ADCd和ADCe低于纤维素组(P<0.05)。碳水化合物来源对两种鱼的蛋白质表观消化率(ADCp)均没有显著影响。
    3) 肝脏磷酸烯醇式丙酮酸羧激酶(PEPCK)、丙酮酸激酶(PK)、葡萄糖-6-磷
The present study was to investigate the nutritional function of dietary carbohydrate for fish with different food habits and to compare the difference in mechanism of carbohydrate utilization and metabolism between omnivorous fish and carnivorous fish. Omnivorous gibel carp (Carassius auratus gibelio (Bloch)) and carnivorous Chinese longsnout catfish (Leiocassis longirostris Günther), which are two important aquaculture species in China, were tested. Three 8-week growth trials were carried out under similar experimental conditions, and growth performance, feed efficiency, blood biochemistry, liver characteristic, body composition as well as gluconeogenetic and lipogenic enzymes in fish livers were determined.
    First, five carbohydrate sources, including glucose, sucrose, dextrin, soluble starch and α-cellulose, were tested to find suitable carbohydrate source for the two fish species. The inclusion level of each carbohydrate source was 6% of dry matter for Chinese longsnout catfish and 20% for gibel carp. Then, the optimal dietary carbohydrate to lipid (CHO:L) ratio for each species was determined at the same dietary gross energy level using corn starch and fish oil as energy sources. The CHO:L ratios tested were 0.75, 1.48, 1.98, 2.99 and 5.07 for Chinese longsnout catfish and 0.79, 1.33, 2.32, 3.70 and 7.51 for gibel carp, respectively. In the last experiment, four starch sources-corn
    meal, brown rice meal, sticky rice meal and resistant starch product were used to provide equal content of total starch and to determine the effect of starch fractions on fish growth and metabolism. The total starch content was 25.0% in gibel carp diets and 18.0% in Chinese longsnout catfish. The results are shown as follows: 1) The higher specific growth rate (SGR) and feed efficiency (FE) of gibel carp were observed in those fed diets containing soluble starch and cellulose (P<0.05), while dextrin and sucrose for Chinese longsnout catfish (P<0.05). 2) Apparent digestibility coefficient of dry matter (ADCd) and apparent digestibility coefficient of energy (ADCe) in gibel carp decreased significantly as dietary carbohydrate complexity increased (P<0.05), except that ADCd in soluble starch group was higher than other groups (P<0.05). ADCd and ADCe significantly (P<0.05) decreased as dietary carbohydrate complexity increased in Chinese longsnout catfish except that glucose diet had a medium ADCd and ADCe. In both species, no significant difference of apparent digestibility coefficient of protein (ADCp) was observed between different carbohydrate sources. 3) Liver phophoenolpyruvate carboxykinase (PEPCK), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) activities also varied according to dietary carbohydrate complexity (P<0.05). Fish with different food habits showed different ability to synthesize liver glycogen, and the liver glycogen content in gibel carp was significantly higher than that in Chinese longsnout catfish. The influence of carbohydrate source on gluconeogenesis and lipogenesis was also different in the two fish species. Chinese longsnout catfish showed high gluconeogenesis and lower lipogenesis to regulate glucose metabolism when given glucose, sucrose, dextrin or soluble starch while gibel carp showed lower gluconeogenesis and high ability of
    carbohydrate utilization by increasing ME activity (except sucrose-based diet). 4) Dietary carbohydrate sources significantly affected fish body composition. Gibel carp fed glucose showed the highest body levels of dry matter, lipid, ash and energy while the lowest crude protein level (P<0.05), and fish fed sucrose showed the lowest body contents of dry matter, protein, lipid, and energy while the highest ash levels (P<0.05). In Chinese longsnout catfish, body contents of dry matter, lipid and gross energy in fish fed cellulose were significantly lower than other groups (P<0.05). Body protein of the fish fed glucose was significantly higher than fish given sucrose diet (P<0.05). 5) Chinese longsnout catfish could not tolerate higher dietary carbohydrate and skeletal malformations was observed at dietary 5.07 CHO:L ratio, while gibel carp could tolerate dietary CHO:L ratio up to 7.51. 6) Gibel carp fed diets of 1.33 CHO:L ratio showed higher SGR and FE (P<0.05), while Chinese longsnout catfish fed diets of 1.98 CHO:L ratio showed higher SGR and FE (P<0.05). 7) Fish body dry matter, lipid, and energy contents significantly increased as CHO:L ratio decreased in the two fish species (P<0.05). Fish with different food habits showed no significant trend in variation of liver characteristic, blood biochemistry and liver histology with increased dietary CHO:L ratio. But pathological changes were observed in liver of Chinese longsnout catfish fed diet of 5.07 CHO:L ratio. 8) In both fish species, ADCd decreased significantly as dietary CHO:L ratio decreased (P<0.05), but ADCp showed no significant difference as dietary CHO:L ratio varied (P>0.05). ACDe significantly decreased in gibel carp as dietary CHO:L ratio decreased (P<0.05), while in Chinese longsnout catfish, ACDe in 1.98 CHO:L ratio group was significantly higher than other groups (P<0.05).
    9) The optimal carbohydrate to lipid ratio was found to be from 0.79 to 1.33 for gibel carp and 1.98 for Chinese longsnout catfish, respectively. 10) Starch source showed no significant effect on SGR and FE of gibel carp (P>0.05), while fish fed with resistant starch showed significantly higher feeding rate (FR), lower protein retention efficiency (PRE) and energy retention efficiency (ERE) than other groups (P<0.05). In Chinese longsnout catfish, fish fed with sticky rice meal showed significantly higher SGR than those fed with corn meal (P<0.05), while fish fed resistant starch showed significantly higher FR, and lower FE, PRE and ERE than other groups (P<0.05). 11) Gibel carp showed the highest ADCd value in sticky rice meal and brown rice meal groups, followed by corn meal group, and the lowest in resistant starch group (P<0.05), while significantly lower ADCp and ADCe were only observed in resistant starch group (P<0.05). Chinese longsnout catfish only showed significantly lower ADCp in resistant starch group (P<0.05), no variation in ADCd and ADCe values was observed (P>0.05). 12) Only gibel carp fed with resistant starch showed significantly lower body dry matter, lipid and gross energy contents, as well as significantly higher ash contents (P<0.05). Whereas, lower body dry matter and lipid contents in Chinese longsnout catfish fed with resistant starch were significantly only in comparison with sticky rice meal (P<0.05). No significant difference between other groups was observed (P>0.05). 13) Higher resistant starch fraction in diets significantly improved the G6PD activity of gibel carp and the ME activity of Chinese longsnout catfish (P<0.05). In the two fish species fed with resistant starch , some epithelial cells desquamated from the top of the intestine folds,and loosened structure and dropsy were also observed in part of submucosa of intestine. 14) Corn meal, brown rice meal, and sticky rice meal, which showed similar
    digestible and resistant starch fractions, are suitable for dietary carbohydrate source in gibel carp, but not in Chinese longsnout catfish. In conclusion, dietary carbohydrate source, starch fractions and carbohydrate to lipid ratios had significant effect on fish growth and carbohydrate metabolism. Fish with different food habits showed different response in growth and metabolism to diet treatments.
引文
蔡春芳,王道尊,朱友谊,2000.贝粉在异育银鲫饲料中添加的效果.水利渔业(4), 41-42.
    陈昌福,陈超然,2002.鱼类三种致病菌的粗脂多糖对异育银鲫的免疫原性.水生生物学报26,483-484.
    丁军,单仕新,葛伟,蒋一珪,1991.银鲫卵对两类精核发育的初级控制作用模式的研究.中国科学(B辑) 11,1160-1165.
    方建平,肖全福,2000.长江丽棘虫在长吻鮠幼体中寄生的研究.水利渔业(4),37-38.
    葛伟,单仕新,蒋一珪,1992.雌核发育银鲫的受精生物学研究—天然雌核发育银鲫繁殖方式的讨论.水生生物学报16,97-100.
    桂建芳,梁绍昌,朱蓝菲,蒋一珪,1992a.异育银鲫人工繁育群体中复合四倍体的发现及其育种潜力.科学通报37,646-648.
    桂建芳,梁绍昌,朱蓝菲,蒋一珪,1992b.人工复合四倍体异育银鲫雌核发育生殖方式的初步研究.科学通报37,836-838.
    贺锡勤,李金生,1990.长吻鮠鱼种摄食习性及其人工配合饲料初步研究.水利渔业(6),10-13.
    贺锡勤,李钟杰,雷武,杨云霞,1991.放养密度对东湖网箱异育银鲫生长和饲料转化效率的影响.水生生物学报15,375-378.
    姜仁良,吴嘉敏,邬敏初,王志强,1990.长江口长吻鮠人工繁殖研究.水产科技情报17,162-165.
    蒋一珪,梁绍昌,1983.异源精子在银鲫雌核发育子代中的生物学效应.水生生物学集刊8,1-13.
    解绶启,贺锡勤,杨云霞,1997.长吻鮠幼鱼的赖氨酸需要量.水生生物学报21,1-7.
    李爱杰,1994.水产动物营养与饲料学.中国农业出版社,北京,pp.126-130.
    李禾,1990.长吻鮠苗种单殖吸虫病的初步研究.鱼类病害研究2,7-9.
    梁友光,1999.饲料脂肪水平对长吻鮠生长的影响.水利渔业(1),45-46.
    罗银辉, 张义云,1987.长吻鮠鱼苗鱼种培育技术研究. 淡水渔业(5),11-15.
    裴之华,2003. 长吻鮠和异育银鲫对饲料非蛋白能源利用的比较研究.中国科学院水生生物研究所硕士学位论文.武汉.
    钱雪桥,2001.长吻鮠和异育银鲫幼鱼饲料蛋白需求的比较营养能量学研究.中国科学院水生生物研究所博士学位论文.武汉.
    田丽霞,刘永坚,冯健,刘栋辉, 梁桂英, 杜震宇,2002.不同种类淀粉对草鱼生长、肠系膜脂肪沉积和鱼体组成的影响.水产学报26,247-251.
    吴江,张泽芸,罗永明,向汉超,1996.网箱培育长吻鮠鱼种初步研究.水利渔业(3),10-11.
    吴清江,1975. 长吻鮠的种群生态学及其最大持续渔获量的研究.水生生物学集刊5(3), 387-408.
    谢杏人,1988.长江中游长吻鮠寄生粘孢子虫感染率的季节动态. 水生生物学报12(4),316-327.
    杨严鸥,2003.饲料质量和摄食水平对不同食性鱼类生长和活动的影响.华中农业大学博士学位论文.
    殷江霞,张耀光,2003.长吻鮠行为的初步观察.水产养殖24(6),42-44.
    张胜秋,陈昌福,2001.异育银鲫对嗜水气单胞菌灭活菌苗的免疫应答.华中农业大学学报20,271-274.
    张素芳,1987.长吻鮠小瓜虫流行病调查.淡水渔业(2) 30-31.
    张耀光,罗泉笙,何学福,1994.长吻鮠的卵巢发育和周年变化及繁殖习性研究.动物学研究(2),42-48.
    张泽芸,张季涛,陈先军,1990. 长吻鮠鱼种阶段蛋白质最适需要量的研究. 西南农业学报(4),87-90.
    周志刚,2002.利用生物能量学模型建立异育银鲫投喂体系的研究.中国科学院水生生物研究所博士学位论文.武汉.
