通过发酵优化减少乙酸积累促进E.coli WSH-Z06(pAP-B03)合成L-苯丙氨酸
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大肠杆菌在有氧发酵过程中能产生胞外副产物乙酸,乙酸在中性条件下能以乙酸盐的形式存在于发酵液中。即使低浓度的乙酸(0.5 g/L)也能抑制大肠杆菌的生长和蛋白质的合成。并且,乙酸的积累将消耗本可用于菌体生长和蛋白产物合成的碳源。本文在利用大肠杆菌发酵生产L-苯丙氨酸(L-Phe)过程中发现发酵液中有较高水平的乙酸积累。为了降低副产物乙酸的积累和提高L-Phe的产量,分别优化了L-Phe发酵的初始葡萄糖浓度和葡萄糖的指数流加策略。结果表明,细胞的比生长速率直接受葡萄糖浓度的影响,同时比生长速率亦和乙酸的积累有密切的联系。过量的乙酸不仅抑制细胞的生长,并且对L-Phe的合成会产生负面影响。当葡萄糖浓度过高时,细胞的实际比生长速率μ会超过临界值(0.3 h-1),造成乙酸的大量积累,最终抑制L-Phe的合成。20 g/L的初始葡萄糖浓度可以控制细胞的比生长速率低于临界值0.3 h-1,显著地降低了乙酸的积累,提高了L-Phe的产量。采用预设比生长速率μ3*=0.4 h-1进行葡萄糖的指数流加取得了实际最大比生长速率0.29 h-1,使细胞的比生长速率低于临界值,促进了L-Phe的合成,最终获得L-Phe的产量达48.45 g/L,比本实验室原有水平提高了37%。
     由于葡萄糖指数流加操作中比较繁琐且难于控制,因此我们考虑从培养基优化角度来实现对乙酸水平的控制或降低乙酸产生的负面影响。我们考察了20种氨基酸添加对大肠杆菌E. coli WSH-Z06(pAP-B03)生长的影响,发现只有甘氨酸,脯氨酸,甲硫氨酸和精氨酸能够促进大肠杆菌的生长。进一步的实验发现,甲硫氨酸能够缓解乙酸对大肠杆菌生长的抑制作用:向培养基中添加0.5 g/L的甲硫氨酸使得菌体在2.5 g/L的乙酸存在条件下能够获得0.37 h-1的最大比生长速率,这个值与细胞在未添加乙酸和甲硫氨酸的对照组中取得的比生长速率的最大值相当。在3 L发酵罐中,在不同时间点添加0.5 g/L的甲硫氨酸对菌体的生长、乙酸的积累和L-Phe的合成均有重要的影响。在8 h添加甲硫氨酸使得即使在乙酸含量积累达2.58 g/L环境中L-Phe的生产强度达1.06 g/L/h ,最大菌体量达17.52 g/L和最终L-Phe浓度达42.37 g/L,分别比对照提高了89%,12%和29%。而在0 h添加甲硫氨酸虽然对菌体的生长有很强的促进作用,使其最大比生长速率达0.55 h-1,最大DCW达18.36 g/L,但其最大的L-Phe积累量为36.34 g/L,特别是此条件下L-Phe的积累主要集中在对数生长期,平衡期的L-Phe积累量较少,可能是由于发酵时间过长,甲硫氨酸对乙酸抑制缓解作用减弱。从总体来看,由于甲硫氨酸能够缓解乙酸过量积累所带来的抑制作用,甲硫氨酸的添加确能促进菌体的生长和L-Phe合成。
     在发酵生产L-Phe过程中,我们发现当pH偶然高于7.0时,氨水的消耗显著上升,我们假设大肠杆菌在此条件下产酸增加。因此,我们在接下来的实验中考察了高pH胁迫对大肠杆菌生产L-Phe的影响。实验研究了E. coli WSH-Z06(pAP-B03)对数生长末期改变发酵液的pH对菌体存活率和L-Phe合成的影响。摇瓶实验结果表明大肠杆菌生长的最适pH值为7.0,当对数生长末期改变发酵液的pH值至8.0和9.0后的4个小时之内L-Phe的合成分别达到3.72 g/L和4.25 g/L,比pH值为7.0时分别提高了13%和29%,且同时葡萄糖的消耗量比pH值为7.0时分别增加了25%和43%。然而,在对数生长末期提高发酵液的pH值,对细胞的生存产生负面影响,特别是当pH值调至9.0,DCW出现明显的下降。在3 L发酵罐中在pH值为8.0和7.0之间进行pH脉冲变化实验时,当以2 h的时间间隔进行实验对L-Phe的合成有显著地促进作用,至发酵结束时L-Phe的产量达48.35 g/L,比对照提高了14.2%。
E. coli cells produce acetic acid as an extracellular co-product of aerobic fermentation, and this exists as the ion acetate at the neutral pH used in E. coli fermentations. Acetate is undesirable because it retards growth even at concentrations as low as 0.5 g/L, and it inhibits protein formation. Moreover, acetate production represents a diversion of carbon that might otherwise have generated biomass or the protein product. In this study, high level of acetic acid was detected during fermentative production of L-Phe. In order to reduce acetic acid accumulation and improve L- Phenylalanine production, we optimized the initial glucose concentration and its exponential feeding strategy during L-Phe fermentation in 3 L fermentor. The results showed that glucose concentration had direct impact on specific growth, which was closely related with acetic acid accumulation. Not only would excessive acetic inhibit cell growth, but also exert negative effect on L-Phe production. Under high concentration of glucose, cell would exceed critical specific growth rate (0.3 h-1), causing remarkable acetic