镁合金塑性变形的组织和织构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金在塑性变形时由于强烈的变形织构存在,变形后容易产生各向异性,影响进一步的加工。通过工艺控制与优化,调控材料的织构类型和数量,是提高或改善镁合金加工性能的重要途径,更是它能否得到更广泛应用的一个关键因素。所以成为材料科学工作者不断探索与研究的领域之一。
     本文以AZ31镁合金为研究对象,对其实施不同条件的塑性变形和热处理,通过金相观察、SEM和TEM观察以及X射线衍射等手段,对其在不同的塑性变形和热处理条件下,该合金的显微组织和晶体取向流变行为进行了系统研究。这些结果不仅对具有六方系结构材料的形变与再结晶的研究具有理论意义,而且也为工业生产提供技术原型。
     首先进行热挤压变形,在162℃挤压变形得到混晶组织,有Mg17Al12和MnAl相析出。随着挤压温度的升高,析出相减少。在258℃时没有MnAl相析出,Mg17Al12相也很少。但是,挤压变形时容易发生动态再结晶,随着形变量增大,平均晶粒尺寸减小,组织越均匀,当挤压比为λ=25时能得到平均晶粒尺寸为7.3μm的均匀组织,为改善其塑性变形能力提供有利的组织条件。320℃挤压变形时,组织较均匀,析出物更少。织构分析表明:AZ31镁合金变形初期形成典型的{0001}纤维织构,随着形变量增大,动态再结晶过程产生{0221}、{1231}再结晶织构,漫散程度也变大。变形和动态再结晶的共同作用使变形织构和再结晶织构均不能得到充分发展。当挤压比为λ=25时,变形织构{0110}和再结晶织构{0221}、{1231}面的强度相近且很弱,有利于降低改善各向异性,提高或改善加工和成型性能。电场退火和常规退火不同。电场退火推迟了AZ31镁合金再结晶进程,抑制晶粒长大,并使织构漫散。
     在热挤压变形的基础上,又进行了自由锻的组织和织构分析。组织不均匀,锻造中产生的{1217}、{1214}、{0115}等面织构,其强度随着形变量的变化而变化。强的面织构增加材料的各向异性,不利于改善镁合金的塑性变形能力和力学性能。在模锻时,模具的设计要考虑材料的各向异性的影响。
     取厚度为1.4mm的热轧板,分别进行同步单向冷轧、交叉冷轧和不同速比的异步冷轧研究。在同步单向冷轧时,{0001}面织构组分强度趋向均匀分布,且随形变量ε的增加,{0001}<1010>和{0001}<2110>织构组分的强度呈波动性增加,当形变量ε≥15%时,出现切变带后而断裂。在交叉冷轧时,{0001}面织构组分随形变量ε的增加向{0001}<2110>聚集,且{0001}<1010>开始稍有增强后呈现减弱,相反{0001}<2110>却连续增加,当形变量ε≥5.8%时,出现切变带后而断裂,对该合金,交叉冷轧是无益的。
     采用室温下异步冷轧时,速比和形变量对织构转变均有影响:随速比的增加,与快、慢辊侧相接触的表面层明显不同,但中间区域变化不明显。在快速辊侧,主要织构组份{0117}<514192>和{0001}<1210>随速比的增加而迅速增加;在慢速辊侧,主要织构组份{0117}<514192>和{0001}<1210>随速比的增加而交替变化。随形变量的增加,主要织构组份{0117}<514192>和{0001}<1210>的强度增加,只是快速辊侧显著的大于慢速辊侧。选择合适工艺,采用异步轧制,可以在室温条件下,以单道次高达20%的形变量轧成表面平整光滑的镁合金薄板。室温下异步冷轧镁合金板是可行的。
The strong anisotropy of deformation Magnesium alloy which comes from the plastic deformation textures affects the further materials process. The techniques controlling and optimization to improve the texture component and intensity are important approach of Magnesium alloy forming properties, and a key factor to expand the application in more fields. So the texture controlling of deformation Magnesium alloy has become one of the continuously research fields.
     In this paper, the as-received AZ31 Mg alloy was possessed and annealed in different conditions. Microstructures and textures in the present samples were performed by optical microscopy (OM), scan electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction, respectively, the microstructure and crystal orientation of material flow behavior are studied in detail. All the results have remarkable theoretical significance of the study in deformation and recrystallization hexagonal lattice materials, and also providing the technical antitype for industry production.
     By the hot extrusion deformation at 162℃, the mixed metallurgical structure with precipitation of Mg17Al12 and MnAl are obtained. The precipitation decreases with the increase of hot extrusion temperature. When hot extrusion at 258℃, there are no MnAl precipitation and fewer Mg17Al12 precipitation. The dynamic recrystallization is easy occurring during hot extrusion, the average grains size decrease and microstructure homogeneous with the increase of true strain. The average grains size is 7.3μm with homogeneous microstructure at the extrusion ratioλ=25, which provides advantaged condition for improving plastic forming ability of Magnesium alloy. The microstructure becomes more homogeneous and fewer precipitation at 320℃hot extrusion. The texture results show: at deformation early stage of AZ31 Magnesium alloy, the typical {0001} fiber texture can be obtained, the dynamic recrystallization texture components of {0221}、{1231} occur and the dispersion degree increase. Deformation and dynamic recrystallization texture can not be developed fully by the collective effect of deformation and recrystallization. The intensity of deformation texture component {0110} is similar to the recrystallization texture components {0221},{1231} with weak intensity, this situation is benefit to decrease the anisotropy, therefore to improve the forming properties. The annealing at electric field and normal is different. Rerystallization process of AZ31 Magnesium alloy is delayed, the grain growth blocked and grain orientation is dispersed at electric field annealing.