    朱晓鸣,解绶启,崔奕波,2000.摄食水平对异育银鲫生长和能量收支的影响.海洋与湖沼31,471-479.
    FAO,2003.《2002 年世界渔业和水产养殖状况》. FAO, 罗马. pp150.
    Abel, H., Pieper, A. & Pfeffer, E., 1978. Vergleich der energetischenVerwertung von Protein und Kohlehydraten bei Regenbogenforellen. Z. Tierphysiol. Tiern?hr. Futtermittelk. 40, 127–128.
    Ablett, R. R., Taylor, M.J. & selivonchick, D.P., 1983. The effect of high-protein and high-carbohydrate diets on (I125)iodoinsulin binding in skeletal muscle plasma membranes and isolated hepatocytes of rainbow trout (Salmo gairdneri). Br. J. Nutr. 50, 129-140.
    Akiyama, T., Murai, T. & Nose, T., 1982. Effects of various dietary carbohydrates on growth, feed efficiency, and body composition of chum salmon fry. Bull. Jpn. Soc. Sci. Fish. 33, 112–116.
    Al-Asgah, N.A. & Ali, A., 1993. Feeding of various carbohydrate sources on the growth performance and nutrient utilization in Oreochromis niloticus. In: International Symposium on Aquaculture Technology and Investment Opportunities. Riyadh, Saudi Arabia, pp11–14.
    Alexis, A., 1997. Fish meal and fish oil replacers in Mediterranean marine fish diets. Cah. Options Mediterr. 22, 183–204.
    Alexis, M.N. & Papaparaskeva-Papoutsoglou, E., 1986. Amin-transferase activity in the liver and white muscle of Mugil capito fed diets containing different levels of protein and carbohydrate. Comp. Biochem. Physiol. 83B, 245–249.
    Ali, A. & Al-Asgah, N.A., 2001. Effect of feeding different carbohydrate to lipid ratios on the growth performance and body composition of Nile Tilapia (Oreochromis niloticus) fingerlings. Anim. Res. 50, 91–100.
    Ali, M.Z. & Jauncey, K., 2004. Optimal dietary carbohydrate to lipid ratio in African catfish Clarias gariepinus (Burchell 1822). Aquacult. Int. 12, 169–180.
    Alliot, E., 1982. Aspects nutricionneles chez le loup (Dicentrarchus labrax) en milieu contr?le. Influence des régimes alimentaires et des facteurs de l' environnement sur le bilan azoté. Doctoral Thesis, Fac. Sci. de Luminy, Universitéde Marseille II, France, pp180.
    Anderson, J., Jackson, A.J., Matty, A.J. & Capper, B.S., 1984. Effects of dietary carbohydrate and fibre on the tilapia (Oreochromis niloticus). Aquaculture 37, 303-314. AOAC, 1984. Official Methods of analysis of the association of Official Analytical Chemists. 14th edn. AOAC, Arlington, VA, pp1141.
    Arai, S., 1991. Eel, Anguilla spp. In: Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.). CRC Press, Boca Raton, FL, pp 69-75.
    Aranda, A., Sánchez-Vázquez, F.J. & Madrid, J.A., 2001. Effect of short-term fasting on macronutrient self-selection in sea bass. Physiol. Behav. 73, 105–109.
    Arnesen, P., Krogdahl, ?. & Sundby, A., 1995. Nutrient digestibilities, weight gain and plasma and liver levels of carbohydrate in Atlantic salmon (Salmo salar, L.) fed diets containing oats and
    maize. Aquacult. Nutr. 1, 151–158.
    Atkinson, J.L. & Hilton, J.W., 1981. Response of rainbow trout to increased dietary carbohydrate. FASEB J. 40, 3486.
    Austreng, E., Risa, S., Edwards, D.J. & Hvidsten, H., 1977. Carbohydrate in rainbow trout diets. II. Influence of carbohydrate levels on chemical composition and feed utilisation of fish from different families. Aquaculture 11, 39–50.
    B(?)verfjord, G., 1992. Digestible and Indigestible Carbohydrates in Rainbow trout diets. III. Effects on Growth, Digestibility, Pancreatic Hormones, Liver Glycogen Deposition and Liver Morphology. PhD Thesis. Norwegian College of Veterinary Medicine, Oslo,Norway.
    Ballantyne, J.S., 1997. Jaws: the inside story. The metabolism of elasmobranch fishes. Comp. Biochem. Physiol. 118B, 703–742.
    Banks, W. & Muir, D.D., 1980. Structure and chemistry of the starch granule. In: The Biochemistry of Plants, vol. 3. Academic Press, New York, pp 321–369.
    Ba?os, N., Baró, J., Castejón, C., Navarro, I. & Gutiérrez J., 1998. Influence of high-carbohydrate enriched diets on plasma insulin levels and insulin and IGF-I receptors in trout. Regul. Pept. 77, 55–62
    Barham, D. & Trinder, P., 1972. An improved color reagent for the determination of blood glucose by the oxidase system. Analyst 97, 142–145.
    Beamish, F.W.H., Hilton, J.W., Niimi, E. & Slinger, S.J., 1986. Dietary carbohydrate and growth, body composition and heat increament in rainbow trout (Salmo gairdneri). Fish Physiol. Biochem. 1, 85–91.
    Bednar, G. E., Patil, A.R., Murray, S.M., Grieshop, C.M., Merchen, N.R. & Fahey, G.C., Jr. 2001. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J. Nutr. 131, 276-286
    Berger, A. & Halver, J.E., 1987. Effect of dietary protein, lipid and carbohydrate content on the growth, feed efficiency and carcass composition of striped bass, Morone saxatilis Walbaum , fingerlings. Aquacult. Fish. Manage. 18, 345–356.
    Bergot, F., 1979a. Carbohydrate in rainbow trout diets: Effects of the level and source of carbohydrate and the number of meals on growth and body composition. Aquaculture 18, 157-167.
    Bergot, F., 1979b. Probleèmes particuliers posés par I’utilisation des glucides chez la truite arc-en-ciel. Annu. Nutr. Aliment. 33, 247-257.
    Bergot, F., 1979c. Effect of dietary carbohydrates and of their mode of distribution on glycaemia in rainbow trout (Salmo gairdneri Richardson). Comp. Biochem. Physiol. 64A, 543-547.
    Bergot, F. & Breque, J., 1983. Digestibility of starch by rainbow trout: effects of the physical state of starch and of the intake level. Aquaculture 34, 203–212.
    Berntsen, M. & Lundebye, A.K.H., 2001. Energetics in Atlantic salmon (Salmo salar L.) parr fed elevated dietary cadimium. Comp. Biochem. Physiol. 128C, 311–323.
    Bever, K., Chenoweth, M. & Dunn, A., 1977. Glucose turnover in kelp bass (Paralabrax sp.): in vivo studies with (6-3H, 6-14C) glucose. Am. J. Physiol. 232, R66-R72.
    Bj?rnsson, B.T.H., Hemre, G.I., Bj?nevik, M. & Hansen, T., 1999. Photoperiod regulation of plasma growth hormone levels in underyearling Atlantic salmon. J. Comp. Endocrinol. 119, 17–25.
    Black, D. & Love, R.M., 1986. The sequential mobilisation and restoration of energy reserves in tissues of Atlantic cod during starvation and refeeding. J. Comp. Physiol. 156, 469–479.
    Blin, C., Panserat, S., Medale, F., Gomes, E., Breque, J., Kaushik, S. & Krishnamoorthy, R., 1999. Teleost liver hexokinase-and glucokinase-like enzymes: partial cDNA cloning and phylogenetic studies in rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata). Fish Physiolo. Biochem. 21, 93–102.
    Bolin, D.W., King, R.P. & Klosterman, E.W., 1952. A simplified method for determination of chromic oxide (Cr2O3) when used as an inert substance. Science 116, 634-635.
    Boonyaratpalin, M., 1991. Asian seabass, Lates calcarifer. In: Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.). CRC Press, Boca Raton, FL, pp 5-11.
    Borreb?k, B. & Christophersen, B., 2000. Hepatic glucose phosphorylating activities in perch (Perca fluviatilis) after different dietary treatments. Comp. Biochem. Physiol. 125B, 387–393.
    Borreb(?)k, B., Christophersen, B. & Sundby, A., 2003. Metabolic function of hepatic hexokinase in perch, perca fluviatilis. Aquacult. Res. 34, 235-239.
    Borreb?k, B., Waagb?, R., Christophersen, B., Tranulis, M.A. & Hemre, G.I., 1993. Adaptable hexokinase with low affinity for glucose in the liver of Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. 106B, 833–836.
    Bradford, M.M., 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254.
    Brady, L.J., Romsos, D.R. & Leveille, G.A., 1977. Glucose turnover in the young chicken (Gallus domesticus) using variouslv labeled (3H, U-14C) glucose tracers. Comp. Biochem. Physiol. 56B, 421-425
    Brauge C., Médale F. & Corraze, G., 1994. Effect of dietary carbohydrate levels on growth, body composition and glycaemia in rainbow trout, Oncorhynchus mykiss, reared in seawater. Aquaculture 123, 109–120.
    Brauge, C., Corraze, G. & Médale, F., 1993. Combined effects of dietary lipid carbohydrate ratio and environmental factors on growth and nutritional balance in rainbow trout. In: From Discovery to Commercialization. Spec. Publ. European Aquaculture Soc. No. 19. (Carillo, M., Danle, L., Morales, J., Sorgeloos, P., Svennevig, N., Wyban, J. Eds.). Oostende, Belgium, pp 209.
    Brauge, C., Corraze, G. & Médale, F., 1995. Effects of dietary levels of carbohydrate and lipid on glucose oxidation and lipogenesis from glucose in rainbow trout, Oncorhynchus mykiss, reared in freshwater or in seawater. Comp. Biochem. Physiol. 111A, 117-124.
    Bromley & Adkins, T.C., 1984. The influence of cellulose filler on feeding, growth and utilization of protein and energy in rainbow trout, Salmo gairdnerii Richardson. J. Fish Biol. 24, 235–244.
    Buhler, D.R. & Halver, J.E., 1961. Nutrition of salmonid fishes: IX. Carbohydrate requirements of chinook salmon. J. Nutr. 74, 307–318.
    Bureau, D., 1998. The partitioning of energy from digestible carbohydrates by rainbow trout (Oncorhynchus mykiss). Diss. Abst. Int. –Sci. Eng. 58B, 3379.
    Cahu, C.L., Zambonino Infante J. & Takeuchi, T., 2003. Nutritional components affecting skeletal development in fish larvae. Aquaculture 227, 245-258.
    Capilla, E., Médale, F., Navarro, I., Panserat, S., Vachot, C., Kaushik, S. & Gutiérrez, J., 2003. Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout. Regul. Pept. 110, 123-132
    Carter, C.G. & Hauler R.C., 2000. Fish meal replacement by plant meals in extruded feeds for Atlantic salmon, Salmo salar L. Aquaculture 185, 299 311
    Ceron, J.J., Sancho, E., Ferrando, M.D., Gutierrez, C. & Andreu, E., 1997. Changes in carbohydrate metabolism in the eel Anguilla anguilla, during short-term exposure to diazinon. Toxicol. Environ. Chem. 60, 201–210.