acid accumulation, and ultimately inhibiting L-Phe synthesis. Firstly, we optimized initial glucose concentration, the results indicated that initial glucose of 20 g/L could control specific growth rate under critical value of 0.3 h-1, leading to great reduction in acetic acid accumulation and significant improvement in L-Phe production. Real maximal specific growth rate of 0.29 h-1 was achieved when preset specific growth rate of 0.4 h-1 was employed. The combination of initial glucose concentration of 20 g/L and preset specific growth rate of 0.4 h-1 greatly promoted L-Phe synthesis, gaining ultimate L-Phe concentration of 48.45 g/L, which was 37% higher than previously reported value in our lab.
     Acetate formation is strongly affected by the composition of the culture medium. Previous reports showed that supplementing the medium with yeast extract, methionine or glycine can similarly reduce acetate formation and enhance protein production. The effects of 20 amino acid supplements on growth of E.coli WSH-Z06(pAP-B03) were tested. Only Gly, Pro, Met and Arg brought about enhancement of cell growth. In shaken flasks, adding 0.5 g/L of Gly, Pro, Met and Arg could respectively improved maximal specific growth rate to 0.50, 0.52, 0.53 and 0.56 h-1. However, further study found that only Met could relieve cell growth from inhibitory effects of acetic acid: addition of 0.5 g/L Met into medium led to 0.37 h-1 maximal specific growth rate in presence of 2.5 g/L acetic acid, which was equivalent to the value achieved in absence of external acetic acid. Addition of Gly, Pro and Arg could not mitigate the significant reduction in specific growth in presence of acetic acid from 0.5-2.5 g/L. Previous studies suggested that the methionine biosynthetic pathway in E. coli can be perturbed by excessive acetic acid, leading to a reduced growth rate, which is caused by partial methionine auxotrophy. In 3 L fermentor experiment, addition of 0.5 g/L Met at different points during E.coli fermentation for production of L-Phe exhibited remarkable effects on cell growth, acetic acid accumulation as well as L-Phe synthesis. The addition of 0.5 g/L Met at 8 h achieved L-Phe productivity of 1.06 g/L/h, maximal DCW of 17.52 g/L, maximal L-Phe concentration of 42.47 g/L in presence of maximal acetic acid accumulation of 2.58 g/L, which were respectively 89%, 12% and 29% higher than the control without Met addition. However, despite the significant enhancement of cell growth (maximal specific growth rate was 0.55 h-1 and maximal DCW was 18.36 g/L) when 0.5 g/L Met was added at 0 h, the ultimate L-Phe concentration was 36.34 g/L, in particular, L-Phe formation mainly focused in exponential phase. In general, Met addition could indeed enhance cell growth and L-Phe synthesis, possibly due to its reliving effects on acetic acid inhibition.