     Based on the hot extrusion forming, the microstructure and texture are studied on the flat die forging. The heterogeneous microstructure and {1217}、{1214}、{0115} texture components change with the increase of forming rate. Strong texture enhances the anisotropy of materials, which make against the plastic deformation ability.and mechanics properties of Magnesium alloy. The design of die should be considered the effect of anisotropy during forging.
     Directional rolling, cross rolling and cross shear rolling (CSR) with different mismatch speed ratios (MSR) are performed on 1.4mm thickness hot rolling sheet. The intensity of {0001} texture component presents homogeneous distribution and increase with the increase of strainεduring directional cold rolling. The intensities of {0001}<1010> and {0001}<2110> texture components increase by wave way, shear bands occur and then breakage when strainε≥15%.{0001} texture component gathers to {0001}<2110> texture component with the strain increase during cross rolling, and {0001}<1010> texture component has a light increase at the beginning then this texture component decrease, otherwise {0001}<2110> increase continuously, shear bands occur and then breakage when strainε≥5.8%. Cross rolling have no merit for this kind of alloy.
     Textures are affected by the speed ratio and deformation degree at room temperature cold cross shear rolling:the center zone has no remarkable change, the surface near to the fast mill roll side is obvious different to that near to the slow mill roll side. On the fast mill roll side, the main texture component of {0117}<514192> and {0001}<1210> increase rapidly with the increase of speed ratio; on the slow mill roll side, the main texture components {0117}<514192>和{0001}<1210> alternate increase with the increase of speed ratio. The main texture components {0117}<514192> and {0001}<1210> increase with the increase of strain, but fast mill roll side is more remarkable than that of slow roll side. With appropriate techniques by cold cross shear rolling, the smooth surface of Magnesium alloy sheet can be obtained by using of 20% deformation degree each gate under room temperature. It is feasible to produce the Magnesium alloy sheet by cold cross shear rolling.
引文
[1]Decker R F. The renaissance in magnesium[J]. Advanced Mater & Proc,1998(9):31.
    [2]Buck R S. Magnesium Products Design[M]. New York:Marcel Dekker INC,1987.1.
    [3]Asm International, Magnesium and Magnesium Alloy[M]. OH:Metal Park,1999.1.
    [4]Aida T, Hatta H, Ramesh C. Work ability and mechanical properties of lighter-than-water Mg-Li alloy[A]. Proc of the 3rd Inter Magnesium Confer Manchester[C]. Manchster, 1996.143.
    [5]张丁非,彭建,丁培道.镁及镁合金的资源、应用及其发展现状[J].材料导报2004;18:72.
    [6]Froes F H, Eliezer D, Aghion E. The science, technology and applications of magnesium [J]. JOM,1998(9):30.
    [7]Clow B B. Magnesium industry over view[J]. Advanced Mater & Proc,1996(10):33-36.
    [8]曾小勤,王渠东,吕宜振,等.镁合金应用进展[J].铸造,1998(11):39.
    [9]Mordike B L, Ebert T. Magnesium:Properties-applications-potential[J]. Materials Science and Engineering A 2001; 302:37.
    [10]Cahn R W,师昌绪,柯俊.非铁合金的结构与性能[M].北京:科学出版社,1999.101.
    [11]Kojima Y. Platform science and technology for advanced magnesium alloy[J]. Mater Sci Forum,2000,350-351:3.
    [12]Polmear I J. Magnesium alloys and applications[J]. Mater Sci & Tech,1994,10: 114.
    [13]Rozak G A, Purgert R E. Compressing forming of metals[J]. Magnesium,1998, 27(3):13.
    [14]吕宜振,瞿春泉,王渠东,等.压铸镁合金的应用现状及发展趋势[J].铸造,1998(12):50.
    [15]孙伯勤.镁合金压铸件在汽车行业中的巨大应用潜力[J].特种铸造及有色合金,1998(3):40.
    [16]Hu H. Squeeze casting of magnesium alloys and composites[J]. J Mater Sci,1998: 1579.
    [17]毛卫民,赵爱民.半固态金属成型应用的新进展与前景展望[J].特种铸造及有色合金,1998(6):33.
    [18]鹰城一夫.Review of magnesium alloy[J]. Magnesium,1998,28(4):17.
    [19]Flemings M C. Behavior of metal alloys in the semi-solid state[J]. Metall Trans B, 1991,22B(6):269.
    [20]谢水生,黄声宏.半固态金属加工技术及其应用[M].北京:冶金工业出版社,1999.
    [21]罗守靖,田文彬,谢水生,等.半固态加工技术及应用[J].中国有色金属学报,2000,10(6):765.
    [22]Decker R F, Carnahan R D. Magnesium semi-solidmetal forming[J]. Advanced Mater & Proc,1996(2):41.
    [23]Aghion E, Bronfin B. Magnesium alloys development towards. the 21st century[J]. Mater Sci Forum,2000,350-351:19.
    [24]Ku K. Magnesium Alloys and Their Applications[M], Oberursel, FRG:DGM Information sgesellschaft,1992,179.
    [25]Mordike B L. Magnesium technique[J]. Magnesium,1998,27(2):14.
    [26]陈振华等.镁合金.北京:化学工业出版社,2002.
    [27]张永忠.压铸镁合金及其在汽车工业中的应用[J].特种铸造及有色合金,1999(3):54.
    [28]袁广银.Sb合金化对AZ91铸造镁合金高温变形行为的影响[J].铸造世界报,2001(5-6):155.
    [29]张永忠,张奎,崔代金,等.AZ91D镁合金的压铸工艺及性能[J].铸造,2000(2):74.