    Chiasson, J.L., Liljenquist, J.E., Finger, F.E. & Lacy, W.W., 1976. Differential sensitivity of glycogenolysis and gluconeogenesis to insulin infusions in dogs. Diabetes 25, 283-291.
    Chiou, J.Y. & Ogino, C., 1975. Digestibility of starch in carps. Bull. Jpn. Soc. Sci. Fish. 41, 465-466 Cho, C. Y. & Slinger, S. J., 1979. Apparent digestibility measurement in feedstuffs for rainbow trout. In: Finfish Nutrition and Fishfood Technology, vol. 2 (J. E. Halver and K. Tiews, eds.). Berlin: Heenemann GmbH. pp 239-247
    Classen, H. L., 1996. Cereal grain starch and exogenous enzymes in poultry diets. Anim. Feed Sci. Technol. 62, 21–27.
    Cooperstein, S.J. & Lazarow, A., 1969. Uptake of glucose by islets of Langerhans and other tissues of the toadfish Opsanus tau. Am. J. Physiol. 217, 1784–1788.
    Cowey, C.B., Adron, J.W. & Brown, D.A., 1975a. Studies on the nutrition of marine flatfish. The metabolism of glucose by plaice (Pleuronectes platessa) and the effect of dietary energy source on protein utilization in plaice. Br. J. Nutr. 33, 219-231.
    Cowey, C.B. & Walton, M.J., 1989. Intermediary metabolism. In: Fish Nutrition 2nd edn. (Halver J.E. Ed.). Academic Press, New York, pp 259-329.
    Cowey, C.B., Adron, J.W., Brown, D.A. & Shanks, A.M., 1975b. The metabolism of glucose by plaice and the effect of dietary energy source on protein utilisation in plaice. Br. J. Nutr. 33, 219–231.
    Cowey, C.B., de la Higuera, M. & Adron, J.W., 1977a. The effect of dietary composition and of insulin on gluconeogenesis in rainbow trout (Salmo gairdneri). Br. J. Nutr. 38, 385–395. Cowey, C.B., Knox, D., Walton, M.J. & Adron, J.W., 1977b. The regulation of gluconeogenesis by diet and insulin in rainbow trout. Br. J. Nutr. 38, 463-470.
    Cruz, E.M., 1975. Determination of nutrient digestibility in various classes of natural and purified feed materials for channel catfish. Ph.D. Dissertation, Auburn University, Auburn, AL, pp 82.
    Cui, Y. & Wootton, R.J., 1988. Bioenergetics of growth of a cyprinid, Phoxinus phoxinus (L): the effect of ration, temperature and body size on food consumption, faecal production and nitrogenous excretion. J. Fish. Biol. 33, 431-434.
    Dabrowski, K. & Dabrowska, H., 1981. Digestion of protein by rainbow-trout (Salmo gairdneri Rich) and absorption of amino-acid within the alimentary-tract. Comp. Biochem. Physiol. 69A, 99–111.
    Degani, G. & Dosoretz, C., 1998. Source of dietary carbohydrate, how it affects fatty acid composition in European eels (Antuilla anguilla). J. Aquacult. Trop. 13, 261–268.
    Degani, G. & Viola, S., 1987. The protein sparing effect of carbohydrates in the diet of eels (Anguilla anguilla). Aquaculture 64, 283–291.
    Degani, G., Viola, S. & Levnon, D., 1986. Effects of dietary carbohydrate source on growth and body composition of the European eel (Anguilla anguilla). Aquaculture 52, 97–104.
    del Sol Novoa, M., Capilla, E., Rojas, P., Baró, J., Gutiérrez, J. & Navarro, I., 2004. Glucagon and insulin response to dietary carbohydrate in rainbow trout (Oncorhynchus mykiss), Gen. Comp. Endocrinol. 139, 48-54.
    Delahunty, G. & Tomlinson, M., 1984. Photoperiod-independent actions of the pineal organ: aspects of a pineal organ-pancreas relationship. Trans. Am. Fish. Soc. 113, 439–443.
    Deng, D. F., Refstie, S. & Hung, S.S.O., 2001. Glycemic and glycosuric responses in white sturgeon Acipenser transmontanus after oral administration of simple and complex carbohydrates. Aquaculture 199, 107-117.
    Deng, D.F., Refstie, S., Hemre, G.I., Crocker, C.E., Chen, H.Y., Cech, J.J. & Hung, S.S.O., 2000. A new technique of feeding, repeated sampling of blood and continuous collection of urine in white sturgeon. Fish Physiol. Biochem. 22, 191–197.
    deRoos, R., deRoos, C.C., Werner, C.S. & Werner, H., 1985. Plasma levels of glucose, alanine, lactate and beta-hydroxybutyrate in the unfed spiny dogfish shark (Squalus acanthias) after surgery and following mammalian insulin infusion. Gen. Comp. Endocrinol. 58, 28–43.
    Dias, J., Alvarez, M.J., Diez, A., Arzel, J., Corraze, G., Bautista, J.M. & Kaushik, S.J., 1998. Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European sea bass (Dicentrarchus labrax). Aquaculture 161, 169–186.
    Dias, J., Rueda-Jasso, R., Panserat, S., Concei??o, L.E.C., Gomes, E. & Dinis, M.T., 2004. Effect of dietary carbohydrate-to-lipid ratios on growth, lipid deposition and metabolic hepatic enzymes
    in juvenile Senegalese sole (Solea senegalensis, Kaup). Aquacult. Res. 35, 1122-1130.
    Doege, H., Bocianski, A., Joost, H.G. & Schurmann, A., 2000a. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem. J. 350, 771–776.
    Doege, H., Schurmann, A., Bahrenberg G., Brauers, A. & Joost, H.G., 2000b. GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J. Biol.Chem. 275, 16275–16280.
    Duguay, S.J. & Mommsen, T.P., 1994. Molecular aspects of pancreatic peptides. In: Fish Physiology, Vol. XIII (Sherwood, N.M. & Hew, C.L. Eds.). Academic Press, San Diego, CA, USA. pp 225–271.
    Dunn, A., Katz, J., Golden, S. & Chenoweth, M., 1976. Estimation of glucose turnover and recycling in rabbits using various (3H, 14C)-glucose labels. Am. J. Physiol. 230, 1159-1162. Eastwood, M.A., 1992. The physiological effect of dietary fibre: an update. Annu. Rev. Nutr. 12, 19–35.
    Edwards, D.J., Austreng, E., Risa, S. & Gjedrem, T., 1977. Carbohydrate in rainbow trout diets. 1. Growth of fish of different families fed diets containing different proportions of carbohydrate. Aquaculture 11, 31-38.
    Ehrman, M.M., Melroe, G.T., Kittilson, J.D. & Sheridan, M.A., 2000. The expression of preprosomatostatin II mRNAs in the Brockmann bodies of rainbow trout, Oncorhynchus mykiss, is regulated by glucose. Gen. Comp Endocrinol. 118, 150–160.
    Eliasson, A.C. & Gudmundsson, M., 1996. Starch: physicochemical and functional aspects. In: Eliasson, A.C. (Ed.), Carbohydrates in Food. Marcel Dekker, New York, pp 431–503.
    Ellis, A.E., 1981. Stress and the modulation of defence mechanisms in fish. In: Stress in Fish (Pickering, A.D. Ed.). Academic Press, London, New York. pp147–169.
    Ellis, D.J. & Reigh, R.C., 1991. Effects of dietary lipid and carbohydrate levels on growth and body composition of juvenile red drum, Scianops ocellatus. Aquaculture 97, 383–394.
    El-Sayed, A.M. & Garling, D.L. Jr., 1988. Carbohydrate-to-lipid ratios in diets for Tilapia zilli fingerlings. Aquaculture 73, 157–163.
    Englyst, H.N., Kingman, S.M. & Cummings, J.H., 1992b. Resistant starch: Measurement in foods and physiological role in man. In: Plant Polymeric Carbohydrates (Meuser F. Manners D. J.
    Seibel W. Eds.). Royal Society of Chemistry Cambridge, U.K. pp137-146.
    Englyst, H.N., Kingman, S.M. & Cummings, J.H., 1992a. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46, S33–S50.
    Englyst, H.N., Veenstra, J. & Hudson, G., 1996. Measurement of rapidly available glucose (RAG) in plant foods: a potential in vitro predictor of the glycaemic response. Br. J. Nutr. 75, 327–337.
    Erfanullah & Jafri, A.K., 1995. Protein-sparing effect of dietary carbohydrate in diets for fingerling Labeo rohita. Aquaculture 136, 331-339
    Erfanullah & Jafri, A.K., 1998a. Effect of dietary carbohydrate-to-lipid ratio on growth and body composition of walking catfish (Clarias batrachus). Aquaculture 161,159-168
    Erfanullah & Jafri, A.K., 1998b. Growth rate, feed conversion, and body composition of Catla catla, Labeo rohita, and Cirrhinus mrigala fry fed diets of various carbohydrate-to-lipid ratios. J. World Aquacult. Soc. 29, 84–91.
    Erfanullah & Jafri, A.K., 1999. Growth, feed conversion, body composition and nutrient retention efficiencies in fingerling catfish, Heteropneustes fossilis (Bloch), fed different sources of dietary carbohydrate. Aquacult. Res. 30, 43–49.
    Falge, R., Spannhof, L. & Jürss, K., 1978. Aktivost amilazy, esterazy i proteazy v soderzimom kiski raduznoh foreli Salmo gairdneri Richard. Posle kermlenija as kormom s razlicnum soderzanien krachmala i proteina. Vopr. Ichtiol. 18, 314-319.
    Fan, Z. & Liu, G., 1990. The ploidy and reproductive mechanism of crucian carp, Carassius auratus gibelio. J. Fish Biol. 36, 415-419.
    Fan, Z. & Shen, J., 1990. Studies on the evolution of bisexual reproduction in crucian carp (Carassius auratus gibelio Bloch). Aquaculture 84, 235-244.
    Fernandez, F., Miquel, A.G., Guinea, J. & Martinez, R., 1998. Digestion and digestibility in gilthead sea bream (Sparus aurata): the effect of diet composition and ration size. Aquaculture 166, 67–84.
    Fideu, M.D., Solér, G. & Ruiz-Amil, M., 1983. Nutritional regulation of glycolysis in rainbow trout (Salmo gairdneri R.). Comp. Biochem. Physiol. 78B, 795–799.
    Folch, J., Lees, M. & Sloane Stanley, G.H., 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497-509.
    Franco, C.M.L., Preto, S.J.R. & Ciacco, C.F., 1992. Factors that affect the enzymatic degradation of natural starch granules-effect of the size of the granules. Starch 44, 422–426.
    Fu, S.J. & Xie, X.J., 2004. Nutritional homeostasis in carnivorous southern catfish (Silurus meridionalis): is there a mechanism for increased energy expenditure during carbohydrate overfeeding? Comp. Biochem. Physiol. 139B, 359-363
    Furuichi, M. & Yone, Y., 1980. Effect of dietary dextrin levels on the growth and feed efficiency, the chemical composition of liver and dorsal muscle, and the absorption of dietary protein and dextrin in fishes. Bull. Jpn. Soc. Sci. Fish. 46, 225-229.
    Furuichi, M. & Yone, Y., 1981. Change of blood sugar and plasma insulin levels in glucose tolerance test. Bull. Jpn. Soc. Sci. Fish. 47, 761-764.
