入侵害虫西花蓟马对温度胁迫的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西花蓟马是危害园艺作物的世界性害虫。该害虫于2003年首次在北京发现,近年来已迅速蔓延至我国大部分地区,危害日趋严重。西花蓟马在入侵过程中,在夏季常常遭遇夏季的高温和冬季的低温胁迫,但有关该害虫的温度耐受性及其调控机制还未见报道。本文采用生态学和分子生物学的方法,研究了温度胁迫对西花蓟马的存活能力、繁殖的影响及温度胁迫后西花蓟马热蛋白的表达变化等内容。其主要结果如下:
     研究了不同低温和不同暴露时间对西花蓟马存活率和繁殖的影响。结果表明,西花蓟马的存活率在暴露温度的降低和暴露时间的延长而逐渐降低。在1-6h范围内,杀死50%西花蓟马若虫所需的温度(Ltem50)分别为-13.6、-12.5、-11.2、-10.4℃,这些值要高于响应时间下杀死雌成虫的Ltem50,但低于杀死雄成虫的Ltem50。因此,西花蓟马不同发育时期的耐寒性强弱顺序可表示为:雌成虫>若虫>雄成虫。成虫和若虫暴露于-13℃和-13.5℃下2h后,其存活率分别为25%和27%。根据识别温度定义,这两个温度分别被定义为若虫和成虫的识别温度。将成、若虫在0或5℃驯化2h后,再置于各自识别温度下,其存活率都得到了明显提高。其中,在0℃下驯化2h后,若虫和雌雄成虫的存活率得到了最大幅度的地提高,分别达46%、54%、49%。西花蓟马若虫经不同低温处理后,其发育历期、羽化后的成虫寿命、产卵时间与对照相比无显著差异,但产卵量显著降低;成虫经过低温处理后,其寿命,产卵量和产卵时间明显降低。
     调查了不同高温(33、35、37、39、41℃),暴露时间(0.5、1、2、4h)以及发育时期对西花蓟马存活及繁殖的影响。结果表明,西花蓟马成虫(雌虫和雄虫)和若虫的存活率在高温下随暴露时间的延长而显著降低,杀死成虫和若虫50%个体的温度在在0.5到4h范围内随时间的延长而逐渐降低。因此,西花蓟马不同发育时期的耐热性强弱顺序可表示为:雌成虫>若虫>雄成虫。奇怪的是,成虫在31℃,若虫在33℃下预热处理2h后,显著提高了其在致死高温下的存活率。经过2h的高温暴露后,西花蓟马成虫的寿命和产卵量随温度的升高显著降低。高温下的交配实验表明所有交配处理(U♂+S♀S♂+U♀,S♂+S♀)的寿命和产卵量显著低于对照组(U♂+U♀)。U♂+S♀交配组合下的寿命与S♂+U♀组合无显著差异,但显著高于S♂+S♀组合;U♂+S♀组合下的产卵量显著高于S♂+U♀组合,但与S♂+S♀组合的产卵量相当。
     采用RT-PCR和RACE的方法从西花蓟马中克隆了5个热激蛋白基因,并分别命名为Fohsp90, Fohsc701, Fohsc702, Fohsp60和Fohop。Fohsp90, Fohsc701, Fohsc702, Fohsp60和Fohop的cDNA全长分别为2508,2195,3065,2489,2276bp,其开放阅读框分别为2169,1920,1983,1728和1659bp。5个开放阅读框分别编码722,639,660,575和552个氨基酸,推测的分子量大小分别为83.26,69.81,72.73,60.87和62.25KDa。序列分析发现5个热激蛋白与其他物种具有很高的相似性,并含有各自家族的保守基序。基因组和cDNA序列的比较分析发现,5个hsps分别含有3,4,7,5和10个内含子。此外,5个hsps内含子的数量和插入位置与其他物种相比存在高度差异。最后,5个Hsps的系统发育分析表明本研究所获得的5个Hsps为各自家族的同源物。
     采用Real-time PCR检测了5个西花蓟马热激蛋白基因(hsp90, hsc701,hsc702, hsp60, hop)在不同发育时期和不同温度胁迫下的表达模式。不同发育阶段的表达模式表明,5个hsps在若虫,蛹和成虫时期具有表达,其中hsp90, hsc701和hsp60随着发育的进行呈显著的上调表达,而hsc702和hop的表达水平在三个时期无显著差异。在成虫和若虫期,5个hsps对低温不十分敏感,但都能被高温诱导上调表达,而且经高温诱导后若虫期5个hsps的表达水平显著高于成虫。西花蓟马成虫和若虫经高温驯化后,其表达水平显著高于直接暴露致死温度下的表达水平。
     研究了温度的升高和亚致死剂量阿维菌素对西花蓟马的生物学参数、抗氧化酶和热激蛋白表达的影响。结果表明:温度和阿维菌素浓度对西花蓟马的生物学参数具有显著影响。存活率、寿命和产卵量随温度和阿维菌素浓度的升高而明显降低。温度和阿维菌素显著降低了SOD的活力,温度的升高对CAT的活力没有显著影响,但阿维菌素与之的相互作用显著提高了其活力。然而,温度和阿维菌素浓度及其交互作用显著提高了POD和GST的活力。hsps的表达模式表明,温度的升高仅能诱导hsp90、hsc702、hop的上调表达。然而,温度和阿维菌素的联合作用导致5个hsps的显著上调表达,其中hsp90、hsp701、hsc702和hop在33℃最大值,hsp60在21℃达最大值。
     综上所述,西花蓟马较强的温度耐受性和快速驯化能力可能是西花蓟马能迅速入侵扩散的重要因素,其内在机制(特别是在高温胁迫下)可能与分子伴侣热激蛋白的上调表达有关。
The western flower thrips, Frankliniella occidentalis is a worldwide insect pest of horticultural crops. F.occidentalis has dispersed to many areas in China and the damage is becoming more and more serious since it was first reported in Beijing in2003. During spread of F.occidentalis, they often encounter heat stress in summer and cold stress in winter. Unfortunately, thermal tolerance and corresponding regulating mechanism in this pest have never been studied. In present study, tolerance and reproduction to cold and heat stress in F.occidentalis and its corresponding physiological mechanism were studied by ecology and molecular method. The main results are as follows:
     The present study examined the effects of different low temperatures, exposure duration on survival rate and fitness of F.occidentalis. Results indicated that survival rate of both adults and larvae significantly declined with decrease of temperature and extension of exposure duration. During the duration from1to6h, the temperature needed to kill50%individuals (Ltemso) for larvae was higher than that for adult females, but lower than that for adult males. Therefore, the order in cold hardness of different life stages was presented as:adult female> larvae> adult males. When larvae and adults of F. occidentalis were transferred from the normal rearing conditions at26±1℃, to cold temperatures at-13℃(for larvae) or-13.5℃(for adults) for2h, survivorship rate was only25%for larvae and27%for the adults. These two temperatures could be defined as the discriminating temperatures for the two insect stages, respectively. Survival rates of the thrips that were pretreated at0℃or5℃for2h before exposure to their discriminating temperatures increased significantly, and maximum increase in survivorships to the cold temperatures was achieved by pretreating larvae or adults at0℃for2h, which resulted in a survivorship rate of46%,54%,49%for larvae, adult females and males, respectively. When cold exposures occurred at the larval stage, there were no differences in development time, longevity and reproduction duration of enclosed adults relative to the non-treated control. However the number of eggs laid of the adults derived from cold-treated larvae was significantly less than that of the non-treated thrips. When adult thrips were exposed to the cold temperatures, the longevity, fecundity and reproduction duration all decreased significantly compared to the non-cold treated control.
     This study investigated the effects of high temperatures (33,35,37,39,41℃), exposure durations (0.5,1,2,4h) and life stages on survival and reproduction of the western flower thrips. Results suggested that the survival rate of adults (female and male) and larvae declined significantly with the increase in the exposure time at all high temperature examined. Therefore, the order in heat resistance of different life stages was presented as:adult female> larvae> adult males The lethal temperature needed to kill the50%of the adults and larvae decreased rapidly with the increase in the exposure time from0.5to4h. Surprisingly, preheat treatment at31(adults) or33℃for2h (larvae) significantly improved the survival rate of both stages after exposure to lethal high temperature. After2h exposure, longevity and reproduction of adults lowed remarkably with the increasing temperature. Mating experiment after exposure to high temperature demonstrated longevity and reproduction in all treatments (U(?)+S♀, S(?)+U♀, S(?)+S♀) were lower than those in control (U(?)+U♀). Longevity in U(?)+S♀treatment was not different from that in S(?)+U♀treatment, but was higher than that in S(?)+S♀treatment; while the reproduction in U(?)+S♀was significantly lower than that in S(?)+U♀, and relative to S(?)+S♀, suggesting that high temperature have adverse influence on adult female and male, but the effects on female was more serious than male.
     Five heat shock protein genes were cloned from F. occidentalis by RT-PCR and RACE, and were named Fohsp90, Fohsc701, Fohsc702, Fohsp60and Fohop, respectively. The complete cDNA of Fohsp90, Fohsc70, Fohsp60and Fohop are2508,2195,3065,2489,2276bp, respectively, and their respective opening reading frames are2169,1920,1983,1728,1659bp, which encode722,639,660,575and552amino acids with predicted molecular weights of83.26,69.81,72.73,60.87and62.25KDa, respectively. Sequence analysis suggested that the five Hsps shared high similarity with those of other species and contained conserved motifs found in their respective family of other species. Analysis of genomic DNA demonstrated that the five hsps contained3,4,7,5,10introns, respectively. In addition, the number and positions of introns of five hsps were highly different from those of other species. Finally, phylogenetic analysis suggested that the five Hsps were homologues of their respective family.