    [30]Brown R. Magnesium automotive meeting[J]. Light Metal Age,1992,50(5-6):18.
    [31]Blum W, Weidinger P, Watzinger B et al. Time despenden deformation of the magnesium alloys AS21 and AZ91 around100℃[J]. Z Metallkd,1997,88(8):636.
    [32]张永忠,张奎,樊建中,等.压铸镁合金及其在汽车工业中的应用[J].特种铸造及有色合金,2002(SI):296.
    [33]Wei L Y,Dunlop G L, Westengen H. Development of Microstructure in cast Mg-Al-Rare Earth Alloys[J]. Materials Science and Technology,1996,12(9):741.
    [34]陈振华.变形镁合金:化学工业出版社,2005.
    [35]周海涛,马春江,曾小勤,丁文江.变形镁合金材料的研究进展[J].材料导报2003;17:16.
    [36]Wang J Y, Hong W P, Hsu P C, Hsu C C, Lee S. Microstructures and mechanical behavior of processed Mg-Li-Zn alloy[J]. Material Science Forum 2003; 419-422:165.
    [37]黎前虎.中国镁合金产业投资可行性研究报告.2005.
    [38]吕炎,徐福昌,薛克敏. 镁合金上机匣等温精锻工艺的研究[J]. 哈尔滨工业大学学报2003;32:127.
    [39]张士红,王忠堂,许沂,周文龙.镁合金的塑性加工技术[J].金属成形工艺2002;20:1.
    [40]王渠东,吕宜振,曾小勤,丁文江,卢晨.镁合金在电子器材壳体中的应用.材料导报2000;14:22.
    [41]滨葆夫.变形镁合金精密冲锻成型[J].素形材2001:6.
    [42]Yong M S, Clegg A J. Process optimisation for a squeeze cast magnesium alloy[J]. Journal of Materials Processing Technology 2004; 145:134.
    [43]陈振华,夏伟军,严红革,傅定发,陈吉华.镁合金材料的塑性变形理论及其技术[J].化工进展2004;23:127.
    [44]胡云,张治民.镁合金塑性成形工艺研究[J].科技情报开发与经济2005;15:137.
    [45]Zhang S H, Zhang K, Wang Z T, Yu C F, Xu Y, Wang Q. Research on thermal deep-drawing technology of magnesium alloy (AZ31B)sheets[J]. Journal of Materials Science and Technology 2004; 20:153.
    [46]Xu Y C, Zhang S H, Liu H M, Wang Z T, Zheng W T, Zhang Q L, Xu Y. Improved formability and deep drawing of cross-rolled magnesium alloy sheets at elevated temperatures[J]. Materials Science Forum 2005; 488-489:461.
    [47]Zhang S H, Zhang K,Xu Y C, Wang Z T,Xu Y, wang Z G. Deep-drawing of magnesium alloy sheete at warm temperatures[J]. Journal of Materials Processing Technology 2007; 185:147.
    [48]王智文,张治民,张星.镁合金的应用现状及其塑性成形技术[J].中北大学学报2005;26:70.
    [49]Zhang S H, Jin Q L, Wang Z T, Li D F, Zhou W L. Development of plasticity processing of magnesium alloys[J]. Materials Science Forum 2003; 426-432:545.
    [50]Zhang S H, Li Z G, Xu Y C, Ren L M, Wang Z T, Zhou L X. Press Forging of Magnesium Alloy AZ31 Sheets[J]. Materials Science Forum 2007; 539-543:1753.
    [51]Partridge P G. The crystallography and deformation modes of hexagonal close-packed metals[J]. Metallurgical Reviews 1967; 12:169.
    [52]Yang H S, Zelin M G, Valiev R Z, Mukherjee A K. High temperature deformation of a magnesium alloy with controlled grain structures[J]. Materials Science and Engineering:A 1992; 158:167.
    [53]Kainer K U. Magnesium-Alloys and Technology:Wiley,2003.
    [54]Stalmann A, Sebastian W, Friedrich H, Schumann S. Droder K. Properties and processing of magnesium wrought products for automotive applications[J]. Advanced Engineering Materials 2001; 3:969.
    [55]Ankush K S. Study of plastic deformation in AZ31B magnesium alloy by electron backscatter diffraction(EBSD) and in-situ optical microscopy[J]. Master thesis,2004.
    [56]Yoo M H. Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals[J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science 1981; 12:409.
    [57]Siebel G. Technology of Magnesium and its Alloys[M]. London Hughes,1940.
    [58]Burke E C, Hibbard W R. Plastic deformation of magnesium single crystals[J]. Transaction of the Metallurgical Society of AIME 1952; 194:295.
    [59]Wonsiewicz B C, Backofen W A. Plasticity of magnesium crystals[J]. Transaction of the Metallurgical Society of AIME 1967; 239:1422.
    [60]Reed-Hill R E, Robertson W D. Deformation of magnesium single crystals by nonbasal slip[J]. Transaction of the Metallurgical Sodiety of AIME 1957; 220:496.
    [61]Kleiner S, Uggowitzer P J. Mechanical anisotropy of extruded Mg-6% Al-1% Zn alloy[J]. Materials Science and Engineering A 2004; 379:258.
    [62]Kelley E W, Hosford W F. Plane-strain compression of magnesium and magnesium alloy crystals[J]. Transactions of the Metallurgical Society of AIME 1968; 242: 5.
    [63]Flynn P W, Mote J, Dorn J E. On the thermally activated mechanism of prismatic slip in magnesium single crystals[J]. Transaction of the Metallurgical Society of AIME 1961; 221:1148.
    [64]Obara T, Yoshinga H, Morozumi S.{11-22}<-1-123> slip system in magnesium[J]. Acta Metallurgica 1973; 21:845.