    Furuichi, M. & Yone, Y., 1982a. Availability of carbohydrate in nutrition of carp and red sea bream. Bull. Jpn. Soc. Sci. Fish. 48, 945-948.
    Furuichi, M. & Yone, Y., 1982b. Effect of insulin on blood sugar levels of fishes. Bull. Jpn. Soc. Sci. Fish. 48, 1289-1291.
    Furuichi, M. & Yone, Y., 1982c. Changes in activities of hepatic enzymes related to carbohydrate metabolism of fishes in glucose and insulin-glucose tolerance tests. Bull. Jpn. Soc. Sci. Fish. 48, 463–466.
    Furuichi, M. & Yone, Y., 1971a. Studies on nutrition of red sea bream. 4. Nutritive value of dietary carbohydrate. Rep. Fish. Res. Lab. Kyushu Univ. (Japan) 1, 75-81.
    Furuichi, M. & Yone, Y., 1971b. Studies on nutrition of red sea bream. 6. A study of carbohydrate utilization by glucose and insulin glucose-tolerance tests. Rep. Fish, Res. Lab. Kyushu Univ. (Japan) 1, 101-106.
    Furuichi, M., Taira, H. & Yone, Y., 1986. Availability of carbohydrate in nutrition of yellowtail. Bull. Jpn. Soc. Sci. Fish. 52, 99-102.
    Fynn-Aikins, K., Hung, S.S.O., Liu, W. & Li, H., 1992. Growth, lipogenesis and liver composition of juvenile white sturgeon fed different levels of D-glucose. Aquaculture 105, 61–72.
    Gamperl, A.K., Vijayan, M.M. & Boutilier, R.G., 1994. Experimental control of stress hormone levels in fishes: techniques and applications. Rev. Fish Biol. Fish. 4, 215–255.
    García-Rejon, L., Sanchez-Muros, M.J., Cerda, J. & De la Higuera, M., 1997. Fructose 1,6 bisphosphatase activity in liver and gonads of sea bass (Dicentrarchus labrax). Influence of diet composition and stage of the reproductive cycle. Fish Physiol. Biochem. 16, 93–105.
    García-Riera, M.P. & Hemre, G.I., 1996a. Glucose tolerance in turbot (Scophthalmus maximus). Aquacult. Nutr. 2, 117–120.
    García-Riera, M.P. & Hemre, G.I., 1996b. Effect of adaptation to three different levels of dietary carbohydrates on the incorporation of 14C-glucose in several organs of Atlantic halibut (Hippoglossus hippoglossus). Aquacult. Res. 27, 565–571.
    Garin, D., Rombaut, A. & Freminet, A., 1987. Determination of glucose turnover in sea bass (Dicentrachus labrax). Comparative aspects of glucose utilization. Comp. Biochem. Physiol. 87B, 981-988.
    Garling, D.L. & Wilson, R.P., 1977. Effect of carbohydrate-to-lipid ratios on growth and body composition of fingerling channel catfish. Prog. Fish-Cult. 39, 43–47.
    Garling, D.L. & Wilson, R.P., 1976. The optimum dietary protein to energy ratio for channel catfish fingerlings, Ictalurus punctatus. J. Nutr. 106, 1368-1375.
    Gomes, E.F., Rema P. & Kaushik, S., 1995b. Replacement of fish meal by plant proteins in diets for rainbow trout (Oncorhynchus mykiss): digestibility and growth performance. Aquaculture 130, 177-186.
    Gomes, E.F., Rema, P., Gouveia, A. & Oliva Teles, A., 1995a. Replacement of fish meal by plant proteins in diets for rainbow trout (Oncorhynchus mykiss): effect of the quality of the fishmeal based control diets on digestibility and nutrient balances. Wat. Sci. Tech. 31, 205-211.
    Graziano, M.P., Hey, P.J. & Strader, C.D., 1996. The amino terminal domain of the glucagon-like peptide-1 receptor is a critical determinant of subtype specificity. Receptors Channels 4, 9–17.
    Grisdale-Helland, B. & Helland, S.J., 1998. Macronutrient utilization by Atlantic halibut (Hippoglossus hippoglossus): diet digestibility and growth of 1 kg fish. Aquaculture 166, 57–65.
    Groop, L.C. & Ferrannini, E., 1993. Insulin action and substrate competition. Baillieres Clin. Endocrinol. Metab. 7, 1007-1032.
    Grove, D.J., Loizides, L.G. & Nott, J., 1978. Satiation amount, frequency of feeding and gastric emptying rate in Salmo gairdneri. J. Fish Biol. 12, 507–516.
    Gutiérrez, J., ?sg?rd, T., Fabbri, E. & Plisetskaya, E.M., 1991. Insulin-receptor binding in skeletal muscle of trout. Fish Physiol. Biochem. 9, 351-360.
    Hanley, F., 1991. Effects of feeding supplementary diets containing varying levels of lipid on growth, food conversion, and body composition of Nile tilapia Oreochromis niloticus (L.). Aquaculture 93, 323–334.
    Hanson, R.W. & Garber, A.J., 1972. Phosphoenolpyruvate carboxykinase I. Its role in gluconeogenesis. Am. J. Clin. Nutr. 25, 1010–1021.
    Hardy, R.W., 1991. Pacific salmon, Oncorhynchus spp. In: Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.). CRC Press, Boca Raton, FL, pp 105-121.
    Hardy, R.W., 1996. Alternative protein sources for salmon and trout diets. Anim. Feed Sci. Technol. 59, 71 80.
    Harmon, J.S., Eilertson, C.D., Sheridan, M.A. & Plisetskaya, E.M., 1991. Insulin suppression is associated with hypersomatostatinemia and hyperglucagonemia in glucose-injected rainbow trout. Am. J. Physiol. 261, R609–R613.
    Hassid, W.Z. & Abraham, S., 1957. Chemical procedures for analysis of polysaccharides. In: Methods of Enzymology (Colwick, S.P., Kaplan, N.O. Eds.). Academic Press, New York. pp 34–37.
    Helland, S., Storebakken, T. & Grisdale-Helland, B., 1991. Atlantic salmon, Salmo salar. In: Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.). CRC Press, Boca Raton, FL, pp 13-22.
    Helland, S.J. & Grisdale-Helland, B., 1998. Growth, feed utilization and body composition of juvenile Atlantic halibut (Hippoglossus hippoglossus) fed diets differing in the ratio between the macronutrients. Aquaculture 166, 49–56.
    Hemre, G.I. & Hansen, T., 1998. Utilisation of different dietary starch sources and tolerance to glucose loading in Atlantic salmon during parr –smolt transformation. Aquaculture 161, 145–157.
    Hemre, G.I. & Kahrs, F., 1997. 14C-injection in Atlantic cod (Gadus morhua), metabolic responses and excretion via the gill membrane. Aquacult. Nutr. 2, 3–8.
    Hemre, G.I. & Krogdahl, ?., 1996. The effect of handling and fish size on the secondary changes in carbohydrate metabolism in Atlantic salmon (Salmo salar). Aquacult. Nutr. 2, 249–252.
    Hemre, G.I. & Storebakken, T., 2000. Tissue and organ distribution of 14C-activity in dextrin-adapted Atlantic salmon after oral administration of radiolabelled 14C1-glucose. Aquacult. Nutr. 6, 229–234.
    Hemre, G.I., 1992. Studies on Carbohydrate Nutrition in Cod (Gadus morhua). Dr. Scientiarum Thesis. Institute of Nutrition, University of Bergen, Norway.
    Hemre, G.I., Bj?nevik, M., Beattie, C., Bj?nsson, B.T. & Hansen, T., 2001. Dietary carbohydrate influence on photo period manipulations affecting growth and salt-water tolerance in Atlantic salmon Salmo salar. Aquacult. Nutr. 7, 1–10.
    Hemre, G.I., Karlsen, ?., Lehmann, G., Holm, J.C. & Lie, ?., 1993b. The utilization of protein, fat and glycogen in cod (Gadus morhua). Fisk. Dir. Skr. Series Ern?ing 6, 1–9.
    Hemre, G.I., Lambertsen, G. & Lie, ?., 1991. The effect of dietary carbohydrate on the stress response in cod (Gadus morhua). Aquaculture 95, 319–328.
    Hemre, G.I., Lie, ?. & Sundby, A., 1993a. Dietary carbohydrate utilisation in cod (Gadus morhua): metabolic responses to feeding and fasting. Fish Physiol. Biochem. 10, 455–463.
    Hemre, G.I., Lie, ?., Lied, E. & Lambertsen, G., 1989. Starch as an energy source in feed for cod (Gadus morhua): Digestibility and Retention. Aquaculture 80, 261–270.
    Hemre, G.I., Mangor-Jensen, A., Rosenlund, G., Waagb?, R. & Lie, ?., 1995c. Effect of dietary carbohydrate on gonadal development in broodstock cod, Gadus morhua L. Aquacult. Res. 36, 399–408.
    Hemre, G.I., Mommsen, T.P. & Krogdahl, ?, 2002. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquacult. Nutr. 8, 175-194.
    Hemre, G.I., Mommsen, T.P. & Krogdahl, A., 2001. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquacult. Nutr. 7, 1–20
    Hemre, G.I., Sandnes, K., Lie, ?. & Waagb?, R., 1995b. Blood chemistry and organ nutrient composition in Atlantic salmon, Salmo salar L., fed graded amounts of wheat starch. Aquacult. Nutr. 1, 37–42.
    Hemre, G.I., Sandnes, K., Lie, ?., Torrissen, O. & Waagb?, R., 1995a. Carbohydrate nutrition in Atlantic salmon, Salmo salar L., growth and feed utilisation. Aquacult. Res. 26, 149–154.
    Hemre, G.I., Torrissen, O., Krogdahl, ?. & Lie, ?., 1995d. Glucose tolerance in Atlantic salmon (Salmo salar), dependance on preadaptation to dietary starch and water temperature. Aquacult. Nutr. 2, 69–75.
    Hernández-Infante, M., Sousa, V., Montalvo, I. & Tena, E., 1998. Impact of microwave heating on hemagglutinins, trypsin inhibitors and protein quality of selected legume seeds. Plant Food. Hum. Nutr. 52, 199 208.
    Hertz, Y., Epstein, N., Abraham, M., Madar, Z., Hepher, B. & Gertler, A., 1989. Effects of metformin on plasma insulin glucose metabolism and protein synthesis in the common carp (Cyprinus carpio L.). Aquaculture 80, 175-187.
    Hilton, J.W. & Atkinson, J.L., 1982. Response of rainbow trout (Salmo gairdneri) to increased levels of available carbohydrate in practical trout diets. Br. J. Nutr. 47, 597-607.
    Hilton, J.W. 1982. The effect of pre-fasting diet and water temperature on liver weight on rainbow trout, Salmo gairdneri Richardson, during fasting. J. Fish Biol. 20, 69–78.
    Hilton, J.W. & Dixon, D.G., 1982. Effect of increased liver glycogen and liver weight on liver function in rainbow trout, Salmo gairdneri R. recovery from anaesthesia and plasma 35S-sulphobromophthalein clearance. J. Fish Dis. 5, 185–195.
    Hilton, J.W. & Hodson, P.V., 1983. Effect of increased dietary carbohydrate on selenium metabolism and toxicity in rainbow trout (Salmo gairdneri). J. Nutr. 113, 1241–1248.