     Expression patterns of five heat shock protein genes (hsp90, hsc701, hsc702, hsp60, hop) in response to development and different temperatures were examined by Real-time PCR. Results showed that five hsps were expressed at larvae, pupae and adults stage. Among them, hsp90, hsc70and hsp60were significantly up-regulated with the process of development, while the expression level of hsc702and hop were not different among three stages. The five hsps were not very sensitive to cold, but were significantly induced up-regulation by heat, and the expression level of five hsps in larvae were higher than that in adult. In addition, pre-heat treatment lead to significant up-regulation of four genes compared to direct exposure to lethal high temperature (control).
     The combined effects of elevated temperature and sub-lethal dose of avermectins on biological parameters, antioxidant enzymes and heat shock protein mRNA level were studied. Results showed that temperature and avermectins concentrations significantly influenced the biological parameters. The survival, longevity and reproduction decreased with increased temperature and pesticide concentration. Elevated temperature and avermectins significantly decreased activity of SOD. Elevated temperature had no effect on activity of CAT, but its activitywas obviously improved by the combination of temperature and avermectins. Activities of POD and GST significantly increased after exposure to combination of temperature and avermectins. Expression patterns of Hsps mRNA showed that only three heat shock proteins (hsp90, hsc702and hop) was induced up-regulation by the elevated temperature, and shifted folds is very small. However, five hsps level was significantly up-regulated after exposure to conditions of the combination of elevated temperature and avermectins, and the highest level of hsp90, hsc701, hsc702and hop was reached at33℃, but the highest level of hsp60was observed at21℃.
     Taken together, relative strong tolerance to extreme temperature and rapid hardening response of the western flower thrips may be important factors that determine its rapid dispersal in china, and the underlying mechanism, especially under heat stress conditions, may be related to up-regulation of the molecular chaperon Hsps.
引文
Arbogast, R.T.,1981. Mortality and reproduction of Ephestia cautella and Plodia interpunctella exposed as pupae to high temperature. Environ. Entomol.10,708-711.
    Bansal, G.S., Norton, P.M., Latchman, D.S.,1991. The 90-kDa heat shock protein protects mammalian cells from thermal stress, but not from viral infection. Exp. Cell. Res.195 (2),303-306.
    Berrigan, D. and Hoffmann, A. A.,1998. Correlations between measures of heat resistance and acclimation in two species of Drosophila and their hybrids. Biol. J. Linn. Soc. Lond.64,449-462.
    Bu"rgi, L.P., Mills, N.J.,2010. Cold tolerance of the overwintering larval instars of light brown apple moth Epiphyas postvittana. J. Insect Physiol.56,1645-1650
    Bubliy, O., Loeschke, V.,2005. Variation of life-history and morphometrical traits in Drosophila buzzatii and Drosophila simulans collected along an altitudinal gradient from a Canary island. Biol. J. Linn. Soc.84, 119-136.
    Buchner, J., Bose, S., Mayr, C., Jakob, U.,1998. Purification and characterization of prokaryotic and eukaryotic Hsp90. Method. Enzymol.290,409-418.
    Buitenhuis, R., Shipp, J. L.2008. Influence of plant species and plant growth stage on Frankliniella Occidentalis pupation behaviour in greenhouse ornamentals. J. Appl. Entomol.132,86-88.
    Burton, B.M., Baker, T.A.,2005. Remodeling protein complexes:insights from the AAA+unfoldase ClpX and Mu transposase. Protein. Sci.14 (8),1945-1954
    Cappello, F., de Macario, E.C., Marasa, L., Zummo, G., Macario, A.J.,2008. Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer. Biol. Ther.7 (6),801-809.
    Carver, L.A., Jackiw, V., Bradfield, C.A.,1994. The 90-kDa heat shock protein is essential for Ah receptor signaling in a yeast expression system. J. Biol. Chem.269 (48),30109-30112.
    Chakir, M., Chafik, A., Moreteau, B., Gibert, P., David, J.R.,2005. Male sterility thresholds in Drosophila:D. simulans appears more cold-adapted than its sibling D.melanogaster. Genetica.114,195-205.
    Chen, B., Kang, L.,2002. Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis. Cryoletters.23(3),173-182
    Chen, B., Kang, L.,2004. Variation in cold hardiness of Liriomyza huidobrensis (Diptera:Agromyzidae) along latitudinal gradients. Environ. Entomol.33(2),155-164.
    Chen, W.L., Leopold, R.A., Boetel, M.A.,2008. Cold Storage of Adult Gonatocerus ashmeadi (Hymenoptera: Mymaridae) and Effects on Maternal and Progeny Fitness. J. Econ. Entomol.101(6),1760-1770
    Chidawanyika, F., Terblanche, J.S.,2011. Rapid thermal response and thermal tolerance in adult codling moth Cydiapomonella (Lepidoptera:Tortricidae). J. Insect. Physiol.57(1),108-117.
    Chown, S.L., S(?)rensen, J.G., Terblanche, J.S.,2011. Water loss in insects:An environmental change perspective. J. Insect. Physiol.57,1070-1084.
    Clark, M.S., Worland, M. R.,2008. How insects survive the cold:molecular mechanisms-a review. J. Comp. Physiol.,B.178,917-933.
    Collins, S.D., Allenspach, A.L., Lee, R.E.,1997. Ultrastructural effects of lethal freezing on brain, muscle, and Malpighian tubules from freeze-tolerant larvae of the gall fly, Eurosta solidaginis. J. Insect. Physiol.43, 39-45.
    Coulson, S.C., Bale, J.S.1992. Effect of rapid cold hardening on reproduction and survival of offspring in the housefly Musca domestica. J. Insect Physiol.38,421-424.
    Cowles, R. B., Bogert, C. M.,1944. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist.83,261-296.
    Cui, X., Wan, F., Xie, M., Liu, T.,2008. Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B.10pp. J. Insect. Sci.8,24 available online:insect science.org/8.24.
    Dahlgaard, J., Loeschcke, V., Michalak, P., Justesen, J.,1998. Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Funct. Ecol.12,786-793.
    David, J.R., Araripe, L.O., Chakir, M., Legout, H., Lemos, B., Petavy, G., Rohmer, C., Joly, D., Moreteau, B., 2005. Male sterility at extreme temperatures:a significant but neglected phenomenon for understanding Drosophila climatic adaptations. J. Evol. Biol.18,838-846.
    Davis, D.J., Lee, R.E.,2001. Intracellular freezing, viability, and composition of fat body cells from freeze in tolerant larvae of Sarcophaga crassipalpis. Arch. Insect. Biochem. Physiol.48,199-205.
    De Jong, W.W., Leunissen, J.A., Voorter, C.E.,1993. Evolution of the alpha-crystallin/small heat shock protein family. Mol. Biol. Evol.10 (1),103-126.
    Denlinger, D.L.,1991. Cold shock and heat shock, in:R.E. Lee, D.L. Denlionger (Eds.), Insects at low temperature, Chapman and Hall, New York. pp.131-147.
    Denlinger, D.L., Yocum, G.D.,1998. Physiology of heat sensitivity. In:Hallman, G.J., Denlinger, D.L., editors. Temperature Sensitivity in Insects and Application in Integrated Pest Management. Boulder, CO: Westview Press. p.7-53.
    Doucet, D., Tyshenko, M.G., Davies, P.L., Walker, V.K.,2002. A family of expressed antifreeze protein genes from the moth, Choristoneura fumiferana. Eur. J. Biochem.269,38-46.
    Duman, J.G.,1982. Insect antifreezes and ice nucleating agents. Cryobiology.19(6),613-627.
    Ekengren, S. and Hultmark, D.,2001. A family of Turandot related genes in humoral stress response of Drosophila. Biochem. Biophys. Res. Commun.284,998-1003.
    Feder, M.E., Hofmann, G.E.,1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol.61,243-282.
    Felton, G.W., Summers, C.B.,1995. Antioxidant systems in insects. Arch. Insect. Biochem. Physiol. 29:187-197.
    Foerster, L.A., Doetzer, A.K., Castro, L.C.F.,2004. Emergence, longevity and fecundity of Trissolcus basalis and Telenomus podisi after cold storage in the pupal stage. Pesq. agropec. bras., Brasilia.39(9),841-845.
    Folk, D.G., Hoekstra, L.A., Gilchrist, G.W.,2007. Critical thermal maxima in knock down selected Drosophila:are thermal endpoints correlated? J. Exp. Biol.210,2649-2656.
    Fujiwara, Y., Denlinger, D.L.,2007. p38 MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the fesh fly Sarcophaga crassipalpis. J. Exp. Biol.210,3295-3300
    Garcia, S.L., Pacheco, R.M., Rodrigues, V.L., Mello, M. L.S.,2002. Effect of sequential heat and cold shocks on nuclear phenotypes of the blood-sucking insect, Panstrongylus megistus (Burmeister) (Hemiptera, Reduviidae). Mem. Inst. Oswaldo. Cruz.97,1111-1116.
    Gibert, P., Moreteau, B., Petavy, G., Karan, D., David, J.R.,2001. Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution.55,1063-1068.
    Goto, S.G.,2001. A novel gene that is up-regulated during recovery from cold shock in Drosophila melanogaster. Gene.270:259-264.
    Gupta, R.S.,1995. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol. Biol. Evol.12,1063-1073.
    Hackett, R.W., Lis, J.T.,1983. Localization of the hsp83 transcript within a 3292 nucleotides sequence from the 63B heat shock locus of D. melanogaster. Nucleic. Acids. Res.11 (20),7011-030.