    [65]Agnew S R, Yoo M H, Tome C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Materialia 2001; 49:4277.
    [66]Taylor G I. Plastic strain in metals[J]. Journal of Institue Metals 1938; 32: 307.
    [67]Groves G W, Kelley A. Independent slip systems in crystals[J]. The Philosophical Magazine 1963; 8:877.
    [68]Agnew S R, Tome C N, Brown D W, Holden T M, Vogel S C. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling[J]. Scripta Materialia 2003; 48:1003.
    [69]Yoo M H, Morris J R, Ho K M, Agnew S R. Non-basal deformation modes of HCP metals and alloys:role of dislocation source and mobility[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Meterials Science 2002; 33: 813.
    [70]Yoo M H, Agnew S R, Morris J R, Ho K M. Non-basal slip systems in HCP metals and alloys:source mechanisms[J]. Materials Science and Engineering A 2001; 319:-321:87.
    [71]Agnew S R, Duygulu O. A mechanistic understanding of the formability of magnesium: Examining the role of temperature on the deformation mechanisms[J]. Material Science Forum 2003; 419-422:177.
    [72]Agnew S R, Duygulu O. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. International Journal of Plasticity 2005; 21:1161.
    [73]李信委.AZ31B镁合金室温至500℃之拉伸性质与其变形组织探讨[J].硕士:国立成功大学,2003.
    [74]Agnew S R. Plastic anisotropy of magnesium alloy AZ31B sheet[J]. Seattle, WA, United States:Minerals, Metals and Materials Society,2002. p.169.
    [75]Styczynski A, Hartig C, Bohlen J, Letzig D. Cold rolling textures in AZ31 wrought magnesium alloy[J]. Scripta Mmaterialia 2004; 50:943.
    [76]Koike J, Kobayashi T, Mukai T, Watanabe H., Suzuki M., Maruyama K., Higashi K. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[J]. Acta Materialia 2003; 51:2055.
    [77]Staroselsky A, Anand L. A constitutive model for hcp materials deforming by slip and twinning:Application to magnesium alloy AZ31B[J]. International Journal of Plasticity 2003; 19:1843.
    [78]Yi S B, Davies C H J, Brokmeier H G, Bolmaro R E, Kainer K U, Homeyer J. Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading[J]. Acta Materialia 2006; 54:549.
    [79]Barnett M R, Keshavarz Z, Max. A semianalytical Sachs model for the flow stress of a magnesium alloy[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science 2006; 37:2283.
    [80]Koike J, Ohyama R. Geometrical criterion for the activation of prismatic slip in AZ61 Mg alloy sheets deformed at room temperature[J]. Acta Materialia 2005; 53:1963.
    [81]Reid C N. Deformation geometry for materials scientists:Elsevier,1973.
    [82]Christian J W, Mahajan S. Deformation twinning[J]. Progress in Materials Science 1995; 39:1.
    [83]Li M. Constitutive modeling of slip, twinning, and untwining in AZ31B magnesium. Ph. D:The Ohio state University,2005.
    [84]陈振华,杨春花,黄长清,夏伟军,严红革.镁合金塑性变形中孪生的研究[J].材料导报2006;20:107.
    [85]Godet S, Jiang L, Luo A A, Jonas J J. Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes[J]. Scripta Materialia 2006; 55:1055.
    [86]Barnett M R, Davies CH J, Ma X. An analytical constitutive law for twinning dominated flow in magnesium[J]. Scripta Materialia 2005; 52:627.
    [87]Reed-Hill R E, Robertson W D. Additional modes of deformation twinning in magnesium[J]. Acta Metallurgica 1957; 5:717.
    [88]Wang Y N, Huang JC. The role of twinning and untwining in yielding behavior in hot-extruded Mg-Al-Zn alloy[J]. Acta Materialia 2007;55:897.
    [89]Keshavarz Z, Barnett M R. In-situ investigation of twinning behaviour in Mg-3A1-1Zn[J]. JOM 2004; 56:87.
    [90]Brown D W, Agnew S R, Bourke M A M, Holden T M, Vogel S C, Tome C N. Internal strain and texture evolution during deformation twinning in magnesium[J]. Materials Science and Engineering:A 2005; 399:1.
    [91]Kalidindi S R. Incorporation of deformation twinning in crtstal plasticity models[J]. Journal of the Mechanics and Physics of Solids 1998; 46:267.
    [92]Nave M D, Barnett M R. Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scripta Materialia 2004; 51:881.
    [93]Reed-Hill R E. A study of the {10-11} and {10-13} twining modes in magnesium[J]. Transaction of the Metallurgical Society of AIME 1960; 218:554.
    [94]Koike J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2005; 36:1689.
    [95]Davies C, Barnett M. Expanding the extrusion limits of wrought magnesium alloys[J]. JOM 2004; 56:22.
    [96]Barnett M R, Keshavarz Z, Nave M D. Microstructurral features of rolled Mg-3A1-1Zn[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science 2005; 36:1697.
    [97]Bohen J, Chmel F, Dobro P, Kaiser F, Letzig D, Lukac P, Kainer K U. Orientation effects on acoustic emission during tensile deformation of hot rolled magnesium alloy AZ31[J]. Journal of Alloys Compounds 2004; 378:207.
    [98]吕宜振.Mg-Al-Zn合金组织、性能、变形和断裂行为研究.vol.博士.上海:上海交通大学,2001.
    [99]Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Materialia 2001; 49: 1199.
    [100]Chang Q F, Li D Y, Peng Y H, Zeng X Q. Experimental and numerical study of warm deep drawing of AZ31magnesium alloy sheet[J]. International Journal of Machine Tools and Manufacture 2007; 47:436.