     It is well known that E.coli cells need proper pH for normal growth. The effects of changes in pH value on DCW and L-Phe production were investigated. The results of our study showed that the optimal pH for E.coli WSH-Z06(pAP-B03) growth was 7.0, under which 7.4 g/L maximal DCW could be achieved. However, the maximal DCW under pH of 6.0, 8.0 were respectively 3.20 and 4.55 g/L. Interestingly, in shaken flasks, 3.72 g/L and 4.25 g/L L-Phe were synthesized within 4 h after changing pH to 8.0 and 9.0, respectively, which were increased by 13% and 29% compared to those achieved at pH 7.0. At the same time, glucose consumption rates were respectively increased by 25% and 43%.pH impulse between 8.0 and 7.0 with interval time of 2 h could remarkably enhance L-Phe production in 3 L fermentor: the maximal L-Phe concentration of 48.35 g/L, 14.2% higher than the control, was achieved at 64 h.
引文
1.范长胜,余震. L—苯丙氨酸产生菌株FMP8906的定向选育[J].工业微生物,1990,2(3): 6
    2.李艳梅,李艳军,陈桂光,梁智群.肉桂酸酶法合成L一苯丙氨酸的研究[J].广西轻工业,2009,25(4): 2
    3. Zhou H Y,Liao X Y,Wang T W, et al. Enhanced L-phenylalanine biosynthesis by co-expression of pheA(fbr) and aroF(wt). Bioresource Technol, 2010, 101(11): 4151-4156
    4.李家璜,韦萍,姚忠,周华,欧阳平凯.海因酶法生产N-氨甲酰-D-苯丙氨酸的动力学及温度的影响[J].化工学报2004, 55(4): 6
    5. Thomas S M,Dicosimo R,Nagarajan V. Biocatalysis: applications and potentials for the chemical industry. Trends Biotechnol, 2002, 20(6): 238-242
    6. Evans C T,Choma C,Peterson W, et al. Bioconversion of trans-cinnamic acid to L-phenylalanine in an immobilized whole cell reactor. Biotechnol Bioeng, 1987, 30(9): 1067-1072
    7. Hummel W,Kula M R. Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem, 1989, 184(1): 1-13
    8. Bongaerts J,Kramer M,Muller U, et al. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng, 2001, 3(4): 289-300
    9. De Boer L D L. Microbial and enzymatic processes for L-phenylalanine production. Adv Biochem Eng Biotechnol, 1990, 41: 27
    10. Kinoshita S,Udaka S,Shimono M. Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol, 2004, 50(6): 331-343
    11. Kimura E. Metabolic engineering of glutamate production. Adv Biochem Eng Biotechnol, 2003, 79: 37-57
    12. Ikeda M. Amino acid production processes. Adv Biochem Eng Biotechnol, 2003, 79: 1-35
    13. Kalinowski J,Bathe B,Bartels D, et al. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol, 2003, 104(1-3): 5-25
    14. De Graaf A A,Eggeling L,Sahm H. Metabolic engineering for L-lysine production by Corynebacterium glutamicum. Adv Biochem Eng Biotechnol, 2001, 73: 9-29
    15. Cordwell S J. Microbial genomes and "missing" enzymes: redefining biochemical pathways. Arch Microbiol, 1999, 172(5): 269-279
    16. Suzuki M, A. Berglund, A. Unden. Aromatic Amino Acids Production byAnalogue-resistant Mutants of Methylomonas methanolophila 6R : Microbial Production of Aromatic Amino Acids from Methanol (II) J. Ferment. Technol., 1977, 55(5): 9
    17. Shetty K,Crawford D L,Pometto A L. Production of l-Phenylalanine from Starch by Analog-Resistant Mutants of Bacillus polymyxa. Appl Environ Microbiol, 1986, 52(4): 637-643
    18. Shiio I,Miyajima R,Nakagawa M. Regulation of aromatic amino acid biosynthesis in Brevibacterium flavum. I. Regulation of anthranilate synthetase. J Biochem, 1972, 72(6): 1447-1455
    19. Shiio I I K, Yokozeki K. Production of L-tryptophan by 5-fluorotryptophan resistant mutants of Bacillus subtilis. Agric Biol Chem 1973, 37(9): 10
    20. Tsuchida T M H, Enei H, Yoshinaga F. Japanese Patent Application (Kokai) 1974
    21. Goto E I M, Sakurai S, Enei H, Takinami K. Japanese Patent Application(Kokai). 1981
    22. Shiio I I K, Yokozeki K. Breeding of phenylalanine-producing Brevibacterium flavum strains by removing feedback regulation of both the two key enzymes in its biosynthesis. Agric. Biol. Chem. , 1988, 52(9): 7