    Hendrix, D.L., Salvucci, M.E.,1998. Polyol metabolism in homopterans at high temperatures:accumulation of mannitol in aphids (Aphididae:Homoptera) and sorbitol in whiteflies (Aleyrodidae:Homoptera). Comp. Biochem. Phys., A.120,487-494.
    Hochachka, P.W., Sommero, G.N.,1984. Temperature adaptation. In:Hochachka, P.W., Sommero, G.N. (Eds.), biochemical adaptation. Princeton University Press, Princeton, NJ, pp.355-449.
    Hoffmann, A. A.,2010. Physiological climatic limits in Drosophila:patterns and implications. J. Exp. Biol. 213,870-880.
    Hoffmann, A.A., Serensen, J.G., Loeschcke, V.,2003. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Thermal. Biol.28,175-216.
    Holden, C. P., Storey, K. B.,1994.6-phosphogluconte dehydrogenase from a freeze tolerant insect:control of the hexose monophosphate shunt and NADPH production during cryoprotectant synthesis. Insect. Biochem. Mol. Biol.24 (2),167-173.
    Huang, L.H., Wang, C.Z., Kang, L.,2009. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa. J. Insect. Physiol.55,279-285.
    Ishida, H., Mural, T., Sonoda, S., Yoshida, H., Izumi,Y., Tsumuki, H.,2003. Effects of temperature and photoperiod on development and oviposition of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Appl. Entomol. Zool.38,65-68.
    Jaenicke, R.,1991. Protein stability and molecular adaptation to extreme conditions. Eur. J. Biochem.202, 715-728.
    Jing, X.H., Kang, L.,2004. Seasonal Changes in the Cold Tolerance of Eggs of the Migratory Locust, Locusta migratoria L. (Orthoptera:Acrididae). Environ. Entomol.33(2),113-118
    J(?)rgensen, K.T., S(?)rensen, J.G.,2006. Bundgaard J. Heat tolerance and the effect of mild heat stress on reproductive characters in Drosophila buzzatii males. J. Thermal. Biol.31,280-286.
    Ju, R.T., Wang, F., Xiao, Y.Y., Li, B.,2010. Supercooling capacity and cold hardiness of the adults of the Sycamore Lace Bug, Corythucha ciliate (Hemiptera:Tingidae). CryoLetters.31 (6),445-453.
    Kalosaka, K., Soumaka, E., Politis, N., Mintzas, A.C.,2009. Thermotolerance and HSP70 expression in the Mediterranean fruit fly. J. Insect. Physiol.55,568-573.
    Katayama, H.1997. Effect of temperature on development and oviposition of western flower thrips Frankliniella occidentalis (Pergande). Japan. J. Appl. Entomol. Zool.41,225-231.
    Krebs, R.A., Loeschcke, V.,1994. Effect of Exposure to short-term heat stress on fitness components in Drosophila melanogaster. J. Evol. Biol.7,39-49.
    Krebs, R.A., Thompson, K.A.,2005. A genetic analysis of variation for the ability to fly after exposure to thermal stress in Drosphila mojavensis. J. Thermal. Biol.30,335-342.
    Lachapelle, G., Radicioni, S.M., Stankiewicz, A.R., Mosser, D.D.,2007. Acute acidification or amiloride treatment suppresses the ability of Hsp70 to inhibit heat-induced apoptosis. Apoptosis 12 (8),1479-1488.
    Lee, U., Rioflorido, I., Hong, S.W., Larkindale, J., Waters, E.R., Vierling, E.,2007. The Arabidopsis ClpB/Hsp100 family of proteins:chaperones for stress and chloroplast development. Plant. J.49 (1), 115-127.
    Leung, S.M., Hightower, L.E.,1997. A 16-kDa protein functions as a new regulatory protein for Hsc70 molecular chaperone and is identified as a member of the Nm23/nucleoside diphosphate kinase family. J. Biol. Chem.272 (5),2607-2614.
    Lighton, J. R. B. and Turner, R. J.,2004. Thermolimit respirometry:an objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus. J. Exp. Biol. 207,1903-1913.
    Lin, Y.J., Seroude, L., Benzer, S.,1998. Extended life-span and stress resistance in the Drosophila mutant Methuselah. Science.282,934-946.
    Lockwood, B.L., Sanders, J.G., Somero, G.N.,2010. Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus):molecular correlates of invasive success.213 (20),3548-58.
    Loeschcke, V, S(?)rensen, J.G.,2005. Acclimation, heat shock and hardening-a response from evolutionary biology. J. Therm. Biol.30,255-257.
    Lund, P.A., Large, A.T., Kapatai, G.,2003. The chaperonins:perspectives from the Archaea. Biochem. Soci. Trans.31 (3),681-685.
    Lutterschmidt, W. I., Hutchison, V. H.,1997. The critical thermal maximum:history and critique. Can. J. Zool. 75,1561-1574.
    Ma, C.S., Hau, B., Poehling, B.H.,2004. Effects of pattern and timing of high temperature exposure on reproduction of the rose grain aphid, Metopolophium dirhodum Entomol. Exp. Appl.110,65-71.
    Mahroof, R., Subeamanyam, B., Throne, J.E., Menon, A.,2003. Time-mortality relationships for Tribolium castaneum (Coleoptera:Tenebrionidae) life stages exposed to elevated temperatures. J. Econ. Entomol. 96(4),1345-1351.
    Mahroof, R., Subramanyam, J.E., Flinn, P.,2005. Reproductive performance of Tribolium castaneum (Coleoptera:Tenebrionidae) exposed to the minimum heat temperature as pupae and adults. J. Econ. Entomol.98,626-633.
    Manjunatha, H.B., Rajesh, R.K., Aparna, H.S.,2010. Silkworm thermal biology:a review of heat shock response, heat shock proteins and heat acclimation in the domesticated silkworm, Bombyx mori. J. Insect. Sci.10:204. doi:10.1673/031.010.20401.
    Marais, E., Chown, S.L.,2008. Beneficial acclimation and the Bogert effect. Ecol. Lett.11,1027-1036.
    Marshall, J.S., DeRocher, A.E., Keegstra, K., Vierling, E.,1990. Identification of heat shock protein hsp70 homologues in chloroplasts. Pro. Natl. Acad. Sci., USA.87 (1),374-378.
    Matsumiya, T., Imaizumi, T., Yoshida, H., Satoh, K., Topham, M.K., Stafforini, D.M.,2009. The levels of retinoic acid-inducible gene I are regulated by heat shock protein 90-alpha. J. Immunol.182 (5), 2717-2725.
    Mcdonald, J. R., Bale, J. S., Walters, K. F. A.1998. Effect of temperature on development of the Western flower thrips, Frankliniella occidentalis (Thysanoptera:Thripidae). European J. Entomol.95,301-306.
    Meyer, S.G.E.,1978. Effects of heat, cold, anaerobiosis and inhibitors on metabolite concentrations in larvae of Callitroga macellaria. Insect. Biochem.8,471-477.
    Michaud, M.R., Denlinger, D.L.,2007. Shifts in the carbohydrate, polyol and amino acid pools during rapid cold-hardening and diapause associated cold-hardening in fesh fies (Sarcophaga crassipalpis):a metabolomic comparison. J. Comp. Physiol., B.177,753-763.
    Mironidis, G.K., Savopoulou-Soultani, M.,2010. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera:Noctuidae) adults. J. Therm. Biol.35,59-69.
    Mitchell, K., Hoffmann, A. A.,2010. Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Funct. Ecol.24,694-700.
    Morcillo, G., Gorab, E., Tanguay, R.M., Diez, J.L.,1997. Specific intranucleolar distribution of Hsp70 during heat shock in polytene cells. Exp. Cell. Res.236,361-370.
    Moro, F., Muga, A.,2006. Thermal adaptation of the yeast mitochondrial Hsp70 system is regulated by the reversible unfolding of its nucleotide exchange factor. J. Mol. Biol.358 (5),1367-1377.
    Neargarder, G., Dahlhoff, E.P., Rank, N.E.,2003. Variation in thermal tolerance is linked to phosphoglucose isomerase genotype in a montane leaf beetle. Funct. Ecol.17,213-221.
    Nedve, O., Lavy, D., Verhoef, H.A.,1998. Modelling the time-temperature relationship in cold injury and effect of high-temperature interruptions onsurvival in a chill-sensitive collembolan. Funct. Ecol.12, 816-824.
    Neven, L.G.,2000.Physiological responses of insects to heat. Post. Biol. Tech.21,103-111
    Neven, L.G., Rehfield, L.M.,1995. Comparison of prestorage heat treatmetns on fifth-instar codling moth (Lepidoptera:Tortricidae) mortality. J. Econ. Entomol.88,1371-1375.
    Oh, S.Y., Kim, Y.T.,2003. Temperature-sensitive paralytic behavior of shibire is altered in cAMP defective mutations of Drosophila. Korean. J. Genetic.25(2),147-153.
    Overgaard, J., Hoffmann., A.A. Kristensen, T.N.,2011. Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J. Therm. Biol.36, 409-416.
    Pappu, H.R., Jones, R.A.C., Jain, R.K.,2009. Global status of tospovirus epidemics in diverse cropping systems:Successes achieved and challenges ahead. Virus. Res.141,219-236
    Pearl, L.H., Prodromou, C.,2006. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem.75,271-294.
    Pitts, K.M., Wall, R.,2006. Cold shock and cold tolerance in larvae and pupae of the blow fly, Lucilia sericata. Physiol. Entomol.31,57-62.
    Rako, L., Blacket, M.J., McKechnie, S.W., Stephen, W., Hovmann, A.A., Ary, A.,2007. Candidate genes and thermal phenotypes:identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline. Mol Biol.16,2948-2957.