    [101]Yoshihara S, Macdonald B J, Nishimura H, Yamamoto H, Manabe K. Optimisation of magnesium alloy stamping with local heating and cooling using the finite element method. Journal of Materials Processing Technology 2004; 153-154:319.
    [102]Shan D B, Xu W C, Lu Y. Study on precision forging technology for a complex-shaped light alloy forging[J]. Journal of Materials Processing Technology 2004; 151:289.
    [103]Zhang X H, Ruan X Y, Osakada K. Forgeability of AZ31B magnesium alloy in warm forging[J]. Transactions of Nonferrous Metals Society of China (English Edition) 2003;13:632.
    [104]张先宏,崔振山,阮雪榆.镁合金塑性成形技术——AZ31B成形性能及流变应力[J].2003; 37:1874.
    [105]Yoshihara S, Nishimura H, Yamamoto H, Manabe K I. Formability enhancement in magnesium alloy stamping using a local heating and cooling technique:Circular cup deep drawing process[J]. Journal of Materials Processing Technology 2003; 142: 609.
    [106]Paisarn R, Tagawa S, Koga N. Effects of tool radius on formability during deep drawing of AZ31 magnesium alloy sheets[J]. Journal of Japan Institute of:ight Metals 2003; 53:152.
    [107]Novotny S, Geiger M. Process design for hydroforming of lightweight metal sheets at elevated temperatures[J]. Journal of Materials Processing Technology 2003; 138: 594.
    [108]Hwang J K, Sohn K Y, Kim K H, Kang D M. CAE application to press forging of magnesium alloys[J]. Material Science Forum 2003; 419-422:371.
    [109]Doege E, Droder K. Sheet metal forming of magnesium wrought alloys-Formability and process technology[J]. Journal of Materials Processing Technology 2001; 115: 14.
    [110]Onoa N, Nowakb R, Miuraa S. Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium[J]. Materials Letters 2003:39.
    [111]Yamashita A, Horita Z, Langdon T G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J]. Materials Science and Engineering:A 2001; 300:142.
    [112]Mukai T, Yamanoi M, Watanabe H, Higashi K. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure[J]. Scripta Materialia 2001; 45: 89.
    [113]张青来,卢晨,朱燕萍,丁文江,贺继泓.轧制方式对AZ31镁合金薄板组织和性能的影响[J]. 中国有色金属学报2004;14:391.
    [114]彭彩虹,彭伟平,李培杰. 退火工艺对AZ31镁合金组织与性能的影响[J].特种铸造及有色合金2006;26:661.
    [115]杨平,孟利,毛卫民,蔡庆武. 利用道次间退火改善镁合金轧制成形性的研究[J]. 材料热处理学报2005;26.
    [116]Itoh G, Iseno Y, Motohashi Y. Refinement of recrystallized grains in wrought magnesium alloy AZ31 through cold rolling and subsequent annealing[J]. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals 2002; 66:16.
    [117]Agnew S R, Yoo M H, Tome C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Materialia 2001; 49:4277.
    [118]Takuda H, Matsusaka H, Kikuchi S, Kubota K. Tensile properties of a few Mg-Li-Zn alloy thin sheets[J]. Journal of Materials Science 2002; 37:51.
    [119]Koike J,Kobayashi T,Mukai T, Watanabe H, Suzuki M,Maruyama K,Higashi K. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[J]. Acta Materialia 2003;51:2055.
    [120]Keshavarz Z, Barnett M R. EBSD analysis of deformation modes in Mg-3A1-1Zn [J]. Scripta Materialia 2006;55:915.
    [121]胡轶嵩,杨平,赵祖德,马端骋. 利用取向成像研究镁合金的孪生过程[J]. 中国有色金属学报2004;14:104.
    [122]蒋佳,刘伟,Godfrey A,刘庆.AZ31镁合金孪生行为的EBSD研究[J]. 中国体视学与图像分析2005;10:237.
    [123]Jiang J, Godfrey A, Liu Q. Influence of grain orientation on twinning during warm compression of wrought Mg-3A1-1Zn[J]. Materials Science and Technology 2005; 21:1417.
    [124]Yang P, Cui F E, Bian J H, Gottstein G. Relationships between deformation mechanisms and initial textures in polycrystalline magnesium alloys AZ31[J]. Transactions of Nonferrous Metals Society of China (English Edition) 2003; 13:280.
    [125]罗承萍,肖晓玲,刘江文,等.AZ91合金中C2Mg17Al12析出相的多重位向关系及{112}C伪孪晶关系[J].金属学报,2002,38(7):709.
    [126]肖晓玲,聂建峰,罗承萍.AZ91合金中B2Mg17Al12析出相的形态及其晶体学特征[J].金属学报,2001,37(1):1.
    [127]张世军,黎文献,余琨.铈对镁合金AZ31晶粒大小及铸态力学性能的影响[J].铸造,2002,51(12):767.
    [128]汪凌云,潘复生,丁培道等.AZ31镁合金成形性能改善研究[A].2002年材料科学与工程新进展(上)[C].北京:冶金工业出版社,2003:636.
    [129]张世军,黎文献,余琨.添加含碳熔剂细化镁合金晶粒的方法[J].特种铸造及有 色合金,2002(4):18.
    [130]赵鹏,耿浩然,田宪法,等.熔体热速处理对铸造Mg合金组织和力学性能的影响[J].中国有色金属学报2002,12(S1):241.
    [131]梁志德,徐家桢,王福.织构材料的三维取向分析术-ODF分析[M].沈阳:东北工学院出版社,1986.
    [132]Bunge H J. Zur Darstellung Allgemeiner Texturen [J]. Z. Metallkde,1965,65:872.