    Hilton, J.W., Atkinson, J.L. & Slinger, S.J., 1983. Effects of increased dietary fiber on the growth of rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 40, 81–85.
    Hilton, J.W., Plisetskaya, E.M. & Leatherland, J.F., 1987. Does oral 1,5,3'-triiodo-L-thyronine affect dietary glucose utilization and plasma insulin levels in rainbow trout (Salmo gairdneri)? Fish Physiol. Biochem. 4, 113-120.
    Hofer, R. & Sturmbauer, C., 1985. Inhibition of trout and carp a-amylase by wheat. Aquaculture 48, 227-283.
    Hoff, K.A., 1989. Survival of Vibrio anguillarum and Vibrio salmonicida at different salinities. Appl. Environ. Microbiol. 55, 1775–1786.
    Holz, G.G., Kühtreiber, W.M. & Habener, J.F., 1993. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1 (7–37). Nature 361, 362–365.
    Hontela, A., Daniel, C. & Richard, A.C., 1996. Effects of acute and subacute exposures to cadmium on the interrenal and thyroid function in rainbow trout, Oncorhynchus mykiss. Aquat. Toxicol. 35, 171–182.
    Hsieh, S.L. & Shiau, S.Y., 2000. Effects of diets containing different carbohydrates on starved condition in juvenile tilapia Oreochromis niloticus ×O. aureus. Fish. Sci. 66, 32–37.
    Hung, S.S.O., 1991. Carbohydrate utilization by white sturgeon as assessed by oral administration tests. J. Nutr. 121, 1600-1605.
    Hung, S.S.O., Fynn-A&ins, K.F., Lutes, P.B. & Xu, R.P., 1989. Ability of juvenile white sturgeon (Acipenser transmontanus) to utilize different carbohydrate sources. J. Nutr. 119, 727-733.
    Hutchins, C.G., Rawles, S.D. & Gatlin III, D.M., 1998. Effects of dietary carbohydrate kind and level on growth, body composition and glycemic response of juvenile sunshine bass (Morone chrysops ♀×M. saxatilis♂). Aquaculture 161, 187–199.
    Hyv?rinen, H., Holopainen, I.J. & Piironen, J., 1985. Anaerobic metabolism of crucian carp (Carassius carassius L.) I. Annual dynamics of glycogen reserves in nature. Comp. Biochem. Physiol. 85A, 797–803.
    Inaba, D., Ogino, C., Takamatsu, C., Ueda, T. & Kurokawa, K., 1963. Digestibility of dietary components of fishes. II. Digestibility of dietary protein and starch in rainbow trout. Bull. Jpn. Soc. Sci. Fish. 29, 242-244.
    Ince, B.W. & So, S.T.C., 1984. Differential secretion of glucagons-like and somatostatin-like immunoreactivity from the perfused eel pancreas in response to D-glucose. Gen. Comp. Endocrinol. 53, 389-397.
    Ince, B.W., 1983. Pancreatic control of metabolism. In: Control Processes in Fish Physiology (Rankin, J.C., Pitcher, T.J. & Duggan, R.T. Eds.). John Wiley and Sons, New York, pp 89-102.
    Irwin, D.M. & Wong, J., 1995. Trout and chicken proglucagon: alternative splicing generates mRNA transcripts encoding glucagon-like peptide 2. Mol. Endocrinol. 9, 267–277.
    Irwin, D.M., Huner, O. & Youson, J.H., 1999. Lamprey proglucagon and the origin of glucagon-like peptides. Mol. Biol. Evol. 16, 1548–1557.
    Jantrarotai, W., Sitasit, P., Jantrarotai, P., Viputhanumas, T. & Srabua, P., 1998. Protein and energy levels for maximum growth, diet utilization, yield of edible flesh and protein sparing of hybrid Clarias catfish (Clarias macrocephalus ×C. gariepinus). J. World Aquacult. Soc. 29, 281–289.
    Jantrarotai, W., Sitasit, P. & Raichapakdee, S., 1994. The optimum carbohydrate to lipid ratio in hybrid Clarias catfish (Clarias macrocephalus ×C. gariepinus) diets containing raw broken rice. Aquaculture 127, 61–68.
    Jauncey, K., 1982. Carp Cyprinus carpio nutrition—a review. In: Recent Advances in Aquaculture (Muir, J.F., Roberts, R.J. Eds.). Croom Helm, London, pp 215–263.
    Kahn, A. & Marie, J., 1982. Pyruvate kinase from human erythrocytes and liver. Methods Enzymol. 90, 131–140.
    Katz, J., Golden, S., Dunn, A. & Chenoweth, M., 1976. Estimation of glucose turnover in rats in vivo with tritium labeled glucose. Hoppe-Seylers Z. Physiol. Chem. 357, 1387-1394.
    Kaushik, S.J. & Oliva-Teles, A., 1985. Effect of digestible energy on nitrogen and energy balance in rainbow trout. Aquaculture 50, 89–101.
    Kiessling, A., Johansson, L. & Kiessling, K.H., 1990. Effects of starvation on rainbow trout muscle. Acta Agric. Scand. 40, 309–324.
    Kim, J.D. & Kaushik, S.J., 1992. Contribution of digestible energy from carbohydrates and estimation of protein/energy requirements for growth of rainbow trout (Oncorhynchus mykiss). Aquaculture 106, 161–169.
    Kletzien, R.F., Harris, P.K. & Foellmi, L.L., 1994. Glucose-6-phosphate dehydrogenase: a ‘housekeeping’enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J. 8, 174–181.
    Koops, H., Tiews, K., Tiews, J. & Gropp, J., 1974. St?rke und fettverwertung netzk?figgehaltener regenbogenforellen (Salmo gairdneri). Aquaculture 4, 277–286.
    Lanari, D., Poli, B.M., Ballestrazzi, R., Lupi, P., D'Agaro, E. & Mecatti, M., 1999. The effect of dietary fat and NFE level on growing European sea bass (Dicentrarchus labrax). Growth rate, body composition and fillet composition, carcass traits and nutrient retention efficiency. Aquaculture 179, 351–364.
    Lauff, R.F. & Wood, C.M., 1997. Effects of training on respiratory gas exchange, nitrogenous waste excretion, and fuel usage during aerobic swimming in juvenile rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci./J. Can. Sci. Halieut. Aquat. 54, 566–571.
    Lee, D.J. & Putnam, G.B., 1973. The response of rainbow trout to varying protein / energy ratios in a test diet. J. Nutr. 103, 916-922.
    Lee, M.H., Hebda, C.A. & Nowak, T., 1981. The role of cations in avian liver phosphoenolpyruvate carboxykinase catalysis. Activation and regulation. J. Biol. Chem. 256, 12793–12801.
    Lee, S.M. & Lee, J.H., 2004. Effect of dietary glucose, dextrin and starch on growth and body composition of juvenile starry flounder Platichthys stellatus. Fish. Sci. 70, 53–58
    Lee, S.M., Kim, K.D. & Lall, S.P., 2003. Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus). Aquaculture 221, 427-438.
    Legate, N.J., Bonen, A. & Moon, T.W., 2001. Glucose tolerance and peripheral glucose utilization in three fish species. Gen. Comp. Endocrinol. 122, 48-59.
    Likimani, T.A. & Wilson, R.P., 1982. Effect of diet on lipogenic enzyme activities in channel catfish hepatic and adipose tissue. J. Nutr. 112, 112–117.
    Lim, C., 1991. Milkfish, Chanos chanos. In: Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.). CRC Press, Boca Raton, FL, pp 97-104.
    Lin, D., 1991. Grass carp, Ctenopharyngodon idella. In: Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.). CRC Press, Boca Raton, FL, pp. 89-96.
    Lin, H., Romsos, D.R., Tack, P.E. & Leveille, G.A., 1978. Determination of glucose utilization in coho salmon Oncorhynchus kisutch (Walbaum) with (U-14C) and (6-3H) glucose. Comp. Biochem. Physiol. 59A, 189-191.
    Lin, H., Romsos, D.R., Tack, P.E. & Leveille, G.A., 1977a. Influence of diet on in vitro and in vivo rates of fatty acid synthesis in coho salmon (Oncorhynchus kisutch Walbaum). J. Nutr. 107, 1677–1682.
    Lin, H., Romsos, D.R., Tack, P.E. & Leveille, G.A., 1977b. Effects of fasting and feeding various diets on hepatic lipogenic enzyme activities in coho salmon (Oncorhynchus kisutch, Walbaum). J. Nutr. 107, 1477–1483.
    Lin, H., Romsos, D.R., Tack, P.E. & Leveille, G.A., 1977c. Influence of dietary lipid on lipogenic enzyme activities in coho salmon, Oncorhynchus kisutch (Walbaum). J. Nutr. 107, 846-854.
    Lin, J.H. & Shiau, S.Y., 1995. Hepatic enzyme adaptation to different dietary carbohydrates in juvenile tilapia (Oreochromis niloticu X O. aureus ). Fish Physiol. Biochem. 14, 165–170.
    Lin, J.H., Cui Y., Hung, S.S.O. & Shiau, S.Y., 1997. Effect of feeding strategy and carbohydrate source on carbohydrate utilization by white sturgeon (Acipenser transmontanus) and hybrid tilapia (Oreochromis niloticus X O. aureus). Aquaculture 148, 201-211.
    Lin, S.C., Liou, C.H. & Shiau, S.Y., 2000. Renal threshold for urinary glucose excretion by tilapia in response to orally administered carbohydrates and injected glucose. Fish Physiol. Biochem. 23, 127-132
    Lovshin, J. & Drucker, D.J., 2000. New frontiers in the biology of GLP-2. Regul. Pept. 90, 27–32. Luquet, P., 1991. Tilapia, Oreochromis spp. In: Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.). CRC Press, Boca Raton, FL, pp 169-179.
    Luquet, P., 1971. Efficacite des proteines en relation avec leur taux d'incorporation dans l'alimentation de la truite arc-en-ciel. Annu. Hydrobiol. 2, 175-186.
    Lushchak, V.I., Smirnova, Y.D. & Storey, K.B., 1998. AMP-deaminase from sea scorpion white muscle: properties and redistribution under hypoxia. Comp. Biochem. Physiol. 119B, 611–618.
    Maule, A.G., Tripp, R.A., Kaattari, S.L. & Schreck, C.B., 1989. Stress alters the immune function and disease resistance in chinook salmon (Oncorhynchus tshawytscha). J. Endocrinol. 120, 135–142.
    Mazur, C.N., Higgs, D.A., Plisetskaya, E. & March B.E., 1992. Utilization of dietary starch and glucose tolerance in juvenile chinook salmon (Oncorhynchus tshawytscha) of different strains in seawater. Fish Physiol. Biochem. 10, 303–313.
    McCartney, T. H., 1971. The comparative utilization of glucose, fructose and galactose by fingerling brook trout. In The Nutrition of Trout. Fisheries Research Bulletin No. 34. Albany, N.Y.: State of New York Conservation Department. pp 43-52.
    McGarry, J.D., 1992. What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258, 766–770.
    McKim, J.M., Schaup, H.W., Marien, K. & Selivonchick, D.P., 1989. Isolation and identification of acetyl-CoA carboxylase from rainbow trout (Salmo gairdneri) liver. Lipids 24, 187–192.
    Medale, F., Poli, J.M., Vallee, F. & Blanc, D., 1999. Utilisation of a carbohydrate-rich diet by common carp reared at 18 and 25 oC. Cybium 23, 139–152.