    23. Choi Yj T D. Continuous production of phenylalanine using an Escherichia coli regulatory mutant Biotechnol. Lett., 1982, 4(4): 6
    24. Zhou H,Liao X,Wang T, et al. Enhanced l-phenylalanine biosynthesis by co-expression of pheA(fbr) and aroF(wt). Bioresour Technol, 2010, 101(11): 4151-4156
    25. Shunjiro Sugimoto M Y, Naoto Kato, Tatsuji Seki, Toshiomi Yoshida and Hisaharu Taguchi. Hyperproduction of phenylalanine by Escherichia coli: application of a temperature-controllable expression vector carrying the repressor-promoter system of bacteriophage lambda Journal of Biotechnology, 1987, 5(4): 17
    26. Takagi M,Nishio Y,Oh G, et al. Control of L-phenylalanine production by dual feeding of glucose and L-tyrosine. Biotechnol Bioeng, 1996, 52(6): 653-660
    27. Ikeda M,Katsumata R. Metabolic Engineering To Produce Tyrosine or Phenylalanine in a Tryptophan-Producing Corynebacterium glutamicum Strain. Appl Environ Microbiol, 1992, 58(3): 781-785
    28. Ikeda M,Ozaki A,Katsumata R. Phenylalanine production by metabolically engineered Corynebacterium glutamicum with the pheA gene of Escherichia coli. Appl Microbiol Biotechnol, 1993, 39(3): 318-323
    29. Wu Y Q,Jiang P H,Fan C S, et al. Co-expression of five genes in E coli for L-phenylalanine in Brevibacterium flavum. World J Gastroenterol, 2003, 9(2): 342-346
    30. Yue H Y,Yuan Q P,Wang W C. Enhancement of L-phenylalanine production by beta-cyclodextrin. Journal of Food Engineering, 2007, 79(3): 878-884
    31. Berry A. Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol, 1996, 14(7): 250-256
    32. Gerigk M,Bujnicki R,Ganpo-Nkwenkwa E, et al. Process control for enhanced L-phenylalanine production using different recombinant Escherichia coli strains. Biotechnol Bioeng, 2002, 80(7): 746-754
    33. Baez-Viveros J L,Osuna J,Hernandez-Chavez G, et al. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol Bioeng, 2004, 87(4): 516-524
    34. Yi J,Li K,Draths K M, et al. Modulation of phosphoenolpyruvate synthase expression increases shikimate pathway product yields in E. coli. Biotechnol Prog, 2002, 18(6): 1141-1148
    35. Hinnebusch A G. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev, 1988, 52(2): 248-273
    36. Gibson F,Pittard J. Pathways of biosynthesis of aromatic amino acids and vitamins and their control in microorganisms. Bacteriol Rev, 1968, 32(4 Pt 2): 465-492
    37. Sprenger G A. From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol, 2007, 75(4): 739-749
    38. Herrmann K M,Weaver L M. The Shikimate Pathway. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 473-503
    39. Parish T,Stoker N G. The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology, 2002, 148(Pt 10): 3069-3077
    40. Cross P J,Dobson R C,Patchett M L, et al. Tyrosine-latching of a regulatory gate affords allosteric control of aromatic amino acid biosynthesis. J Biol Chem, 2011
    41. Brown K D,Somerville R L. Repression of aromatic amino acid biosynthesis in Escherichia coli K-12. J Bacteriol, 1971, 108(1): 386-399
    42. Ogino T,Garner C,Markley J L, et al. Biosynthesis of aromatic compounds: 13C NMR spectroscopy of whole Escherichia coli cells. Proc Natl Acad Sci U S A, 1982, 79(19): 5828-5832
    43. Mccandliss R J,Poling M D,Herrmann K M. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase. Purification and molecular characterization of the phenylalanine-sensitive isoenzyme from Escherichia coli. J Biol Chem, 1978, 253(12): 4259-4265
    44. Jones A,Westlake D W. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Properties of arylamine synthetase, an enzyme involved in antibiotic biosynthesis.Can J Microbiol, 1974, 20(11): 1599-1611