    Reading, D.S., Hallberg, R.L., Myers, A.M.,1989. Characterisation of the yeast hsp60 gene coding for a mitochondrial assembly factor. Nature.337 (6208),655-659.
    Reitz, S. R.2008. Comparative bionomics of Frankliniella occidentalis and Frankliniella tritici. Florida Entomol.91,474-476.
    Rinehart, J.P., Yocum, G.D., Denlinger, D.L.,2000. Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis. Physiol. Entomol.25,330-336.
    Rohmer, C., David, J.R., Moreteau, B., Joly, D.,2004. Heat induced male sterility in Drosophila melanogaster: adaptive genetic variations among geographic populations and role of the Y chromosome. J. Exp. Biol. 207,2735-2743.
    Salvucci, M.E., Stecher, D.S., Henneberry, T.J.,2000. Exposure to high temperatures proteins in whiteflies, an insect that accumulates sorbitol in response to heat stress. J.Therm. Biol.25,363-371.
    Sambucetti, P., Loeschcke, V., Norry, F.M.,2006. Developmental time and size related traits in Drosophila buzzattii along an altitudinal gradient from Argentina. Hereditas.143,77-83.
    Saxena, B.P., Sharma, P.R., Thappa, R.K., Tikku, K.,1992. Temperature induced sterilization for control of three stored grain beetles. J. Stored. Prod. Res.28,67-70.
    Scott, M., Berrigan, D., Hoffmann, A.A.,1997. Costs and benefits of acclimation to elevated temperature in Trichogramma carverae. Entomol. Exp. Appl.85,211-219.
    Sies, H.,1997. Oxidative stress:oxidants and antioxidants. Exp. Physiol.82,291-297.
    Sinclair, B.J., Stevens, M.I.,2006. Terrestrial microarthropods of Victoria Land and Queen Maud Mountains, Antarctica:implications of climate change. Soil. Biol. Biochem.38,3158-3170.
    Singh, A.K., Lakhotia, S.C.,1984. Lack of effects of microtubule poisons on the 93D and 93D like heat shock puffs in Drosophila. Indian J. Exp. Biol.20,569-576.
    Sisodia, S., Singh, Bashisth. N.,2006. Effect of exposure to short-term heat stress on survival and fecundity in Drosophila ananassae. Can. J. Zool.84,895-899.
    Somero, G.N.,1995. Proteins and temperature. Annu. Rev. Physiol.57,43-68.
    Southgate, R., Ayme, A., Voellmy, R.,1983. Nucleotide sequence analysis of the Drosophila small heat shock gene cluster at locus 67B. J. Mol. Biol.165 (1),35-57.
    Stotter, R.L., Terblanche, J.S.,2009. Low-temperature tolerance of false codling moth Thaumatotibia leucotreta (Meyrick) (Lepidoptera:Tortricidae) in South Africa. J. Therm. Biol.34,320-325
    Taylor, R.P., Benjamin, I.J.,2005. Small heat shock proteins:a new classification scheme in mammals. J. Mol. Cell. Cardiol.38 (3),433-444.
    Te, J., Jia, L., Rogers, J., Miller, A., Hartson, S.D.,2007. Novel subunits of the mammalian Hsp90 signal transduction chaperone. J. Proteome. Res.6 (5),1963-1973.
    Terblanche, J.S., Hoffmann, A. A., Mitchell, K.A., Rako, L., Roux, P. C., Chown S. L.,2011. Ecologically relevant measures of tolerance to potentially lethal temperatures. J. Exp. Biol.214,3713-3725
    Tyshenko, M.G., Doucet, D., Walker, V.K.,2005. Analysis of antifreeze proteins within spruce budworm sister species. Insect. Mol. Biol.14,319-326.
    Van der Vies, S.M., Gatenby, A.A., Vitanen, P.V., Lorimer, G.H.,1993. Molecular chaperones and their role in protein assembly. In:Cleland, JL (Ed.), Protein folding in vivo and in vitro. American Chemical Society, Washington DC, pp.72-83.
    Wang, X.H., Kang, L.,2005. Differences in egg thermotolerance between tropical and temperate populations of the migratory locust Locusta migratoria (Orthoptera:Acridiidae). J. Insect Physiol.51,1277-1285.
    Waters, E.R., Rioflorido, I.,2007. Evolutionary analysis of the small heat shock proteins in five complete algal genomes. J. Mol. Evol.65 (2),162-174.
    Watt, W.B.,1992. Eggs, enzymes, and evolution-Natural genetic variants change insect fecundity. Proc. Natl. Acad. Sci.,USA.89,10608-10612.
    Webster, C.G., Reitz, S.R., Perry, K.L., Adkins, S.,2011. A natural M RNA reassortant arising from two species of plant-and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virology.413,216-225.
    Yi, S.X., Lee, R.E.,2003. Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera:Tephritidae) using fluorescent vital dyes. J. Insect. Physiol.49, 999-1004.
    Yoshinori, S., Yukio, I.,2007. Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle, Psacothea hilaris. J. Insect. Physiol.53,1055-1062.
    Zerebecki, R.A., Sorte, C.J. B.,2011. Temperature tolerance and stress proteins as mechanisms of invasive species success. PLos ONE.6(4), e14806.
    Zhang, Q., Denlinger, D.L.,2010. Molecular characterization of heat shock protein 90,70 and 70 cognate cDNAs and their expression patterns during thermal stress and pupal diapause in the corn earworm. J. Insect. Physiol.56,138-150.
    Zhao, Y.X., Kang, L.,2000. Cold tolerance of the leafminer Liriomyza sativae (Diptera:Agromyzidae). J. Appl. Entmol.124,185-189.
    P.C.乌莎廷斯卡娅著(张淑德,巫国瑞译),1960.昆虫耐寒性原理.北京:科学出版社.20-22.
    陈非洲,刘树生,2004.低温对小菜蛾实验种群的影响.应用生态学报.15(1),99-102.
    杜尧,马春森,赵清华,马罡,杨和平,2007.高温对昆虫影响.的生理生化作用机理研究进展.生态学报.27(4),1565-1572.
    郭慧芳,陈长琨,李国清,陈文武,王荫长,2002.高温胁迫影响雄性棉铃虫生殖力的生理机制.棉花学报.14,85-90.
    韩瑞东,孙绪艮,许永玉,等.,2005.赤松毛虫越冬幼虫生化物质变化与抗寒性的关系.生态学报.25(6),1352-1356.
    黄国洋,王荫长,尤子平,1990.黄地老虎幼虫抗寒性机理初探.浙江农业学报.(2),140-146.
    景晓红,康乐,2002.昆虫耐寒性研究.昆虫知识.22(12),2202-2207.
    景晓红,康乐,2004.昆虫耐寒性的测定与评价方法.昆虫知识.40(1),7-10.
    鞠瑞亭,杜予州,2002.昆虫过冷却点的测定及抗寒机制研究概述.武夷科学.18,252-257.
    李景柱,郅军锐,袁成明,王和东,2007.温度对西花蓟马生长发育的影响.贵州农业科学.35(5),13-15.
    刘佳,张林,卢焰梅,张宏瑞,2010.湖南外来入侵害虫西花蓟马初步调查.安徽农业科学.38(25),13800-13804.
    刘丽辉,张帆,吴珍泉,2008.温度对西花蓟马(Frankliniella occidentalis)生长发育和存活率的影响.生态学报.28(10),4891-4895.
    刘丽辉,张帆,吴珍泉.温度对西花蓟马(Franklin iellaoccidetalis)生长发育和存活率的影响.生态学报.28(10),4891-4895.
    陆亮、杜予州、李鸿波、王建军.西花蓟马传播病毒病的研究进展.植物保护.2009,35(2),7-11.
    罗敏,郭建英,周忠实,万方浩,高必达,2011.短时低温胁迫对广聚萤叶甲发育和生殖的影响.昆虫学报.54(1),76-82.
    吕国栋,2006.两种荒漠拟步甲抗冻蛋白基因表达及其产物性质与功能的研究.新疆大学硕士学位论文.
    吕龙石,丛明亮,孟艳玲,2010.一种昆虫过冷却点的简易测定装置.昆虫知识.47(6),1257-1260
    秦玉川,杨建才,2000.一种便携式测定昆虫过冷却点的方法.昆虫知识.47(4),236-238.
    王荫长,陈长琨,卢中建,李国清,尤子平,1996.高温对小地老虎和粘虫精子发生和形成的影响.昆虫学报.,39,253-259.
    吴青君,徐宝云,张治军,张友军,朱国仁,2007.京、浙、滇地区植物蓟马种类分布及其调查.中国植保导刊.27(1),32-34.
    徐康,夏宜平,徐碧玉,林田,杨霞,2005.以电导法配合Logistic方程确定茶梅‘小玫瑰’的抗寒性.园艺学.32(1),148-150.
    许益镌,陆永跃,黄俊,曾玲,梁广文,2009.红火蚁自然种群耐寒性的研究.昆虫学报.52(9),974-983
    严丹侃,汤云霞,贺子义,孙雷,王鸣华,薛晓峰,范加勤,2010.南京地区西花蓟马发生调查及其分子检测.南京农业大学学报.33(4),59-63.
    杨华,崔元玗,张升,孙晓军,2010.来入侵害虫-西花蓟马在新疆的发生为害.疆农业科学.47(11),52-53.
    杨长庚,2006.新疆荒漠昆虫光滑鳖甲(Anatolica polita Borealis) cDNA文库的构建及相关功能基因筛选.新疆大学硕士论文.
    袁成明,郅军锐,李景柱,张勇,2008.贵州省蔬菜蓟马种类调查研究.中国植保导刊.28(7),8-10.