    Miller, J.B., Pang, E. & Broomhead, L., 1995. The glycaemic index of foods containing sugars: comparison of foods with naturally-occurring v. added sugars. Br. J. Nutr. 73, 613–623.
    Milligan, C.L., 1996. Metabolic recovery from exhaustive exercise in rainbow trout. Comp. Biochem. Physiol. 113A, 51–60.
    Millikin, M.R., 1983. Interactive effects of dietary protein and lipid on growth and protein utilization of age-0 striped bass. Trans. Am. Fish. Soc. 112, 185–193.
    Mills, E.L. & Forney, J.I., 1981. Energetics, food consumption and growth of yellow perch in Oneida Lake. Trans. Am. Fish. Soc. 110, 479-488.
    Mohapatra, M., Sahu, N. & Chaudhari, A., 2003. Utilization of gelatinized carbohydrate in diets of Labeo rohita fry. Aquacult. Nutr. 9, 189-196.
    Mommsen, T.P. & Plisetskaya, E.M., 1991. Insulin in fish and agnathans: History, structure and metabolic regulation. Rev. Aquat. Sci. 4, 225-259.
    Mommsen, T.P. & Mojsov, S., 1998. Glucagon-like peptide-1 activates the adenylyl cyclase system in rockfish enterocytes and brain membranes. Comp. Biochem. Physiol. 121B, 49–56.
    Mommsen, T.P. & Moon, T.W., 1990. Metabolic response of teleost hepatocytes to glucagon-like peptide and glucagon. J. Endocrinol. 126, 109–115.
    Mommsen, T.P. & Moon, T.W., 2000. Hormonal regulation of muscle growth. In: Fish Physiology. Vol. 18. Muscle Development and Growth (Johnston, I.A. Ed.). Academic Press, San Diego, CA. pp 251–308.
    Mommsen, T.P., 2000. Glucagon-like peptides in fishes: the liver and beyond. Am. Zool. 40, 259–268.
    Mommsen, T.P., 2001. Paradigms of growth in fish. Comp. Biochem. Physiol. 129, 207–219.
    Mommsen, T.P., Vijayan, M.M. & Moon, T.W., 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fish. 9, 211–268.
    Moon, T.W. & Foster, G.D., 1995. Tissue carbohydrate metabolism, gluconeogenesis and hormonal and environmental influences. In: Biochemistry and Molecular Biology of Fishes (Hochachka, P.W. and Mommsen, T.P. Eds). Elsevier, Amsterdam. pp 65–100.
    Moon, T.W., 2001. Glucose tolerance in fish: fact or fiction? Comp. Biochem.Physiol. B129, 243–244.
    Morales, A.E., Cardenete, G., de la Higuera, M. & Sanz, A., 1994. Effects of dietary protein source on growth, feed conversion and energy utilisation in rainbow trout, Oncorhynchus mykiss. Aquaculture 124, 117 126.
    Mourrieras, F., Foufelle, F., Foretz, M., Morin, J., Bouche, S. & Ferre, P., 1997. Induction of fatty acid synthase and S14 gene expression by glucose, xylitose and dihydroxyacetone in cultured rat hepatocytes is closely correlated with glucose 6-phosphate concentrations. Biochem. J. 326, 345–349.
    Munroe, D.G., Gupta, A.K., Kooshesh, F., Vyas, T.B., Rizkalla, G., Wang, H., Demchyshyn, L., Yang, Z.J., Kamboj, R.K., Chen, H., McCallum, K., Sumner-Smith, M., Drucker, D.J. & Crivici, A. 1999. Prototypic G protein-coupled receptor for the intestinotrophic factor glucagonlike peptide 2. Proc. Natl. Acad. Sci. (USA) 96, 1569–1573.
    Murai, T., Akiyama, T. & Nose, T., 1983. Effects of glucose chain length of various carbohydrates and frequency of feeding on their utilization by fingerling carp. Bull. Jpn. Soc. Sci. Fish. 49, 1607-1611.
    Nagayama, F. & Ohshima, H., 1974. Studies on the enzyme system of carbohydrate metabolism in fish. I. Properties of liver hexokinase. Bull. Jpn. Soc. Sci. Fish. 40, 285-290.
    Nagayama, F., Ohshima, H. & Takeuchi, T., 1973. Activities of hexokinase and glucose dehydrogenase in fish liver. Bull. Jpn. Soc. Sci. Fish. 39, 1349.
    Nagayama, F., Ohshima, H., Suzuki, H. & Ohshima, T., 1980. A hexokinase from fish liver with wide specificity for nucleotides as phosphoryl donor. Biochim. Biophys. Acta 615, 85–93.
    Nankervis, L., Matthews, S.J., & Appleford, P., 2000. Effect of dietary non-protein energy source on growth, nutrient retention and circulating insulin-like growth factor I and triiodothyronine levels in juvenile barramundi, Lates calcarifer. Aquaculture 191,323-335
    Nauck, M.A., 1999. Is glucagon-like peptide 1 an incretin hormone? Diabetologia 42, 373–379.
    Naylor, R.L., Goldberg, R.J., Primavera, J.H., Kautsky, N., Beveredge, M.C.M., Clay, J., Folke, C., Lubchenco, J., Mooney, H. & Troell, M., 2000. Effects of aquaculture on world fish supplies. Nature 405, 1017
    Nematipour, G.R., Brown, M.L. & Gatlin III, D.M., 1992. Effect of dietary carbohydrate:lipid ratio on growth and body composition of hybrid striped bass. J. World Aquacult. Soc. 23, 128–132.
    NRC (National Research Council), 1981. Nutrient Requirements of Coldwater Fishes, National Academy Press, Washington, DC, pp 63.
    NRC (National Research Council), 1993. Nutrient Requirement of Fish. National Academy Press, Washington, DC, pp 128.
    Oates, C.G., 1997. Towards an understanding of starch granule structure and hydrolysis. Trends Food Sci. Technol. 8, 375–382.
    Ojaveer, H., Morries, P.C., Davies, S.J. & Russell, P., 1996. The response of thick-lipped grey mullet, Chelon labrosus (Risso),to diets of varied protein-to-energy ratio. Aquacult. Res. 27, 603–612.
    Oliva-Teles, A., Gouveia, A.J., Gomes, E. & Rema, P., 1994. The effect of different processing treatments on soybean meal utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture, 124, 343-349.
    Omoregie, E., Ufodike, E.B.C. & Onwuliri, C.O.E., 1997. Effects of water soluble fractions of crude oil on carbohydrate reserves of Oreochromis niloticus (L.). J. Aquat. Sci. 12, 1–7.
    Onarheim, A.M., Wiik, R. & Stackebrandt, E., 1994. The cold water vibriosis bacterium Vibrio Salmonicida as part of the indigenous gut flora. International Symposium on Aquatic Animal Health. Seattle, WA, USA, 4–8 September 1994.
    Oruc, E.O. & Uener, N., 1999. Effects of 2, 4-Diamin on some parameters of protein and carbohdyrate metabolisms in the serum, muscle and liver of Cyprinus carpio. Enrion. Pollut. 105, 267–272.
    Ottolenghi, C., Puviani, A.C., Ricci, D., Brighenti, L. & Morsiani, E., 1995. The effect of high temperature on blood glucose level in two teleost fish (Ictalurus melas and Ictalurus punctatus). Comp. Biochem. Physiol. 111A, 229–235.
    Page, G.I., Hayworth, K.M., Wade, R.R., Harris, A.M. & Bureau, D.P., 1999. Non-specific immunity parameters and the formation of advanced glycosylation end-products (AGE) in rainbow trout, Oncorhynchus mykiss (Walbaum), fed high levels of dietary carbohydrates. Aquacult. Res. 30, 287-297.
    Page, J.W. & Andrews, J.W., 1973. Interactions of dietary levels of protein and energy on channel catfish (Ictalurus punctatus). J. Nutr. 103, 1339-1346.
    Palmer, T.N. & Ryman, B.E., 1972. Studies on oral glucose intolerance in fish. J. Fish Biol. 4, 311-319.
    Panserat, S., Médale, F., Blin, C., Vachot, C., Plagnes-Juan, E., Gomes, E., Krishnamoorthy, R. & Kaushik, S., 2000a. Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream and common carp. Am. J. Physiol. 278, R1164–R1170.
    Panserat, S., Médale, F., Brèque, J., Plagnes-Juan, E. & Kaushik, S., 2000b. Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss). J. Nutr. Biochem. 11, 22–29.
    Panserat, S., Plagnes-Juan, E. & Kaushik, S., 2002d. Gluconeogenic enzyme gene expression is decreased by dietary carbohydrates in common carp (Cyprinus carpio) and gilthead seabream
    (Sparus aurata). Biochim. Biophys. Acta 1579, 35-42
    Panserat, S., Plagnes-Juan, E., Brèque, J. & Kaushik, S.J., 2000c. Hepatic phosphoenolpyruvate carboxykinase gene expression is not repressed by dietary carbohydrates in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 204, 359–365.
    Pei Z., Xie S., Lei W., Zhu X. & Yang Y., 2004. Comparative study on the effect of dietary lipid level on growth and feed utilization for gibel carp (Carassius auratus gibelio) and Chinese longsnout catfish (Leiocassis longirostris Günther). Aquacult. Nutr. 10, 209-216.
    Pereira, O., Rosa, E., Pires, M.A. & Fontaínhas-Fernandes A., 2002. Brassica by-products in diets of rainbow trout (Oncorhynchus mykiss) and their effects on performance, body composition, thyroid status and liver histology. Anim. Feed. Sci. Tech. 101, 171–182
    Peres, H. & Oliva-Teles, A., 2002. Utilization of raw and gelatinized starch by European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 205, 287-299.
    Peres, H., Goncalves, A. & Oliva-Teles, A., 1999. Glucose tolerance in gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax). Aquaculture 179, 415-423.
    Petersen, T.D.P., Hochachka, P.W. & Suarez, R.K., 1987. Hormonal control of gluconeogenesis in rainbow trout hepatocytes: regulatory role of pyruvate kinase. J. Exp. Zool. 243, 173–180. Phillips, A.M. Jr, Tunison, A.V. & Brockway D.R., 1948. Utilization of carbohydrates by trout. Fish. Res. Bull. 11, 3–44.
    Pickering, A.D. & Pottinger, T.B., 1989. Stress responses and disease resistance in salmonid fish: effects of chronic elevation of plasma cortisol. Fish Physiol. Biochem. 7, 1–6.
    Pieper, A. & Pfeffer, E., 1979. Carbohydrates as possible sources of dietary energy for rainbow trout (Salmo gairdneri, Richardson). In: Finfish Nutrition and Fishfeed Technology, Vol. 1 (Halver J.E. and Tiews K. Eds.). Heenemann GmbH, Berlin, pp 209-219.
    Pieper, A. & Pfeffer, E., 1980a. Studies on the effect of increasing proportion of sucrose or gelatinized maize starch in diet for rainbow trout (Salmo gairdneri, R.) on the utilization of dietary energy and protein. Aquaculture 20, 333-342.
    Pieper, A. & Pfeffer, E., 1980b. Studies on the comparative efficiency of utilization of gross energy from some carbohydrates, proteins and fats by rainbow trout (Salmo gairdneri R.). Aquaculture 20, 323–332.