    45. Man T K,Pease A J,Winkler M E. Maximization of transcription of the serC (pdxF)-aroA multifunctional operon by antagonistic effects of the cyclic AMP (cAMP) receptor protein-cAMP complex and Lrp global regulators of Escherichia coli K-12. J Bacteriol, 1997, 179(11): 3458-3469
    46. Lawley B,Pittard A J. Regulation of aroL expression by TyrR protein and Trp repressor in Escherichia coli K-12. J Bacteriol, 1994, 176(22): 6921-6930
    47. Herrmann K M. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. Plant Cell, 1995, 7(7): 907-919
    48. Patel N,Pierson D L,Jensen R A. Dual enzymatic routes to L-tyrosine and L-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J Biol Chem, 1977, 252(16): 5839-5846
    49. Keller B,Keller E,Gorisch H, et al. Biosynthesis of phenylalanine and tyrosine in Streptomycetes. Hoppe Seylers Z Physiol Chem, 1983, 364(4): 455-459
    50. Leuchtenberger W,Huthmacher K,Drauz K. Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol, 2005, 69(1): 1-8
    51. Yanofsky C. Advancing our knowledge in biochemistry, genetics, and microbiology through studies on tryptophan metabolism. Annu Rev Biochem, 2001, 70: 1-37
    52. Yanofsky C. Using studies on tryptophan metabolism to answer basic biological questions. J Biol Chem, 2003, 278(13): 10859-10878
    53. Ruffer N,Heidersdorf U,Kretzers I, et al. Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst Eng, 2004, 26(4): 239-248
    54. Ikeda M. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol, 2006, 69(6): 615-626
    55. Bailey J E. Toward a science of metabolic engineering. Science, 1991, 252(5013): 1668-1675
    56. Kramer M,Bongaerts J,Bovenberg R, et al. Metabolic engineering for microbial production of shikimic acid. Metab Eng, 2003, 5(4): 277-283
    57. Tribe D E,Pittard J. Hyperproduction of tryptophan by Escherichia coli: genetic manipulation of the pathways leading to tryptophan formation. Appl Environ Microbiol, 1979, 38(2): 181-190
    58. Backman K,O'connor M J,Maruya A, et al. Genetic engineering of metabolic pathways applied to the production of phenylalanine. Ann N Y Acad Sci, 1990, 589: 16-24
    59. Link A J,Phillips D,Church G M. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading framecharacterization. J Bacteriol, 1997, 179(20): 6228-6237
    60. Datsenko K A,Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A, 2000, 97(12): 6640-6645
    61. Menkel E,Thierbach G,Eggeling L, et al. Influence of increased aspartate availability on lysine formation by a recombinant strain of Corynebacterium glutamicum and utilization of fumarate. Appl Environ Microbiol, 1989, 55(3): 684-688
    62. Chen R,Hatzimanikatis V,Yap W M, et al. Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine-producing recombinant Escherichia coli. Biotechnol Prog, 1997, 13(6): 768-775
    63. Lara A R,Caspeta L,Gosset G, et al. Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Biotechnol Bioeng, 2008, 99(4): 893-901
    64. De Anda R,Lara A R,Hernandez V, et al. Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab Eng, 2006, 8(3): 281-290
    65. Wong M S,Wu S,Causey T B, et al. Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab Eng, 2008, 10(2): 97-108
    66. Oldiges M,Kunze M,Degenring D, et al. Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog, 2004, 20(6): 1623-1633
    67. Jossek R,Bongaerts J,Sprenger G A. Characterization of a new feedback-resistant
    3-deoxy-D-arabino-heptulosonate 7-phosphate synthase AroF of Escherichia coli. FEMS Microbiol Lett, 2001, 202(1): 145-148
    68. Polen T,Kramer M,Bongaerts J, et al. The global gene expression response of Escherichia coli to L-phenylalanine. J Biotechnol, 2005, 115(3): 221-237
    69. Pavlou A K,Reichert J M. Recombinant protein therapeutics--success rates, market trends and values to 2010. Nat Biotechnol, 2004, 22(12): 1513-1519