    张友军,吴青君,徐宝云,朱国仁,2003.危险性外来入侵生物—西花蓟马在北京发生危害.植物保护.29(4),58-59.
    张治军,张友军,徐宝云,朱国仁,吴青君,2012.温度对西花蓟马生长发育、繁殖和种群增长的影响.55(10),1168-1177.
    赵干,2005.几种新疆荒漠昆虫抗冻蛋白基因克隆及其抗冻活性分析.新疆大学硕士学位论文.
    赵鑫,傅建炜,万方浩,郭建英,王进军,2009.短时高温暴露对莲草直胸跳甲生殖特性的
    郑长英,刘云虹,张乃芹,赵希丽,2007.山东省发现外来入侵有害生物—西花蓟马.青岛农业大学学报:自然科学版.24(3),172-174.
    钟景辉,2009.松突圆蚧及其天敌花角蚜小蜂对极端温度的耐受性.福建农林大学博士学位论文.
    Bale, J.S.,1991. Insects at low temperature:a predictable relationship? Functional Ecology,1991,5(2), 291-298.
    Broufas, G.D., Koveos, D.S.,2001. Rapid cold hardening in the predatory mite Euseius (Amblyseius) finlandicus (Acari:Phytoseiidae). J. Insect Physiol.47(7),699-708.
    Chen, C.P., Denlinger, D.L., Lee, R.E.,1987. Cold shock injury and rapid cold hardening in the flesh fly Sarcophafa crassipalpis. Physiol. Zool.60(3),297-300.
    Coulson, S.C., Bale, J.S.,1991. Effect of rapid cold hardening on reproduction and survival of offspring in the housefly Musca domestica. J. Insect. Physiol.38(6),421-424.
    Coulson, S.J., Bale, J.S.,1990. Characterisation and limitations of the rapid cold-hardening response in the housefly Musca domestica (Diptera:Muscidae). J. Insect. Physiol.36(3),207-211.
    Ishida, H., Murai, T., Sonoda, S., Yoshida, H., Izumi, Y., Tsumuki, H.,2003. Effects of temperature and photoperiod on development and oviposition of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Appl. Entomol. Zool.38(1),65-68.
    Jensen, D., Overgaard, J., Serensen, J. G,2007. The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster. J. Insect Physiol.53,179-186.
    Kelty, J.D., Killian, K.A., Lee, R.E.,1996. Cold shock and rapid cold-hardening of pharate adult flesh flies (Sarcophaga crassipalpis):effects on behavior and neuromuscular function following eclosion. Physiol. Entomol.21(4):283-288.
    Kimura, M.T.,2004. Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecol.140,442-449.
    Kirk W.D.J., Terry, L. I.,2003. The spread of the western flower thrips, Frankliniella occidentalis (Pergande). Agri. Forest. Entomol.5,301-310.
    Kirk, W.D.J.,2002. The pest and vector from the West:Frankliniella occidentalis. In:Marullo, R., Mound, L.A. (eds.). Thrips and Tospoviruses:Proceedings of the Seventh International Symposium on Thysanoptera Australian National Insect Collection, Canberra, pp.33-44.
    Marais, E., Terblanche, J.S., Chown, S. L.,2009. Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). J. Insect Physiol.55, 336-343.
    Mcdonald, J.R., Bale, J.S., Walters, K.F.A.,1997. Rapid cold hardening in the western flower thrips Frankliniella Occidentalis. J. Insect. Physiol.43(8),759-766.
    Morse, J.G., Hoddle, M.S.,2005. Invasion biology of thrips. Annu. Rev. Entomol.51,67-89.
    Mound, L. A.,1996. The thysanoptera vector species of tospoviruses. Acta Horticulturae.431,298-309.
    Okazaki, S., Okuda, M., Komi, K., Yoshimatsu, H., Iwanami, T.,2007. Overwintering viruliferous Frankliniella occidentalis (Thysanoptera:Thripidae) as an infection source of tomato spotted wilt virus in green pepper fields. Plant Disease.91(7),842-846.
    Okazaki, S., Okuda, M., Komi, K., Yoshimatsu, H., Iwanami, T.,2007. Overwintering viruliferous Frankliniella occidentalis (Thysanoptera:Thripidae) as an infection source of tomato spotted wilt virus in green pepper fields. Plant Dis.7(91),842-846.
    Orosz, S. Z., Kovacs, C., Juhasz, M., Toth, F.,2009. Observations on the overwintering of Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae) under climatic conditions of Hungary. Acta Phytopathologica et Entomol. Hungarica.44(2),267-276.
    Powell, S.J., Bale, J.S.,2004. Cold shock injury and ecological costs of rapid cold hardening in the grain aphid sitobion avenae (Hemiptera:Aphididae). J.Insect.Physiol.50(4),277-284.
    Qiang, C.K., Du, Y.Z., Yu, L.Y., Cui, Y.D., Zheng, F.S., Lu, M.X.,2008. Effect of rapid cold hardening on the cold tolerance of the larvae of the rice stem borer, Chilo suppressails (Walker). Agricul. Sci. China.7(3), 321-328.
    Shintani, Y., Ishikawa, Y.,2007. Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle, Psacothea hilaris. J.Insect.Physiol.53(10),1055-1062.
    Shreve, S.M., Kelty, J.D., Lee, R.E.,2004. Preservation of reproductive behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response. J. Exp. Biol.207,1797-1802.
    S(?)ensen J.G., Kristensen T.N., Kristensen K.V., Loeschcke,V.,2007. Sex specific effects of cold induced hormesis in Hsf-deficient Drosophila melanogaster. Exp. Gerontol.42,1123-1129.
    Terblanche, J.S., Marais, E., Chown, S. L.,2007. Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis. J. Insect Physiol.53,455-462.
    Tsumuki, H., Ishida, H., Yoshida, H., Sonoda, S., Izumim Y, Muraim T.,2007. Cold hardiness of adult western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae). Appl. Entomol. Zool. 42(2),223-229.
    Van, de., Wetering, F., Goldbach, R., Peters, D.,1996. Transmission of Tomato spotted wilt virus by Frankliniella occidentalis after viral acquisition during the first larval stage. Acta Horticulturae.431, 350-358.
    Wang, X.H., Qi, X.L., Kang, L.,2003. Rapid cold hardening process of insects and its ecologically adaptive significance. Progress in Natural Science.13(9),641-647.
    Yi, S.X., Moore, C.W., Lee, R.E.,2007. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis.12(7),1183-1193.
    Yoshinori, S., Yukio, I.1999. Geographic variation in cold tolerance of eggs and neonate larvae of the yellow-spotted longicorn beetle Psacothea hilaris. Physiol. Entomol.24,158-164.
    陆亮,杜予州,李鸿波,王建军.西花蓟马传播病毒病的研究进展.植物保护.2009,35(2),7-11.
    张友军,吴青君,徐宝云,朱国仁.危险性外来入侵生物——西花蓟马在北京发生危害.植物保护.2003,29(4),58-59.
    郑长英,刘云虹,张乃芹,赵希丽.山东省发现外来入侵有害生物—西花蓟马.青岛农业大学学报:自然科学版.2007,24(3),172-174.
    吴青君,徐宝云,张治军,张友军,朱国仁.京、浙、滇地区植物蓟马马种类分布及其调查.中国植保导.2007,27(1),32-34.
    袁成明,郅军锐,李景柱,张勇.贵州省蔬菜蓟马种类调查研究.中国植保导刊.2008,28(7),8-10,7-7.
    景晓红,康乐.昆虫耐寒性的测定与评价方法.昆虫知识.2004,40(1),7-10.
    杜予州,戴霖,鞠瑞亭,顾杰,刁春友,龚伟荣.入侵害虫西花蓟马在中国的风险性初步分析.中国农业科学.2005,38(11),2360-2364.
    程俊峰,万方浩,郭建英.入侵昆虫西花蓟马的潜在适生区分析.昆虫学报.2006,49(3),438-446.
    程俊峰,万方浩,郭建英.西花蓟马在中国适生区的基于CLIMEX的GIS预测.中国农业科学.2006,39(3),525-529.
    Andrewartha, H.G.,1970. In:Introduction to the Study of Animal Populations. University of Chicago Press, Chicago, IL.
    Arbogast, R.T.,1981. Mortality and reproduction of Ephestia cautella and Plodia interpunctella exposed as pupae to high temperature. Environ. Entomol.10,708-711.
    Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C.S., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G, Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D., Whittaker, J.B.,2002. Herbivory in global climate change research:I Direct effects of rising temperature on insect herbivores. Global. Change. Biol.8,1-16.
    Bursell, E.,1964. Environmental aspects:temperature. In:Rockstein, M.(Ed.), The Physiology of Insects-Volume I. Academic Press, New York, pp.283-317.
    Chidawanyika, F., Terblanche, J.S.,2011. Rapid thermal response and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera:Tortricidae). J. Insect. Physiol.57(1),108-117.
    Chihrane, J., Lauge, G.,1997. Thermosensitivity of germlines of Trichogramma brassicae Bezdenko (Hymenoptera). Implications for efficacy of the parasitoid. Can. J. Zool.75,484-489.
    Chown, S.L., Nicholson, S.W.,2004. Insect Physiological Ecology:Mechanisms and Patterns. Oxford Press, New York.
    Chown, S.L., Terblanche, J.S.,2007. Physiological diversity in insects:Ecological and evolutionary contexts. Adv. Insect. Physiol.33,50-152.
    Cossins, A.R., Bowler, K.,1987. In:Temperature Biology of Animals. Chapmanand Hall, New York.
    Cui, X., Wan, F., Xie, M., Liu, T.,2008. Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B.10pp. J. Insect Sci.8,24 available online:insect science.org/8.24.