    [133]Roe R J. Description of Crystallite Orientation in Polycrystalline Materials Ⅲ General Solution of Pole Figure Inversion [J]. J Appl Phys,1965,36:2024.
    [134]Ruer D, Baro R. A New Method for the Determination of the Texture of Materials of Cubic Structure from Incomplete Reflection Pole Figures [J]. Adv X-Ray Anal,1977, 20:187.
    [135]梁志德,徐家桢,王福.立方系、六方系织构材料的取向分布函数(ODF)图的诠释图[J].东北工学院学报,1981,2:16.
    [136]左良,徐家桢, 梁志德. 定量确定纤维织构轴密度分布的矢量法[J].材料科学进展,1989,3(3):205.
    [137]毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002,1-4.
    [131]毛卫民,张新民.晶体材料织构定量分析[M].北京:冶金工业出版社,1993.
    [139]毛卫民,赵新兵.金属的在结晶与晶粒长大[M],北京:冶金工业出版社,1993.
    [140]马礼敦. 近代X射线多晶体衍射:实验技术与数据分析[M]. 北京:化学工业出版社,2002,129.
    [141]WangY D, Wang X L, Stoica A D, Almer JD, Lienert U, Haeffner D R. Separating the recrystallization and deformation texture components by high-energy X-rays [J]. Appl. Cryst.2002,35:684.
    [142]Wcislak L, Klein H, Bunge H J, Garbe U, Tschentscher T, Scheider J R. Texture analysis with high-energy synchrotron radiation [J]. Appl. Cryst.2002,35:82.
    [143]马礼敦,杨福家. 同步辐射应用概论[M]. 上海:复旦大学出版社,2001,50.
    [144]Mishin O V, Lauridsen E M, Lassen N C K et al. Application of high-energy synchrotron radiation for texture studies [J]. Appl. Cryst.2000,33:364.
    [145]黄孝瑛. 透射电子显微学[M]. 上海:上海科技出版社,1978,125.
    [146]Luecke K, Pospiech J, Virnick K H. On the problem of the reproduction of the true orientation distribution from pole figures[J]. Acta Metallurgica,1981,29(1):167.
    [147]Baudin T, Paillard P, Cruz F, Penelle R. Microtexture determination in Fe-Si alloy sheets by etch pitting. [J], Journal of Applied Crystallography,1994,27(6): 924.
    [148]Wagner F, Wenk H R, Esling C, Bunger H J. Importance of odd coefficients in texture calculations for trigonal-triclinic symmetries [J], Physical Status Solidi (A) Applied Research,1981,67(1):269.
    [149]Kocks U F, Westlake D G. The importance of Twinning for the ductility of CPH Polycrystals[J], Trans Metall Soc AIME,1967,239:1107.
    [150]Obara T, Yoshinga H, Morozumi S.{1122}<1123>Slip system in Magnesium[J], Acta Metall,1973,21:845.
    [151]Agnew S R, Yoo M H. Using deformation-induced texture as an alloy/process optimization Tool[J], The Minerals & Materials Society, Magnesium Technology 2000:331.
    [152]Philippe M J. Texture Formation in Hexagonal Materials, Mater Sci Forum[C],1994, 157-162,1337-1350.
    [153]Mukai T, Yamanoim M, Watanabe H. Ductility Enhancement In AZ31 Magnesium Alloy By Controlling Its Grain Structure[J], Sci Mater,2001,45:89.
    [154]Roberts C S. Magnesium and its alloys[M], New York:John Wiley,1960,68.
    [155]Perez-Prado M T, Ruano O A. Texture evolution during annealing of magnesium AZ31 alloy[J], Scripta Materialia 2002,46:149.
    [156]Junichi Kaneko, Makot Sugamata, etc. Effect of texture on the mechanical properties and formability of magnesium wrought materials[J], Journal of Japan Institute of Light metals,2000,64(2):141.
    [157]Shuhei A, Hiroshi O, etc. Deep-draw ability of cup on AZ31 magnesium alloy plate [J]. Journal of Japan Institute of Light metals,2000,50(9):456.
    [158]Doege E, Droker K. Sheet metal forming of magnesium wrought alloy formability and process technology [J]. Journal of material process technology,2001,115:14.
    [159]Mc Queen H J, Evangelista E, Bowles J, Crawford G. Hot Deformation and Dynamic Recrystallization of Al-5Mg-0.8Mn Alloy[J], Met. Sci.,1984,18(8):395.
    [160]Ion S E, Hunphreys F J, White S H. Dynamic Recrystallization and Development of Microstructure during the High Temperature Deformation of Magnesium[J], Acta Mater,1982,30:1909.
    [161]王秀芳,李仁顺,刘北兴和杨德庄. 强电场对预拉伸变形1420合金时效行为的影响[J],材料科学与工艺,1999,7(4):39.
    [162]刘伟,崔建忠. 电场均匀化对2091A1-Li合金的显微组织及力学性能的影响[J],航空学报,1997,18(3):324.
    [163]刘伟,崔建忠. 电场均匀化对2091A1-Li合金时效过程中第二相析出的影响[J],稀有金属材料与工程,1997,26(1):31.
    [164]Liu W, Liang K M, Zheng Y K and Cui J Z. Study of the diffusion of Al-Li alloys subjected to an electric field[J], Journal of Materials Science,1998,33:1043.
    [165]Liu W, Liang K M, Zheng Y K and Cui J Z. Effect of an electric field during solution treatment of 2091 Al-Li alloy[J], Journal of Materials Science Letters,1996,15: 1327.
    [166]孙丽媛,刘伟.电场固溶对2091A1-Li合金显微结构的影响[J],金属热处理学报,1997,18(1):64.