    Pitk?nen, T.I., Krasnov, A., Reinisalo, M. & M?ls?, H., 1999. Transfer and expression of glucose transporter and hexokinase genes in salmonid fish. Aquaculture 173, 319–332.
    Planas, J.V., Capilla, E. & Gutiérrez, J., 2000. Molecular identification of a glucose transporter from fish muscle. FEBS Lett. 481, 266–270.
    Plisetskaya, E.M., 1990. Recent studies on fish pancreatic hormones: Selected topics. Zool. Sci. 7, 335-353.
    Plisetskaya, E., Dickhoff, W.D., Paquette, T.L. & Gorbman, A., 1986. The assay of salmon insulin by homologous radioimmunoassay. Fish Physiol. Biochem. 1, 37–43.
    Plisetskaya, E.M. & Mommsen, T.P., 1996. Glucagon and glucagonlike peptides in fishes. Int. Rev. Cytol. 168, 187–257.
    Plisetskaya, E.M., Moon, T.W., Larsen, D.A., Foster, G.D. & Dickhoff, W.W., 1994. Liver glycogen, enzyme activities, and pancreatic hormones in juvenile Atlantic salmon (Salmo salar) during their first summer in seawater. Can. J. Fish. Aquat. Sci. 51, 567–576.
    Popma, T.J., 1982. Digestibility of selected feedstuffs and naturally occurring algae by tilapia. Ph.D. Dissertation, Auburn University, Auburn, AL, pp78.
    Qualmann, C., Nauck, M.A., Holst, J.J., Orskov, C. & Creutzfeldt, W., 1995. Glucagon-like peptide 1 (7–36 amide) secretion in response to luminal sucrose from the upper and lower gut. A study using alpha-glucosidase inhibition (acarbose). Scand. J. Gastroenterol. 30, 892–896.
    Rawles, S. & Lochmann, R., 2003. Effects of Amylopectin/Amylose starch ratio on growth, body composition and glycemic response of sunshine bass Morone chrysops ♀×M. saxatilis ♂. J. World Aquacult. Soc. 34, 278-288.
    Rawles, S.D. & Gatlin III, D.M., 1998. Carbohydrate utilization in striped bass (Morone saxatilis) and sunshine bass (M. chrysops ♀×M. saxatilis ♂). Aquaculture 161, 201–212
    Refstie, T. & Austreng, E., 1981. Carbohydrate in rainbow trout diets. III. Growth and chemical composition of fish from different families fed four levels of carbohydrate in the diet. Aquaculture 25, 35–49.
    Refstie, S., Kors?en, ?. J., Storebakken, T., Baeverfjord, G., Lein, I. & Roem, A.J., 2000. Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Aquaculture 190, 49-63.
    Ring, S.G., Gee, J.M., Whittam, M., Orford, P. & Johnson, I.T., 1988. Resistant starch: its chemical form in foodstuffs and effect on digestibility in vitro. Food Chem. 28, 97-109
    Robinson, E.H. & Li, H.M., 1995. Catfish nutrition. Part I. Nutrients and feeds. Aquacult. Mag. May/June, 44–53.
    Ronner, P. & Scarpa, A., 1984. Difference in glucose dependency of insulin and somatostatin release. Am. J. Physio1. 246, E506-E509.
    Ronner, P. & Scarpa, A., 1987. Secretagogues to pancreatic hormone release in the channel catfish (Ictalutus punctatus). Gen. Comp. Endocrino1. 65, 354-362.
    Ronner, P., 1991. 2-Deoxyglucose stimulates the release of insulin and somatostatin from the perfused catfish pancreas. Gen. Comp. Endocrinol. 81, 276–283.
    Rozin, P. & Mayer, J., 1961. Regulation of food intake in the goldfish. Am. J. Physiol. 201, 968–974.
    Rueda-Jasso, R., Conceicao, L.E.C., Dias, J., De Coen, W., Gomes, E., Rees, J.F., Soares, F., Dinis M.T. & Sorgeloos, P., 2004. Effect of dietary non-protein energy levels on condition and oxidative status of senegalese sole (Solea senegalensis) juveniles. Aquaculture 231, 417-433.
    Saad, C.R.B., 1989. Carbohydrate metabolism in channel catfish. Ph.D. dissertation, Auburn University, Auburn, AL, pp69.
    Sanchez-Muros, M.J., Garcia-Rejon, L., Lupianez, J.A. & De la Higuera, M., 1996. Long-term nutritional effects on the primary liver and kidney metabolism in rainbow trout (Oncorhynchus mykiss). 2. Adaptive response of glucose-6-phosphate dehydrogenase activity to high carbohydrate/low-protein and high-fat/non-carbohydrate diets. Aquacult. Nutr. 2, 193–200.
    Sánchez–Vázquez, F. J., Yamamoto, T., Akiyama, T., Madrid J.A. & Tabata M., 1999. Macronutrient self-selection through demand-feeders in rainbow trout. Physiol. Behav. 66, 45-51.
    Sangiao-Alvarellos, S., Míguez, J.M. & Soengas, J.L., 2005. Actions of growth hormone on carbohydrate metabolism and osmoregulation of rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 141, 214-225.
    Sargent, J., Henderson, R.J. & Tocher, D.R., 1989. The lipids. In: Fish Nutrition (Halver J.E. Ed.). Academic Press, New York, NY, pp 154–209.
    Satoh, S., 1991. Common carp, Cyprinus carpio. In: Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.). CRC Press, Raton, FL, pp 55-67.
    Schepp, W., Dehne, K., Riedel, T., Schmidtler, J., Schaffer, K. & Classen, M., 1996. Oxyntomodulin: a cAMP-dependent stimulus of rat parietal cell function via the receptor for glucagon-like
    peptide-1 (7–36) NH2. Digestion 57, 398–405.
    Scrocchi, L.A., Marshall, B.A., Cook, S.M., Brubaker, P.L. & Drucker, D.J., 1998. Identification of glucagon-like peptide 1 (GLP-1) actions essential for glucose homeostasis in mice with disruption of GLP-1 receptor signaling. Diabetes 47, 632–639.
    Serrano, J.A., Nematipour, G.R. & Gatlin III, D.M., 1992. Dietary protein requirement of the red drum Scianops ocellatus and relative use of dietary carbohydrate and lipid. Aquaculture 101, 283–291.
    Shatton, J.B., Halver, J.E. & Weinhouse, S., 1971. Glucose (hexose 6-phosphate) dehydrogenase in liver of rainbow trout. J. Biol. Chem. 246, 4878–4885.
    Sheridan, M.A., Eilertson, C.D. & Plisetskaya, E.M., 1991. Radioimmunoassay for salmon pancreatic somatostatin-25. Gen. Comp. Endocrinol. 91, 365-372.
    Sheridan, M.A., Plisetskaya, E.M., Bern, H.A. & Gorbman, A., 1987. Effects of somatostatin-25 and urotensin II on lipid and carbohydrate metabolism of coho salmon, Oncorhynchus kisutch. Gen. Comp. Endocrinol. 66, 405-414.
    Shiau, S.Y. & Chuang, J.C., 1995. Utilization of disaccharides by juvenile tilapia (Oreochromis niloticus ×O. aureus). Aquaculture 133, 249-256.
    Shiau, S.Y. & Lin, Y.H., 2002. Utilization of glucose and starch by the grouper Epinephelus malabaricus at 23°C. Fish. Sci. 68, 991-995.
    Shiau, S.Y. & Chen, S.Y., 1993. Carbohydrate utilization by tilapia (Oreochromis niloticus ×O. aureus ) as influenced by different chromium sources. J. Nutr. 123, 1747–1753.
    Shiau, S.Y. & Liang, H.S., 1995. Carbohydrate utilization and digestibility by tilapia, Oreochromis niloticus ×O. aureus, are affected by chromic oxide inclusion in the diet. J. Nutr. 125, 976–982.
    Shiau, S.Y. & Lin, S.F., 1993. Effect of supplemental dietary chromium and vanadium on the utilization of different carbohydrates in tilapia, Oreochromis niloticus ×O. aureus. Aquaculture 110, 321–330.
    Shiau, S.Y. & Peng, C.Y., 1993. Protein sparing effect of carbohydrates in diets for tilapia, Oreochromis niloticus ×O. aureus. Aquaculture 117, 327-334.
    Shikata, T., Iwanaga, S. & Shimeno, S., 1994. Effects of dietary glucose, fructose and galactose on hepatopancreatic enzyme activities and body composition in carp. Fish. Sci. 60, 613–617
    Shikata, T., Kheyyali, D. & Shimeno, S., 1993. Regulation of carbohydrate metabolism in fish. XV. Effect of feeding rates on hepatopancreas enzymes and body composition in common carp. Bull. Jpn. Soc. Sci. Fish. 59, 835–839.
    Shimeno, M.A. & Mommsen, T.P., 1991. Effects of nutritional state on in vivo lipid and carbohydrate metabolism of coho salmon, Oncorhynchus kisutch. Gen. Comp. Endocrinol. 81, 473–483.
    Shimeno, S. & Shikata, T., 1993a. Regulation of carbohydrate metabolism in fish. XIII. Seasonal changes in carbohydrate metabolizing enzyme activity and lipid content of carp reared outdoors. Bull. Jpn. Soc. Sci. Fish. 59, 653–659.
    Shimeno, S. & Shikata, T., 1993b. Regulation of carbohydrate metabolism in fish. XIV. Effects of acclimatization temperature and feeding rate on carbohydrate metabolizing enzyme activity and lipid content of common carp. Bull. Jpn. Soc. Sci. Fish. 59, 661–666.
    Shimeno, S., 1974. Studies on carbohydrate metabolism in fishes. Rep. Fish. Lab. Kochi Univ. (Japan) 2, 1-107.
    Shimeno, S., 1991. Yellowtail, Seriloa quinqueradiata. In: Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.). CRC Press, Boca Raton, FL, pp 181-191.
    Shimeno, S., Duan-Cun-Ming & Takeda, M., 1993. Regulation of carbohydrate metabolism in fish. XVI. Metabolic response to dietary carbohydrate to lipid ratios in Oreochromis niloticus. Bull. Jpn. Soc. Sci. Fish. 59, 827–833.
    Shimeno, S., Hosakawa, H. & Takeda, M., 1979. The importance of carbohydrate in the diet of a carnivorous fish In: Finfish Nutrition and Fishfeed Technology, Vo1. 1 (Halver J.E. and Tiews K. Eds.). Heenemann GmbH, Berlin, pp 127-143.
    Shimeno, S., Hosakawa, H., Hirata, H. & Takeda, M., 1977. Comparative studies on carbohydrate metabolism of yellowtail and carp. Bull. Jpn. Soc. Sci. Fish. 43, 213–217.
    Shimeno, S., Hosokawa, H., Takeda, M., Kajiyama, H. & Kaishe, T., 1985. Effect of dietary lipid and carbohydrate on growth, feed conversion and body composition in young yellowtail. Nippon Suisan Gakkaishi 51, 1893–1898.
    Shimeno, S., Takeda, M., Takayama, S., Fukui, A., Sasaki, H. & Kajiyama, H., 1981. Adaptation of hepatopancreatic enzymes to dietary carbohydrates in carp. Bull. Jpn. Soc. Sci. Fish. 47, 71-77.