    70. Fernandez L A. Prokaryotic expression of antibodies and affibodies. Curr Opin Biotechnol, 2004, 15(4): 364-373
    71. Akesson M,Karlsson E N,Hagander P, et al. On-line detection of acetate formation in Escherichia coli cultures using dissolved oxygen responses to feed transients. Biotechnol Bioeng, 1999, 64(5): 590-598
    72. Dittrich C R,Vadali R V,Bennett G N, et al. Redistribution of metabolic fluxes in thecentral aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnol Prog, 2005, 21(2): 627-631
    73. Nakano K,Rischke M,Sato S, et al. Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl Microbiol Biotechnol, 1997, 48(5): 597-601
    74. Jensen E B,Carlsen S. Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, acetate, and salts. Biotechnol Bioeng, 1990, 36(1): 1-11
    75. March J C,Eiteman M A,Altman E. Expression of an anaplerotic enzyme, pyruvate carboxylase, improves recombinant protein production in Escherichia coli. Appl Environ Microbiol, 2002, 68(11): 5620-5624
    76. Eiteman M A,Altman E. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol, 2006, 24(11): 530-536
    77. Molgat G F,Donald L J,Duckworth H W. Chimeric allosteric citrate synthases: construction and properties of citrate synthases containing domains from two different enzymes. Arch Biochem Biophys, 1992, 298(1): 238-246
    78. Iuchi S,Lin E C. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci U S A, 1988, 85(6): 1888-1892
    79. Varma A,Palsson B O. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol, 1994, 60(10): 3724-3731
    80. Korz D J,Rinas U,Hellmuth K, et al. Simple fed-batch technique for high cell density cultivation of Escherichia coli. J Biotechnol, 1995, 39(1): 59-65
    81. Paalme T,Elken R,Kahru A, et al. The growth rate control in Escherichia coli at near to maximum growth rates: the A-stat approach. Antonie Van Leeuwenhoek, 1997, 71(3): 217-230
    82. Vidal L,Ferrer P,Alvaro G, et al. Influence of induction and operation mode on recombinant rhamnulose 1-phosphate aldolase production by Escherichia coli using the T5 promoter. J Biotechnol, 2005, 118(1): 75-87
    83. Babu K R,Swaminathan S,Marten S, et al. Production of interferon-alpha in high cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins. Appl Microbiol Biotechnol, 2000, 53(6): 655-660
    84. Johnston W A,Stewart M,Lee P, et al. Tracking the acetate threshold using DO-transientcontrol during medium and high cell density cultivation of recombinant Escherichia coli in complex media. Biotechnol Bioeng, 2003, 84(3): 314-323
    85. Shen Y L,Zhang Y,Sun A Y, et al. High-level production of soluble tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) in high-density cultivation of recombinant Escherichia coli using a combined feeding strategy. Biotechnol Lett, 2004, 26(12): 981-984
    86. Johnston W,Cord-Ruwisch R,Cooney M J. Industrial control of recombinant E. coli fed-batch culture: new perspectives on traditional controlled variables. Bioprocess Biosyst Eng, 2002, 25(2): 111-120
    87. Akesson M,Hagander P,Axelsson J P. Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnol Bioeng, 2001, 73(3): 223-230
    88. Neubauer P,Lin H Y,Mathiszik B. Metabolic load of recombinant protein production: inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli. Biotechnol Bioeng, 2003, 83(1): 53-64
    89. Fuchs C,Koster D,Wiebusch S, et al. Scale-up of dialysis fermentation for high cell density cultivation of Escherichia coli. J Biotechnol, 2002, 93(3): 243-251
    90. Chen X,Cen P,Chen J. Enhanced production of human epidermal growth factor by a recombinant Escherichia coli integrated with in situ exchange of acetic acid by macroporous ion-exchange resin. J Biosci Bioeng, 2005, 100(5): 579-581
    91. Andersen K B,Von Meyenburg K. Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol, 1980, 144(1): 114-123