    Dahlgaard, J., Loeschcke, V., Michalak, P., Justesen, J.,1998. Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Funct. Ecol.12,786-793.
    Denlinger, D.L., Yocum, GD.,1998. Physiology of heat sensitivity. In:Hallman, G.J., Denlinger, D.L. (Eds.), Temperature Sensitivity in Insects and Application in Integrated Pest Management. Westview Press, Boulder, CO, pp.6-53.
    Gullan, P.J., Cranston, P.S.,2005. In:The Insects:An Outline of Entomology third ed. Blackwell Publishing Ltd., Davis, USA.
    Hallman, GJ., Denlinger, D.L.,1998. Introduction:temperature sensitivity and integrated pest management. In: Hallman, G.J., Denlinger, D.L. (Eds.), Temperature Sensitivity in Insects and Application in Integrated Pest Manage-ment. Westview Press, Boulder, CO, pp.1-5.
    Hochachka, P.W., Somero, G.N.,2002. Mechanisms and Processes in Physiological Evolution. Oxford University Press; Biochemical Adaptation, New York.
    Hoffmann, A.A., S(?)rensen, J.G., Loeschcke, V,2003. Adaptationof Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol.28,175-216.
    Howe, R.W.,1967. Temperature effects on embryonic development in insects. Annu. Rev. Entomol.12,15-42.
    Huey, R.B., Kingsolver, J.G,1989. Evolution of thermal sensitivity of ectotherm performance. Trends. Ecol. Evol.4,131-132.
    Krebs, R.A., Loeschcke, V.,1994. Effect of Exposure to short-term heat stress on fitness components in Drosophila melanogaster. J. Evol. Biol.7,39-49.
    Loeschcke, V, S(?)rensen, J.G,2005. Acclimation, heat shock and hardening-a response from evolutionary biology. J. Therm. Biol.30,255-257.
    Mahroof, R., Subramanyam, B., Therone, J.E., Menon, A.,2003. Time-mortality relationships for Tribolium castaneum (Coleopteran:Tenebrionidae) life stages exposed to elevated temperatures. J. Econ. Entomol. 96,1345-1351.
    Mahroof, R., Zhu, K.Y., Bh. Subramanyam, J.E.,2005. Changes in expression of heat shok proteins in Tribolium castaneum (Coleoptera:Tenebrionidae) in relation to developmental stage, exposure time, and temperature. Ann. Entomol. Soc. Am.98,100-107.
    Mironidis, G.K., Savopoulou-Soultani, M.,2010. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera:Noctuidae) adults. J. Therm. Biol.35,59-69.
    Overgaard, J., S(?)rensen, J.G.,2008. Rapid thermal adaptation during field temperature variations in Drosophila melanogaster. Cryobiology.56,159-162.
    Rinehart, J.P., Yocum, G.D., Denlinger, D.L.,2000. Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis. Physiol. Entomol.25,330-336.
    Robertson, R.M.,2004. Modulation of neural circuit operation by prior environ-mental stress. Integr. Comp. Biol.44,21-27.
    Saxena, B.P., Sharma, P.R., Thappa, R.K., Tikku, K.,1992. Temperature induced sterilization for control of three stored grain beetles. J. Stored. Prod. Res.28,67-70.
    Scott, M., Berrigan, D., Hoffmann, A.A.,1997. Costs and benefits of acclimation to elevated temperature in Trichogramma carverae. Entomol. Exp. Appl.85,211-219.
    Sisodia, S., Singh, Bashisth. N.,2006. Effect of exposure to short-term heat stress on survival and fecundity in Drosophila ananassae. Can. J. Zool.84,895-899.
    Speight, R.M., Hunter, D.M., Watt, D.A.,1999. In:Ecology of Insects:Concepts and Applications. Blackwell, Oxford, UK.
    Speight, R.M., Hunter, D.M., Watt, D.A.,1999. In:Ecology of Insects:Concepts and Applications. Blackwell, Oxford, UK.
    Yoder, J.A., Chambers, M.J., Tank, J.L., Keeney, G.D.,2009. High temperature effects on water loss and survival examining the hardiness of female adults of the spider beetles, Mezium affine and Gibbium aequinoctiale. J. Insect. Sci.9,1-8.
    Allan, R.K., Ratajczak, T.,2011. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell. Stress. Chaperon.16,353-367.
    Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmak, C., Bezemer, T.M., Brown, V, Butterfield, J.,2002. Herbivory in global climate change research:direct effects of rising temperature on insect herbivores. Global Change Biol.8,1-16.
    Blatch, G.L., Lassle, M.,1999. The tetratricopeptide repeat:a structural motif mediating protein-protein interactions. BioEssays.21,932-939.
    Borkan, S.C., Gullans, S.R.,2002. Molecular chaperones in the kidney. Annu. Rev. Physiol.64,503-527.
    Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Hartley, R., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A., Whittaker, J.B.,2002. Herbivory in global climate change research:direct effects of rising temperature on insect herbivores. Global. Change. Biol.8,1-16
    Carrigan, P.E., Riggs, D.L., Chinkers, M., Smith, D.F.,2005. Functional comparison of human and Drosophila Hop reveals novel role in steroid receptor maturation. J. Biol. Chem.280,8906-8911.
    Castillo-Davis, C.I., Mekhedov, S.L., Hartl, D.L., Koonin, E.V., Kondrashov, F.A.,2002. Selection for short introns in highly expressed genes. Nat. Genet.31,415-418
    Chen, S., Smith, D.F.,1998. Hop as an adaptor in the heat shock protein 70 (Hsp70) and Hsp90 chaperone machinery. J. Biol. Chem.273,35194-35200.
    Choresh, O., Loya, Y, Muller, W. E.G., Wiedenmann, J., Azem, A.,2004. The mitochondrial 60-kDa heat shock protein in marine in vertebrates:biochemical purification and molecular characterization. Cell. Stress. Chaperon.9,38-47.
    Chuang, K.H., Ho, S.H., Song, Y.L.,2007. Cloning and expression analysis of heat shock cognate 70 gene promoter in tiger shrimp (Penaeus monodon). Gene.405,10-18.
    De, M.A.,1999. Heat shock proteins:facts, thoughts, and dreams. Shock.11,1-12.
    Demand, J., Luders, J., Hohfeld, J.,1998. The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol.Cell. Biol.18,2023-2028.
    Emanuelsson, O., Heijne, G., Schneider, G.,2001. Analysis and prediction of mitochondrial targeting peptides. Method. Cell. Biol 65,175-187.
    Feder, M.E., Cartano, N.V., Milos, L., Krebs, R.A., Lindquist, S.L.,19996. Effect of engineering Hsp70 copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster. J. Exp. Biol.199,1837-1844.
    Feder, M.E., Hofmann, G.E.,1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol.61,243-282.
    Flom, G, Behal, R.H., Rosen, L., Cole, D.G., Johnson, J.L.,2007. Definition of the minimal fragments of Sti-1 required for dimerization, interaction with Hsp70 and Hsp90 and in vivo functions. Biochem. J.1404, 159-167.
    Gaiser, AM., Brandt, F., Richter, K.,2009. The non-canonical Hop protein from Caenorhabditis elegans exerts essential functions and forms binary complexes with either Hsc70 or Hsp90. J. Mol. Biol.391,621-634.
    Gitau, G.W., Mandal, P., Blatch, G.L., Przyborski, J., Shonhai, A.,2012. Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell. Stress. Chaperon.17,191-202.
    Gupta, R.S.,1995. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol. Biol. Evol.12,1063-1073.
    Hoffmann, A.A., Sorensen, J.G, Loeschcke, V.,2003. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol.28,175-216.
    Huang, L.H., Wang, C.Z., Kang, L.,2009. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa. J. Insect. Physiol.55,279-285.
    Ishida, H., Murai,T., Sonoda, S., Yoshida, H., Izumi, Y., Tsumuki, H.,2003. Effects of temperature and photoperiod on development and oviposition of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Appl. Entomol. Zool.38(1),65-68.
    Johnston, J.A., Ward, C.L., Kopito, R.R.,1998. Aggresomes:a cellular response to misfolded proteins. J. Cell. Biol.143,1883-1898.
    Kalosaka, K., Soumaka, E., Politis, N., Mintzas, A.C.,2009. Thermotolerance and HSP70 expression in the Mediterranean fruit fly Ceratitis capitata. J. Insect Physiol,55,568-573.
    Karlin, S., Brocchieri, L.,1998. Heat shock protein 70 family:multiple sequence comparisons, function, and evolution. J. Mol. Evol.47(5),565-577.
    Li, H.B., Shi, L., Lu, M.X., Wang, J.J., Du, Y.Z.,2011a. Thermal tolerance of Frankliniella occidentalis: Effects of temperature, exposure time, and gender. J. Therm. Biol.36,437-442.
    Li, H.B., Shi, L., Wang, J.J., Du, Y.Z.,2011b. Rapid cold hardening of Western Flower Thrips, Frankliniella occidentalis; and its ecological cost. Acta. Ecologica. Snica.'31,7196-7202.
    Li, M., Lu, W.C., Feng, H.Z., He, L.,2009. Molecular characterization and expression of three heat shock protein70 genes from the carmine spider mite, Tetranychus cinnabarinus (Boisduval). Insect. Mol. Biol. 18(2),183-194.
    Lindquist, S., Craig, E.A.,1988. The heat-shock proteins. Annu. Rev. Genet.22,631-677.
    Longshaw, V.M., Stephens, L.L., Daniel, S. and Blatch, G.L.,2009. The TPR2B domain of the Hsp70/Hsp90 organizing protein (Hop) may contribute towards its dimerization. Protein Peptide Lett.16 (4),402-407.