    [167]Liu W, Cui J Z. A study on the ageing treatment of 2091 Al-Li alloy with an electric field[J], Journal of Materials Science Letter,1997,16:1410.
    [168]Conrad H., Hao An lu. Iinfluence of an electric change during quench aging of a low carbon steel [J], Appl Phys Lett,1991,59(15):1847.
    [169]王轶农.电场作用下金属再结晶织构的研究[D],沈阳:东北大学,1999.
    [170]胡卓超,赵骧,左良,王福,Esling C.电场退火对3104铝合金板显微组织与再结晶织构的影响[J],中国有色金属学报,2004,14(8):1366.
    [171]Del Valle J A, Perez-Prado M T, Ruano O A. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy[J]. Materials Science and Engineering A 2003; 355: 68.
    [172]Perez-Prado M T, Del Valle J A, Contreras J M, Ruano O A. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy[J]. Scripta Materialia 2004; 50: 661.
    [173]Mukai T, Watanabe H, Ishikawa K, Higashi K. Guide for enhancement of room temperature ductility in Mg alloys at high strain rates[J]. Material Science Forum 2003; 419-422:171.
    [174]杨平,胡轶嵩,崔凤娥.镁合金AZ31高温形变机制的织构分析[J].材料研究学报2004;18:52.
    [175]Kaiser F, Bohlen J, Letzig D, Kainer K U., Styczynski A, Hartig C. Influence of rolling conditions on the microstructure and mechanical properties of magnesium sheet AZ31[J]. Advanced Engineering Materials 2003; 5:891.
    [176]Barnett M R, Nave M D,Bettles C J. Deformation microstructures and textures of some cold rolled Mg alloys[J]. Materials Science and Engineering A2004; 386:205.
    [177]Barnett M R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31[J]. Journal of Light Metals 2001; 1:167.
    [178]Galiyev A, Kaibyshev R. Superplasticity in a magnesium alloy subjected to isothermal rolling[J]. Scripta Materialia 2004; 51:89.
    [179]Walde T, Riedel H. Modeling texture evolution during hot rolling of magnesium alloy AZ31[J]. Materials Science and Engineering:A2007;443:227.
    [180]Watanabe H, Mukai T, Ishikawa K. Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy[J]. Journal of Materials Processing Technology 2007; 182:644.
    [181]Phillipe M J. Texture formation in hexagonal materials[J]. Materials Science Forum 1994; 157-162:1337.
    [182]Han J H, Jee K K, Oh K H. Orientation rotation behavior during in situ tensile deformation of polycrystalline 1050 aluminum alloy[J]. International Journal of Mechanical Sciences 2003; 45:1613.
    [183]Iwanaga K, Tashiro H, Okamoto H, Shimizu K. Improvement of formability from room temperature to warm temperature in AZ-31 magnesium alloy[J]. Journal of Materials Processing Technology 2004; 155-156:1313.
    [184]Watanabe H, Mukai T, Ishikawa K. Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties[J]. Journal of Materials Science 2004; 39:1477.
    [185]Imai T, Dong S, Saito N, Shigemastu I. Microstructure and mechanical properties of Mg-Al-Zn alloys processed by different-speeds-rolling[J]. Magnesium Technology 2004. United States:Minerals, Metals and Materials Society,2004.
    [186]Chino Y, Mabuchi M, Kishihara R, Hosokawa., Yamada Y, Wen C E, Shimojima K, Iwasaki H. Mechanical properties and press formability at room temperature of AZ31Mg alloy processed by single riller drive rolling[J]. Materials Transactions 2002; 43:2554.
    [187]朱泉,潘大伟.板材异步轧制理论与实际[M].沈阳:东北工学院出版社,1984.
    [188]刘刚,齐克敏,王福,王刚,梁志德。异步轧制速比对3%硅钢织构转变的影响[J].金属学报,1998;34:400.
    [189]吕爱强,蒋奇武,王福,左良,梁志德.异步轧制对高纯铝箔冷轧织构的影响[J].金属学报,2002;38:974.
    [190]刘刚,齐克敏,贺会军,张黎光,王福,梁志德.异步轧制取向硅钢的织构形成与转变机理[J].钢铁研究学报,1999,11:30.
    [191]黄涛,曲家惠,王福,左良.高纯铝箔在异步轧制和再结晶过程中取向的演变[J].金属学报,2005;41:953.
    [192]Watanabe H, Mukal T, Ishikawa K. Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties[J]. Journal of Materials science,2004; 39:1477.
    [193]刘兴,陈振华,夏伟军,程永奇,杨忠旺.异步轧制对AZ31镁合金板材组织和性能的影响[J].材料热处理,2006,35(20):22.
    [194]Bunge H J. Texture analysis in materials science[M]. London:Butter worth Publication,1982,50.
    [195]Liang Z D, XuJZ, Wang F. Determination of ODF of Polycrystalline Materials from Incomplete Pole Figures [C]. Proc. ICOTOM 6,1981,1259.
    [196]杨平,任学平,赵祖德.AZ31镁合金热成形及退火过程的组织与织构[J].材料热处理学报,2003,24(4):12.
    [197]张凯峰,尹德良,王国峰,韩文波.热轧AZ31镁合金超塑变形中德微观组织演变及断裂行为[J].航空材料学报,2005;25(1):505.
    [198]张猛,胡亚民.金属塑性变形[M].重庆:重庆大学出版社,1983.
    [199]余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用[J].中国有色金属学报,2002,(2):277.
    [200]潘洪平,丁志勇,谢水生.镁合金加工技术的研究[J].轻合金加工技术,2002,30(7):7.