    92. Han K,Hong J,Lim H C. Relieving effects of glycine and methionine from acetic acid inhibition in Escherichia coli fermentation. Biotechnol Bioeng, 1993, 41(3): 316-324
    93. Luo Q,Shen Y L,Wei D Z, et al. Optimization of culture on the overproduction of TRAIL in high-cell-density culture by recombinant Escherichia coli. Appl Microbiol Biotechnol, 2006, 71(2): 184-191
    94. Zawada J,Swartz J. Maintaining rapid growth in moderate-density Escherichia coli fermentations. Biotechnol Bioeng, 2005, 89(4): 407-415
    95. Van De Walle M,Shiloach J. Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation. Biotechnol Bioeng, 1998, 57(1): 71-78
    96. Phue J N,Shiloach J. Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J Biotechnol, 2004, 109(1-2): 21-30
    97. Chou C H,Bennett G N,San K Y. Effect of modified glucose uptake using genetic engineering techniques on high-level recombinant protein production in Escherichia coli dense cultures. Biotechnol Bioeng, 1994, 44(8): 952-960
    98. Picon A,Teixeira De Mattos M J,Postma P W. Reducing the glucose uptake rate in Escherichia coli affects growth rate but not protein production. Biotechnol Bioeng, 2005, 90(2): 191-200
    99. Ponce E. Effect of growth rate reduction and genetic modifications on acetate accumulation and biomass yields in Escherichia coli. J Biosci Bioeng, 1999, 87(6): 775-780
    100. Kim S Y,Nam T W,Shin D, et al. Purification of Mlc and analysis of its effects on the pts expression in Escherichia coli. J Biol Chem, 1999, 274(36): 25398-25402
    101. Kimata K,Inada T,Tagami H, et al. A global repressor (Mlc) is involved in glucose induction of the ptsG gene encoding major glucose transporter in Escherichia coli. Mol Microbiol, 1998, 29(6): 1509-1519
    102. Gaillet B,Gilbert R,Amziani R, et al. High-level recombinant protein production in CHO cells using an adenoviral vector and the cumate gene-switch. Biotechnol Prog, 2007, 23(1): 200-209
    103. Vemuri G N,Eiteman M A,Altman E. Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein. Biotechnol Bioeng, 2006, 94(3): 538-542
    104. De Mey M,De Maeseneire S,Soetaert W, et al. Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol, 2007, 34(11): 689-700
    105. Dittrich C R,Vadali R V,Bennett G N, et al. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E.coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnology Progress, 2005, 21(2): 627-631
    106. Clark D P. The fermentation pathways of Escherichia coli. FEMS Microbiol Rev, 1989, 5(3): 223-234
    107. Umbarger H E. Amino acid biosynthesis and its regulation. Annu Rev Biochem, 1978, 47: 532-606
    108. Mahishi L H,Rawal S K. Effect of amino acid supplementation on the synthesis of poly(3-hydroxybutyrate) by recombinant pha(Sa)(+) Escherichia coli. World Journal of Microbiology & Biotechnology, 2002, 18(8): 805-810
    109. Roe A J,O'byrne C,Mclaggan D, et al. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology,2002, 148(Pt 7): 2215-2222
    110. Bauer K A,Ben-Bassat A,Dawson M, et al. Improved expression of human interleukin-2 in high-cell-density fermentor cultures of Escherichia coli K-12 by a phosphotransacetylase mutant. Appl Environ Microbiol, 1990, 56(5): 1296-1302
    111. Hahm D H,Pan J,Rhee J S. Characterization and evaluation of a pta (phosphotransacetylase) negative mutant of Escherichia coli HB101 as production host of foreign lipase. Appl Microbiol Biotechnol, 1994, 42(1): 100-107
    112. Chang D E,Shin S,Rhee J S, et al. Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J Bacteriol, 1999, 181(21): 6656-6663
    113. Cho S,Shin D,Ji G E, et al. High-level recombinant protein production by overexpression of Mlc in Escherichia coli. J Biotechnol, 2005, 119(2): 197-203
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.