    Mcdonald, J.R., Bale, J.S, Walters, K. F. A.,1997. Rapid cold hardening in the western flower thrips Frankliniella Occidentalis. J. Insect. Physiol.43(8),759-766.
    Moseley, P.L.,1997. Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol 83: 1413-1417.
    Nicolet CM, Craig EA 1989. Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol. Cell. Biol.9:3638-3646.
    Nott, A., Meislin, S.H., Moore, M.J.,2003. A quantitative analysis of intron effects on mammalian gene expression. RNA.9,607-617.
    Odunuga, O.O., Hornby, J.A., Bies, C., Zimmermann, R., Pugh, D.J., Blatch, G.L.,2003. Tetratricopeptide repeat motif-mediated Hsc70-mSti-1 interaction. Molecular characterization of the critical contacts for successful binding and specificity. J. Biol. Chem.278,6896-6904.
    Onuoha, S.C., Coulstock, E.T., Grossmann, J.G, Jackson, S.E.,2008. Structural studies on the co-chaperone Hop and its complexes with Hsp90. J. Mol. Biol.379,732-744.
    Pearl, L.H., Prodromou, C.,2006. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem.75,271-294.
    Prapapanich, V, Chen, S., Smith, D.F.,1998. Mutation of Hop's carboxy-terminal region inhibits a transitional stage of progesterone receptor assembly. Mol. Cell. Biol.18,944-952.
    Qiu, B.L., Ren, S.X., Wen, S.Y., Mandour, N.S.,2003. Biotype identification of the populations of Bemisia tabaci (Homoptera:Aleyrodidae) in China using RAPD-PCR. Acta Entomologica Sinica.46 (5), 605-608.
    Renner, T., Waters, E.R.,2007. Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes. Cell Stress Chaperone 12 (2),172-185.
    Rotenberg, D., Whitfield, A. E.,2010. Analysis of expressed sequence tags for Frankliniella occidentalis, the western flower thrips. Insect. Mol. Biol.19(4),537-551
    Sanchez, G.I., Carucci, D.J., Sacci, J.J., Resau, J.H., Rogers, W.O., Kumar, N., Hoffman, S.L.,1999. Plasmodium yoelli:cloning and characterization of the gene encoding for the mitochondrial heat shock protein 60. Exp. Parasitol.93,181-190.
    Scheufler, C., Brinker, A., Bourenkov, G., Pegoraro, S., Moroder, L., Bartunik, H., Hard, F. U and Moarefi, I., 2000. Structure of TPR domain-peptide complexes:critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell.101,199-210.
    Shim, J.K., Jung, D.O., Park, J.W., Kim, D.W., Ha, D.M., Lee, K.Y.,2005. Molecular cloning of the heat-shock cognate 70 (Hsc70) gene from the two-spotted spider mite, Tetranychus urticae, and its expression in response to heat shock and starvation. Comp. Biochem. Physiol, B.145,288-295.
    Shu, Y.H., Du, Y., Wang, J.W.,2011. Molecular characterization and expression patterns of Spodoptera litura heat shock protein 70/90, and their response to zinc stress. Comp. Biochem. Phys., A.158,102-110.
    Smith, D.F., Sullivan, W.P., Marion, T.N., Zaitsu, K., Madden, B., McCormick, D.J., Toft, D.O.,1993. Identification of a 60-kilodalton stress-related protein, p60, which interacts with Hsp90 and Hsp70. Mol. Cell. Biol.13,869-876.
    Song, H.O., Lee, W., An, K., Lee, H.S., Cho, J.H., Park, Z.Y., Ahnn, J.,2009. C. elegans Sti-1, the homolog of Stil/Hop, is involved in aging and stress response. J. Mol. Biol.390,604-617.
    Sonoda, S., Ashfaq, M., Tsumuki, H.,2006. Cloning and nucleotide sequencing of three heat shock protein genes (hsp90, hsc70, and hsp19.5) from the diamond back moth, Plutella xylostella (L.) and their expression in relation to developmental stage and temperature. Arch. Insect. Biochem.62,80-90.
    Sonoda, S., Fukumoto, K., Izumi, Y, Yoshida, H., Tsumuki, H.,2006. Cloning of heat shock protein genes (hsp90 and hsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer, Chilo suppressalis (Walker). Arch. Insect. Biochem.63,36-47.
    Tsumuki, H., Ishida, H., Yoshida, H., Sonoda, S., Izumi, Y, Murai, T.,2007. Cold hardiness of adult Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae). Appl. Entomol. Zool. 42(2),223-229.
    Wang, H., Dong, S.Z., Li, K., Hu, C., Ye, G.Y.2008. A heat shock cognate 70 gene in the endoparasitoid, Pteromalus puparum, and its expression in relation to thermal stress. BMB. Rep.41(5),388-93.
    Wang, H.S., Wang, X.H., Guo, W., Zhang, S.F., Kang, L.,2007. cDNA cloning of heat shock proteins and then-expression in the two phases of the Migratory locust. Insect. Mol. Biol.16,207-219.
    Wong, C.S., Mak, C.H., Ko, R.C.,2004. Cloning and characterization of the mitochondrial heat-shock protein 60 gene of Trichinella spiralis. Parasitol. Res.93,461-467.
    Xu, P.J., Xiao, J.H., Liu, L., Li, T., Huang, D.W.,2010. Molecular cloning and characterization of four heat shock protein genes from Macrocentrus cingulum (Hymenoptera:Braconidae). Mol. Biol. Rep.37, 2265-2272.
    Xuereb, B., Forget-Leray, J., Lesueu, T., Marie, S., Danger, J.M., Boulange-Lecomte, C.,2012. Molecular characterization and mRNA expression of grp78 and hsp90A in the estuarine copepod Eurytemora affinis. Cell. Stress. Chaperone. DOI 10.1007/s12192-012-0323-9.
    Yang, L.H., Jiang, H.B., Liu, Y.H., Dou, W., Wang, J.J.,2012. Molecular characterization of three heat shock protein 70 genes and their expression profiles under thermal stress in the citrus red mite. Mol. Biol. Rep. 39,3585-3596.
    Zhang, Q., Denlinger, D.L.,2010. Molecular characterization of heat shock protein 90,70 and 70 cognate cDNAs and their expression patterns during thermal stress and pupal diapause in the corn earworm. J. Insect. Physiol.56,138-150.
    Bettencourt BR, Hogan CC, Nimali M, Drohan BW (2008) Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies. BMC Biol 6:5-15.
    Chidawanyika, F., Terblanche, J.S.,2011. Rapid thermal response and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera:Tortricidae). J. Insect. Physiol.57(1),108-11.
    Dahlgaard, J., Loeschcke, V., Michalak, P., Justesen, J.,1998. Induced thermotolerance and associated expression of the heat shock protein Hsp70 in adult Drosophila melanogaster. Funct. Ecol.12,786-793.
    Gong, W.J., Golic, K.G.,2006. Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neuro-degeneration. Genetics.172,275-286.
    Hayward, S.A., Rinehart, J.P., Denlinger, D.L.,2004. Desiccation and rehydration elicit distinct heat shock protein transcript responses in flesh fly pupae. J. Exp. Biol.207,963-971.
    Huang, L.H., Wang, C.Z., Kang, L.,2009. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa. J. Insect. Physiol.55,279-285.
    Jiang, X., Zhai, H., Wang, L., Luo, L., Sappington, T.W., Zhang, L.,2012. Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development. Cell. Stress. Chaperones.17,67-80.
    Kalosaka, K., Soumaka, E., Politis, N., Mintzas, A.C.,2009. Thermotolerance and HSP70 expression in the Mediterranean fruit fly Ceratitis capitata. J. Insect. Physiol.55,568-573.
    Karouna-Renier, N.K., Yang, W.J., Rao, K.R.,2003. Cloning and characterization of a 70 kDa heat shock cognate gene (Hsc70) from two species of Chironomus. Insect. Mol. Biol.12(1),19-26.
    Krebs, R.A., Loeschcke, V.,1994. Effect of Exposure to short-term heats tress on fitness components in Drosophila melanogaster. J. Evol. Biol.7,39-49.
    Kregel, K.C.,2002. Heat shock proteins:modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol.92,2177-2186.
    Li, H.B., Shi, L., Lu, M.X., Wang, J.J., Du, Y.Z.,2011. Thermal tolerance of Frankliniella occidentalis:effects of temperature, exposure time, and gender. J. Therm. Biol.36,437-442.
    Loeschcke, V., Sorensen, J.G.,2005. Acclimation, heat shock and hardening-a response from evolutionary biology. J. Therm. Biol.30,255-257.
    Mahroof, R., Zhu, K.Y., Neven, L., Subramanyam, B., Bai, J.,2005. Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comp. Biochem. Physiol, A.141,247-256.
    Qin, W., Tyshenko, M.G., Wu, B.S., Walker, V.K., Robertson, R.M.,2003. Cloning and characterization of a member of the Hsp70 gene family from Locusta migratoria, a highly thermo-tolerant insect. Cell. Stress. Chaperone.8,144-152.
    Rinehart, J.P., Li, A.Q., Yocum, G.D., Robich, R.M., Hayward, S.A.L., Denlinger, D.L.,2007. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc. Natl. Acad. Sci., USA.104, 11130-11137.
    Schmidt, J.C., Soares, M.J., Goldenberg, S., Pavoni, D.P., Krieger, M.A.,2011. Characterization of TcSti-1, a homologue of stress-induced protein-1, Trypanosoma cruzi. Mem. Inst. Oswaldo. Cruz.106(1),70-77.