    [201]曲家惠,李四军,张正贵,王福,左良.挤出和退火工艺对AZ31镁合金组织和织构的影响[J].中国有色金属学报,Vol.17(3),2007:434.
    [202]Couret A and Caillard D. Prismatic Slip in Beryllium. Ⅰ. The Controlling Mechanism at the Peak Temperature[J]. Phi. Mag. A,1989,59:783.
    [203]lynn P W, More J and Dorn J E. On the Thermally Activated Mechanism of Prismatic Slip in Magnesium Single Crystals[J], Trana. Metall. soc. AIME,1961,221: 1148.
    [204]Ion S E, Hunphreys F J, White S H. Dynamic Recrystallization and Development of Microstructure during the High Temperature Deformation of Magnesium[J], Acta Mater,1982,30:1909.
    [205]郭强,严红革,陈振华,张辉. AZ31镁合金高温热压缩变形特性[J].中国有色金属学报,2005,15(6):900-906.
    [206]Ballufi R W, Komen Y T. Schober, Surf. Sci,1972,31:69.
    [207]Sangl S, Tangri K. Metal. Trans,1989, A20:479.
    [208]郝士明.镁的合金化与合金相图[J],材料与冶金学报,2002,1(3):166.
    [209]陈浦泉.组织超塑性[M],哈尔滨:哈尔滨工业大学出版社,1988,110.
    [210]Watanabe H, Mukai T, Kohzu M, etal. Low temperature superplasticity in ZK60 magnesium alloy[J], Materials Transactions, JIM,1999,40(8):809.
    [211]Mabuchi M, Iwasaki H, Yanase K, etal. Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE[J], Scripta Mater,1997,36(6):681.
    [212]Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation[J], Materials Science and Engineering,2003, A339:124.
    [213]Grosvenor A, Davies C H J. Microstructural evolution during the hot deformation of magnesium alloy AZ31[J]. Mater Sci Forum,2003,426-432:4567.
    [214]王晓林,于洋,梁书锦,王尔德.热挤压工艺对AZ31镁合金晶粒大小及性能的影响[J]. 材料科学与工艺,2005,13(6):567.
    [215]吕炎,徐福昌,薛克敏等. 镁合金上机匣等温精锻工艺的研究[J],哈尔滨工业大学学报,2000,32(4):127.
    [216]曲家惠,李四军,王福,左良.AZ31镁合金挤出棒锻造变形时的组织与织构的变化[J].材料与冶金学报,2006,5(3):221.
    [217]Watanabe H, Tsutsui H, et al. Grain size control of commercial wrought Mg-AL-Zn alloys utilizing dynamic recrystallization[J]. Mater Trans,2001,42:1200.
    [218]Junichi Kaneko, Makot Sugamata, etc. Effect of texture on the mechanical properties and formability of magnesium wrought materials[J], Journal of Japan Institute of Light metals,2000,64(2):141.
    [219]Styczynski A, Hartig Ch, Bohlen J, etal. Cold Rolling Textures in AZ31 Wrought Magnesium Alloy[J]. Scripta Materials,2004,50:943.
    [220]曲家惠,吴静婷,李四军,王福,左良.电场作用下AZ31镁合金的组织与织构的演变[J].轻合金加工技术,2006,34(2):36.
    [221]Hao An lu, Conrad H. Iinfluence of an electric change during quench aging of a low carbon steel [J], Appl Phys Lett,1991,59(15):1847.
    [222]Baluffi R W. Grain Boundary Structure and Kinetics[M], Metal Park, Ohio, ASM, 1979,125.
    [223]余琨,黎文献.细晶粒AZ31(ce)镁合金板材的组织与性能[J].金属热处理,2005,30(4):35.
    [224]程永奇,陈振华,夏伟军,傅定发. 等径角轧制AZ31镁合金板材的组织与性能[J]. 中国有色金属学报,2005,15(9):1369.
    [225]张凯锋,尹德良,韩文波.热轧AZ31镁合金温变形中的微观组织演变[J]. 航空学报,2005,26(4):505.
    [226]Barnett M R, Recrystallization during and following hot working of magnesium alloy AZ31[J]. Mater Sci Forum,2003,419-422:503.
    [227]Yang X, Miura H, Sakai T, Dynamic evolution of newgrains in magnesium alloy AZ31 during hot deformation[J]. Mater Trans,2003,1:197.
    [228]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater,1996.44: 127.
    [229]Agnew S R, Duygulu O. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. International Journal of Plasticity,2005,21:1161.
    [230]Valle J A, Prado M T, Ruano O ATexture evolution during large strain hot rolling of the AZ61 Mg alloy[J]. Materials Science and Engineering,2003, A335:68.
    [231]Gow-Yi Tzoua, Ming-Nan Huang. Study on the minimum thickness for the asymmetrical PV cold rolling of sheet[J]. Journal of Materials Processing Technology, 2000,105:344.
    [232]Su-Hyeon Kim, Bong-Sun You, Chang Dong Yim. Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets[J]. Marerials Letters, 2005,59:3876.
    [233]曲家惠,李四军,张正贵,王福,左良.AZ31镁合金室温异步轧制的织构演变[J].材料研究学报,2007,21(4):354.
    [234]朱知寿,顾家琳,陈南平.钛的织构控制方法与力学性能各向异性的研究[J].机械工程材料,1994,18(6):810.
    [235]Kelley E W, Hosford W F Jr. The deformation characteristics of textured magnesium[J]. Trans AIME,1968,242:654.
    [236]Chino Y, Mabuchi M. Influences of grain size on mechanica propertie of extruded AZ91 alloy after different extrusion processes[J]. Advanced Engineering Materials, 2001,3:981.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.