    Silverstein, J.T., Bondareva, V.M., Leonard, J.B.K. & Plisetskaya, E.M., 2001. Neuropeptide regulation of feeding in fish: a role for glucagon-like peptide-1 (GLP-1)? Comp. Biochem. Physiol. 129B, 623–631.
    Singh, R.P. & Nose, T., 1967. Digestibility of carbohydrates in young rainbow trout. Bull. Freshwater Fish. Res. Lab. (Japan) 17(1), 21-25.
    Smith, R.R., Peterson, M.C. & Allred, A.C., 1980. The effect of leaching on apparent digestion coefficients in determining digestibility and metabolizable energy of feedstuffs for salmonids. Prog. Fish-Cult. 42, 195-199.
    Smith, R.R., 1976. Metabolizable energy of feedstuffs for trout. Feedstuffs 48, 16-17.
    Soengas, J.L. & Moon, T.W., 1998. Transport and metabolism of glucose in isolated enterocytes of the black bullhead, Ictalurus melas: effects of diet and hormones. J. Exp. Biol. 201, 3263–3273.
    Soengas, J.L., Strong, E.F., Fuentes, J., Veira, J.A.R. & Adnrés, M.D., 1996. Food deprivation and refeeding in Atlantic salmon Salmo salar: effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiol. Biochem. 15, 491–511.
    Spannhof, L. & Kühne, H., 1977. Untersuchungen zur Verwertung verschiedener Futtermischungen durch europ?ische Aale (Anguilla anguilla). Arch. Tierern?hr. 27, 517-531.
    Spannhof, L. & Plantikow, H., 1983. Studies on carbohydrate digestion in rainbow trout. Aquaculture 30, 95-108.
    Steffens, W., 1981. Protein utilization by rainbow trout Salmo gairdneri and carp Cyprinus carpio : a brief review. Aquaculture 23, 337–345.
    Stephan, G., Dreanno, C., Guiollaume, J. & Arzel, J., 1996. Incidence of different amounts of proteins, lipids and carbohydrates in diets on the muscle lipid composition in the turbot (Scophthalmus maximus). Ichthyophysiol. Acta 19, 11–30.
    Stone, D.J., Allan, G.L. & Anderson, A.J., 2003a. Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell). I. Uptake and clearance of monosaccharides following intraperitoneal injection. Aquacult. Res. 34, 97-107.
    Stone, D.J., Allan, G.L. & Anderson, A.J., 2003b. Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell). III. The protein-sparing effect of wheat starch-based carbohydrates. Aquacult. Res. 34, 123-134.
    Suárez, M.D, Sanz, A., Bazoco, J. & García-Gallego, M., 2002. Metabolic effects of changes in the dietary protein: carbohydrate ratio in eel (Angilla anguilla) and trout (Oncorhynchus mykiss). Aquacult. Int. 10, 143-156
    Suarez, R.K. & Mommsen, T.P., 1987. Gluconeogenesis in teleost fishes. Can. J. Zool. 65, 1869–1882.
    Sundby, A., Eliassen, K.A., Refstie, T. & Plisetskaya, E.M., 1991b. Plasma levels of insulin, glucagon and glucagon-like peptide in salmonids of different weights. Fish Physiol. Biochem. 9, 223–230.
    Sundby, A., Hemre, G.I., Borreb?k, B., Christophersen, B. & Blom, A.K., 1991a. Insulin and glucagon family peptides in relation to activities of hepatic hexokinase and other enzymes in fed and starved Atlantic salmon (Salmo salar) and cod (Gadus morhua). Comp. Biochem. Physiol. 100B, 467–470.
    Takeda, M., Shimeno, S., Hosokawa, H., Kajiyama, H. & Kaisyo, T., 1975. The effect of dietary calorie to protein ratio on the growth, feed conversion, and body composition of young yellowtail. Bull. Jpn. Soc. Sci. Fish. 41, 443-447.
    Takeuchi, T., Watanabe, T. & Ogino, C., 1979. Availability of carbohydrate and lipid as dietary energy sources for carp. Bull. Jpn. Soc. Sci. Fish. 45, 977-982.
    Tashima, L. & Cahill, G.F., 1968. Effects of insulin in the toadfish, Opsanus tau. Gen. Comp. Endocrinol. 11, 262–271.
    Teerijoki, H., Krasnov, A., Pitk?nen, T.I. & M?ls?, H., 2001. Monosaccharide uptake in common carp (Cyprinus carpio) EPC cells is mediated by facilitative glucose transporter. Comp. Biochem. Physiol. 128B, 483–491.
    Thibault, M., Blier, U. & Guderley, H., 1997. Seasonal variation of muscle metabolic organization in rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 16, 139–155.
    Thorpe, A. & Ince, B.W., 1976. Plasma insulin levels in teleosts determined by a charcoal separation radioimmunoassay technique. Gen. Comp. Endocrinol. 30, 332-339.
    Tian, L., Liu, Y. & Hung, S.S.O., 2004. Utilization of glucose and cornstarch by juvenile grass carp. N. Am. J. Aquacult. 66, 141-145.
    Tranulis, M.A., 1994. Glucose Utilization in the Salmonid Liver, a Study of Glucose Dehydrogenation and Phsophorylation. Thesis for the degree of Doctor Scientiarium. Schola
    Veterinaria Norvegiae, Norway. Tranulis, M.A., Christophersen, B. & Borreb?k, B., 1997. Glucokinase in Atlantic halibut (Hippoglossus hippoglossus) Brockmann bodies. Comp. Biochem. Physiol. 116B, 367–370.
    Tranulis, M.A., Christophersen, B., Blom, A.K. & Borreb?k, B., 1991. Glucose dehydrogenase, glucose-6-phosphate dehydrogenase and hexokinase in liver of rainbow trout (Salmo
    gairdneri). Effects of starvation and temperature variations. Comp. Biochem. Physiol. 99B, 687–691. Tranulis, M.A., Dregni, O., Christophersen, B., Krogdahl, ?. & Borreb?k, B., 1996. A
    glucokinase-like enzyme in the liver of Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. 114B, 35–39.
    Tung, P.H. & Shiau, S.Y., 1991. Effects of meal frequency on growth performance of hybrid tilapia, Oreochromis niloticus ×O. aureus, fed different carbohydrate diets. Aquaculture 92, 343-350.
    Tung, P.H. & Shiau, S.Y., 1993. Carbohydrate utilization versus body size in tilapia Oreochromis niloticus ×O. aureus. Comp. Biochem. Physiol. 104A, 585-588.
    Van den Thillart, G., 1986. Energy metabolism of swimming trout (Salmo gairdneri). Oxidation rates of palmitate, glucose, lactate, alanine, leucine and glutamate. J. Comp. Physiol. 156B, 511–520.
    Vandercammen, A. & van Schaftingen, E., 1993. Species and tissue distribution of the regulatory protein of glucokinase. Biochem. J. 294, 551–556.
    Vielma, J., Koskela, J., Ruohonen, K., Jokinen, I. & Kettunen, J., 2003. Optimal diet composition for European whitefish (Coregonus lavaretus): carbohydrate stress and immune parameter responses. Aquaculture 225, 3-16.
    Vijayan, M.M., Foster, G.D. & Moon, T.W., 1993. Effects of cortisol on hepatic carbohydrate metabolism and responsiveness to hormones in the sea raven, Hemitripterus americanus. Fish Physiol. Biochem. 12, 327–335.
    Vornanen, M., 1999. Effect of acute anoxia on the function of crucian carp heart: significance of cholinergic and purinergic control. In: Cardiovascular Function in Fishes (Gamperl, K., Farrell, A. and Mackinlay, D. Eds). Academic Press, London. pp 115–119.
    Waagbo, R., 1994.The impact of nutritional factors on the immune system in Atlantic salmon, Salmo salar L. a review. Aquacult. Fish. Manage. 25, 175-197.
    Waagb?, R., Glette, J., Sandnes, K. & Hemre, G.I., 1994. Influence of dietary carbohydrate on blood chemistry, immunity and disease resistance in Atlantic salmon (Salmo salar). J. Fish Dis. 17, 245–258.
    Walsh, P.J., Moon, T.W. & Mommsen, T.P., 1985. Interactive effects of acute changes in temperature and pH on metabolism in hepatocytes from the sea raven Hemitripterus americanus. Physiol. Zool. 58, 727–735.
    Walton, M.J. & Cowey, C.B., 1982. Aspects of intermediary metabolism in salmonid fish. Comp. Biochem. Physiol. 73B, 59–79.
    Watkins, D., Cooperstein, S.J., Dixit, P.K. & Lazarow, A., 1968. Insulin secretion from toadfish islet tissue stimulated by pyridine nucleotides. Science 162, 283–284.
    Weber, J.M., Brill, R.W. & Hochachka, P.W., 1986. Mammalian metabolite flux rates in a teleost: lactate and glucose turnover in tuna. Am. J. Physiol. 250, R452-R458.
    West, T.G., Arthur, P.G., Suarez, R.K., Doll, C.J. & Hochachka, P.W., 1993. In vivo utilization of glucose by heart and locomotory muscles of exercising rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 177, 63–79.
    Weurding, R.E., Veldman, A., Veen, W.A.G., van der Aar, P.J. & Verstegen, M.W.A. 2001. In vitro starch digestion correlates well with rate and extent of starch digestion in broiler chickens. J. Nutr. 131, 2336–2342.
    Weurding, R.E., Enting, H. & Verstegen, M.W.A., 2003.The effect of site of starch digestion on performance of broiler chickens. Anim. Feed Sci. Technol. 110, 175–184.
    Wiik, R., Andersen, K., Ulgenes, I. & Egidius, E., 1989. Cortisol-induced increase in susceptibility of Atlantic salmon. Salmo salar, together with effects on the blood cell pattern. Aquaculture 83, 201–215.
    Wilson, R.P. & Poe, W.E., 1985. Apparent digestible protein and energy coefficients of common feed ingredients for channel catfish. Prog. Fish-Cult. 47, 154 158.
    Wilson, R.P. & Poe, W.E., 1987. Apparent inability of channel catfish to utilize dietary mono-and disaccharides as energy sources. J. Nutr. 117, 280-285.
    Wilson, R.P. & Halver, J.E., 1986. Protein and amino acid requirements of fishes. Annu. Rev. Nutr. 6, 225–244.
    Wilson, R.P., 1991. Channel catfish, Ictalurus punctatus. In: Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.). CRC Press, Boca Raton, FL, pp35-53.
    Wilson, R.P., 1994. Utilization of dietary carbohydrate by fish. Aquaculture 124, 67–80. Xie, S., Cui, Y. & Liu, J., 1997. Energy budget of Nile tilapia (Oreochromis nilonticus) in relation to ration size. Aquaculture 157, 57-68.
    Xie, S., He, X. & Yang, Y., 1998. Effects on growth and feed utilization of Chinese longsout catfish Leiocassis longirostris Günther of replacement of dietary fishmeal by soybean cake. Aquacult. Nutr. 4, 187-192
    Xue, M. & Cui, Y., 2001. Effect of several feeding stimulants on diet preference by juvenile gibel carp (Carassius auratus gibelio), fed diets with or without partial replacement of fish meal by meat and bone meal. Aquaculture 198, 281-292.
    Yone, Y., 1979. The utilization of carbohydrates by fishes. In: Proc. 7th Japan-Soviet Joint Symp. Aquaculture (Yamamoto G. Ed.). pp 39-48.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.