    Shim, J.K., Jung, D.O., Park, J.W., Kim, D.W., Ha, D.M., Lee, K.Y.,2006. Molecular cloning of the heat-shock cognate 70 (Hsc70) gene from the two-spotted spider mite, Tetranychus urticae, and its expression in response to heat shock and starvation. Comp. Biochem. Phys., B.145,288-295.
    Shu, Y.H., Du, Y., Wang, J.W.,2011. Molecular characterization and expression patterns of Spodoptera litura heat shock protein 70/90, and their response to zinc stress. Comp. Biochem. Phys., A.158,102-110.
    Sisodia, S., Singh, B.N.,2006. Effect of exposure to short-term heat stress on survival and fecundity in Drosophila ananassae. Can. J.Zool.84,895-899.
    Sonoda, S., Ashfaq, M., Tsumuki, H.,2006. Cloning and nucleotide sequencing of three heat shock protein genes (hsp90, hsc70, and hsp19.5) from the diamondback moth, Plutella xylostella (L.) and their expression in relation to developmental stage and temperature. Arch. Insect. Biochem. Physiol.62,80-90.
    Sorensen, J.G., Loeschcke, V.,2001. Larval crowding in Drosophila melanogaster induces hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance. J. Insect. Physiol.47, 1301-1307.
    Tammariello, S.P., Rinehart, J.P., Denlinger, D.L.,1999. Desiccation elicits heat shock protein transcription in the flesh fly, Sarcophaga crassipalpis, but does not enhance tolerance to high or low temperatures.45(10), 933-938.
    Tungjitwitayakul, J., Tatun, N., Singtripop, T., Sakurai, S.,2008. Characteristic expression of three heat shock-responsive genes during larval diapause in the bamboo borer Omphisa fuscidentalis. Zool. Sci. 25(3),321-333.
    Wang, H.,2009. Studies on heat shock proteins and molecular typing of Wolbachia in pteromalus puparum (Hymenoptera:pteromalidae). PhD thesis, Zhe Jiang University, China.40.
    Wang, H.S., Wang, X.H., Guo, W., Zhang, S.F., Kang, L.,2007. cDNA cloning of heat shock proteins and their expression in the two phases of the Migratory locust. Insect. Mol. Biol.16,207-219.
    Wong, C.S., Mak, C.H., Ko, R.C.,2004. Cloning and characterization of the mitochondrial heat-shock protein 60 gene of Trichinella spiralis. Parasitol. Res.93,461-467.
    Xu, P.J., Xiao, J.H., Liu, L., Li, T., Huang, D.W.,2010. Molecular cloning and characterization of four heat shock protein genes from Macrocentrus cingulum (Hymenoptera:Braconidae). Mol. Biol. Rep.37, 2265-2272.
    Xu, Q.H., Qin, Y.,2012. Molecular cloning of heat shock protein 60 (PtHSP60) from Portunus trituberculatus and its expression response to salinity stress. Cell Stress Chaperon. doi:10.1007/s12192-012-0334-6.
    Zhai, H.F.,2009. Cloning and expression of Heat shock protein genes (hsp70 and hsp90) of the Beet Armyworm, Spodoptera exigua (Lepidoptera:Noctuidae). MSD thesis, Beijing, Institute of Plant Protection, Chinese Academy of Agricultural Sciences
    Zhang, Z., Quick, M.K., Kanelakis, K.C., Gijzen, M., Krishna, P.,2003. Characterization of a plant homolog of Hop, a co-chaperone of Hsp90. Plant. Physiol.131 (2),525-535.
    Anarasejare, K.G., Eelson, J.V.,2004. Effect of temperature on efficacy of insecticides to differential grasshopper (Orthoptera:Acrididae). J. Econ. Entomol.97(5),1595-1602.
    Athanassiou, C.G., Korunic, Z., Vayias, B.J.,2009. Diatomaceous earths enhance the insecticidal effect of bitterbarkomycin against stored-grain insects. Crop. Protect.28,123-127
    Bednarska, A.J., Laskowski, R.,2009. Environmental conditions enhance toxicant effects in larvae of the ground beetle Pterostichus oblongopunctatus (Coleoptera:Carabidae). Environ. Pollut.1597-1602.
    Cripe, G.M., Mckenney, C.L., Hoglund Jr., M.D., Harris, P.S.,2003. Effects offenoxycarb exposure on complete larval development of the xanthid crab, Rhithropanopeus harrisii. Environ. Pollut.125, 295-299.
    Dabrowski, Z.T.,1969. Laboratory studies on the toxicity of pesticides for Typhlodromus finlandicus (Oud.) and Phytoseius macropilis (Banks) (Phytoseiidae, Acarina). Rocz. Nauk. Rol.95,337-369
    E1 Hassani, A.K., Dacher, M., Gauthier, M., Armengaud, C.,2005. Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol. Biochem. Behav.82,30-39.
    Felton, G.W., Summers, C.B.,1995. Antioxidant systems in insects. Arch. Insect. Biochem.29,187-197.
    Fujiwara, Y., Takahashi, T., Yoshioka, T., Nakasuji, F.,2002. Changes in egg size of the diamondback moth Plutella xylostella (Lepidoptera:Yponomeutidae) treated with fenvalerate at sublethal doses and viability of the eggs. Appl. Entomol. Zool.37,103-109
    Green, D.R., Reed, J.C.,1998. Mitochondria and apoptosis. Science.281,1309-1312.
    Heugens, E.H.W., Hendriks, A.J., Dekker, T., van Straalen, N.M., Admiraal, W.,2001. A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit. Rev. Toxicol.31,247-284.
    Kaur, M., Atif, F., Ansari, R.A., Ahmad, F., Raisuddin, S.,2011. The interactive effect of elevated temperature on deltamethrin-induced biochemical stress responses in Channa punctata Bloch. Chemico-Biological Interactions 193,216-224.
    Li, H.B., Shi, L., Lu, M.X., Wang, J.J., Du, Y.Z.,2011. Thermal tolerance of Frankliniella occidentalis: Effects of temperature, exposure time, and gender. J. Therm. Biol.36,437-442
    Liu, D.G., Trumble, J.T.,2005. Interactions of plant resistance and insecticides on the development and survival of Bactericerca cockerelli [Sulc] (Homoptera:Psyllidae). Crop. Prot.24,111-117.
    Lopez-Martinez, G., Elnitsky, M.A., Benoit, J.B., Lee Jr., R.E., Denlinger, D.L.,2008. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect. Biochem. Molec.38, 796-804.
    Muyssen, B.T.A., Messiaen, M., Janssen, C.R.,2010. Combined cadmium and temperature acclimation in Daphnia magna:Physiological and sub-cellular effects. Ecotoxi. Environ.Safety.73,735-742.
    Slotsbo, S., Heckmann, Lars-Henrik., Damgaard, C., Roelofs, Dick., Boer, T., Holmstrup, M.,2009. Exposure to mercury reduces heat tolerance and heat hardening ability of the springtail Folsomia candida. Comp. Biochem. Physiol., C.150,118-123.
    Sokolova, I.M., Lannig, G.,2008. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms:implications of global climate change. Clim. Res.37,181-201.
    Stapel, J.O., Cortesero, A.M., Lewis, W.J.,2000. Disruptive sublethal effects of insecticides on biological control:altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biol. Control.17,243-249.
    Stark, J.D., Rangus, T.,1994. Lethal and sublethal effects of the neem insecticide, Margosan-O, on the pea aphid. Pestic. Sci.41.155-160.
    Wang, Y., Oberley, L.W., Murhammer, D.W.,2001. Antioxidant defense systems of two Lepidopteran insect cell lines. Free. Radical. Biol. Med.30,1254-1262.
    Yu, Y.L, Huang, L.J, Wang, L.P. Wu, J.C.,2012. The combined effects of temperature and insecticide on the fecundity of adult males and adult females of the brown planthopper Nilaparvata lugens Stal (Hemiptera: Delphacidae). Crop. Prot.34,59-64.
    Zalizniak, L., Nugegoda, D.,2006. Effect of sublethal concentrations of chlorpyrifos on three successive generations of Daphnia carinata. Ecotoxicol. Environ. Saf.64,207-214.
    Zhang, Z.J., Wu, Q.J., Lil, X.F., Zhang, Y.J., Xu, B.Y., Zhu, GR.,2007. Life history of western flower thrips, Frankliniella occidentalis (Thysan, Thripae), on five different vegetable leaves. J. Appl. Entomol. 131(5),347-354
    龚佑辉,2009.多杀菌素对西花蓟马的亚致死效应研究.中国农业科学院硕士学位论文.
    候文杰,2012.西花蓟马对多杀菌素抗性机理的研究.中国农业科学院硕士学位论文.
    李鸿波,史亮,王建军,杜予州,2011.温度锻炼对西花蓟马温度耐受性及繁殖的影响.应用昆虫学报.48(3),530-535
    刘惠霞,吴文君,1992.温度对苦皮滕麻醉成分毒力的影响.西北农业学报.2(11),38-45.
    刘丽辉,张帆,吴珍泉,2008.温度对西花蓟马(Frankliniella occidetalis)生长发育和存活率的影响.生态学报.28(10),4891-4895.
    罗雁婕,吴文伟,何成兴等,2004.温度对阿维菌素(Avermectin)杀螨活性的影响.植物保护.30(2),67-69.
    史亮,李鸿波,杜予州,2013.低温胁迫对西花蓟马抗氧化酶活性的影响.应用昆虫学报.(印刷中)
    张治军,张友军,徐宝云,朱国仁,吴青君,2012.温度对西花蓟马生长发育、繁殖和种群增长的影响.55(10),1168-1177.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.