地球圈层空间网格理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科技发展推动人类的空间活动范围遍及陆海空天各个空间层次,空间观测范围扩大到地球系统各个圈层,空间探测能力不断增强。越来越多的科学研究和军事经济活动呈现出全球立体分布、跨空间层次、跨时空尺度、跨专业领域的特点,需要建立在统一的全球空间基础框架和地球各圈层海量、多源空间信息集成的基础上。因此,构建圈层空间网格,建立陆海空天统一空间框架成为一个重要的研究课题。
     本文围绕圈层空间网格的理论问题和关键算法展开研究,主要研究成果包括:
     1、全面回顾地理空间网格领域的主要成果,总结分析现有空间网格模型中存在的问题,提出圈层空间网格是地理空间网格沿着从平面网格到立体网格,从球面网格到球体网格的轨迹,发展到地球圈层空间的新方向。
     2、首次提出圈层空间网格。围绕圈层空间网格的基础理论,提出了圈层空间与圈层空间网格两个新概念,对其概念的内涵与特征进行了分析论述。提出了构建圈层空间网格的基本思路,并与球体退化八叉树网格和地球系统圈层进行了比较,分析了圈层空间网格的理论特征。最后得出圈层空间网格的6点推论。为后续章节研究圈层空间网格的剖分编码模型、实体表达模型与实体空间拓扑关系描述模型、数据集成存储模型奠定理论基础。
     3、设计实现了圈层空间网格扩展八叉树(e-Octree)剖分编码模型。提出了e-Octree剖分思路和规则性剖分、退化性剖分、适应性剖分等3种剖分机制。给出剖分曲线、剖分曲面、剖分体元的数学形式,利用微分几何证明了剖分曲线形成的圈层面网格具有等面积特性。提出e-Octree圈体编码模型,对应3种剖分机制设计并实现了圈体编码结构及其与地理坐标换算算法。实验表明,e-Octree剖分编码模型在保持网格统一性的同时提高网格剖分与编码的灵活性,为陆海空天空间实体表达和空间信息组织提供了统一框架。
     4、提出并构建了体目标的COG网格表达模型和PNM拓扑关系描述模型。利用数字拓扑理论深入分析体目标网格表达的拓扑连续性问题,提出了拓扑连续八叉树网格(COG)概念,设计了保持体目标拓扑连续性的COG网格生成算法。提出了描述体目标3维拓扑关系的点邻域模型(PNM),定义了点邻域概念及其结构类型的形式化描述,设计实现了3维拓扑关系的编码方法,通过实例证明了PNM区分出的3维拓扑关系种类比9IM更多。COG模型与PNM模型为圈层空间网格的实体表达和空间关系分析提供了理论方法。
     5、设计实现了基于空间填充曲线(SFC)的网格数据存取机制。提出了SFC聚簇数模型,从理论上证明连续SFC具有更高的存取效率。以连续SFC Hilbert曲线为基础,设计实现了规则网格Hilbert存储索引。面向多源、多分辨率数据网格存储,提出紧致Hilbert索引,以Gray码为基础建立紧致Hilbert曲线排序算法,给出紧致Hilbert索引的构造算法。实验表明,紧致Hilbert索引在存储效率、查询性能明显优于标准Hilbert索引。
The range of human spatial activities have been promoted to various levels of space such asland, sea, air, sky, while spatial observation scope has been enlarged to every sphere shell ofearth systems, and spatial exploration ability be enhanced. More and more scientific researchand military and economic activities have shown itself such characteristics as globalthree-dimensional distribution, multi-spatial level, multi-temporal and spatial scale, crossspecialties, so that these are depended on the construction of global uniform space frameworkand integration of earth sphere shells information. Therefore, the construction of sphere shellspace grid and the establishment of uniform space framework of land, sea, air, sky becomes animportant problem.
     The followings are what we have done in this dissertation:
     1. The comprehensive review of current achievements has been taken firstly, and theseproblems in existing space grid models have been pointed out. Then, the sphere shell space gridis the new direction of geographic space grid has been brought forward, which is following thedevelopment of geographic space grid from plan grid to solid grid, from spherical surface tosphere interior.
     2. The Sphere Shell Space Grid is putted forward for the first time. The basic conception ofSphere Shell Space and Sphere Shell Space Grid are proposed, and then their connotations andtheoretical characteristics have been discussed in details. The basic idea of subdivision of SphereShell Space Grid is that, the earth spherical surface is set as starting surface; earth has beendivided into several homocentric datum sphere shells along the radial direction, and then the gridsubdivision of each datum sphere shell has been taken place. And Sphere Shell Space Grid iscomared with Sphere Degenerated Octree Grid and Earth System Spheres. At last, there are6ratiocinations concluded from theoretical analysis. This provides a primary guide for theconstruction of Sphere Shell Space Grid.
     3. The extended-Octree (e-Octree) subdivision model of Sphere Shell Space Grid isproposed. The design idea and three subdivision mechanisms including regular subdivision,degraded subdivision and adaptive subdivision are presented first. The mathematical form ofpartition curve, partition surface and partition voxel are given out. And then the equal areaproperty of sphere shell surface grid generated by the partition curve has been proved usingdifferential geometry. The e-Octree grid coding model is proposed according to three subdivisionmechanisms, and also the algorithm of conversion between grid code and geographic coordinate.Experiments have shown that e-Octree subdivision and code model has improved the agile ability while holding coherence. This is favorable for spatial entity representation and spatialinformation organization.
     4. The COG model and PNM model used for volume object representation and topologicalrelation description is proposed. Firstly, the topological continuity of discrete representation ofvolume object is analyzed based on digital topology, and then the continuous octree grid (COG)concept is given out, and COG generation algorithm is presented up. Secondly, the topologicalrelationship description problem between two volume objects has been addressed on. Theformalization of point neighborhood concept and its configuration types are defined. The3Dtopological relationship is coded based on point neighborhood configuration. Typical examplesanalysis has shown that more kinds of topological relationships have been classified by PNMthan9IM.
     5. The storage and access mechanism based on space filling curve (SFC) for Sphere ShellSpace Grid is brought forward. Firstly, the SFC clustering number model is putted forward, andthen the conclusion that continuous SFCs is more efficiency than un-continuous SFCs is provedtheoretically. Secondly, the Hilbert SFC is chosen for spatial data index construction, and theregular octree grid Hilbert index is presented. But it is not sufficient for multi-source,multi-resolution data storage and access, so the compact Hilbert index is presented, which isbased on Gray Code ordering algorithm. The construction of compact Hilbert index is given indetails. Experiments have shown that compact Hilbert index is better than standard Hilbert indexin storage and query evidently.
引文
[1]陈述彭,陈秋晓,周成虎.格网地图与网格计算[J].测绘科学,2002,27(1):1-6.
    [2]高俊.网格与测绘[J].军事测绘,2005(1):5-9.
    [3]李德仁.论广义空间信息网格和狭义空间信息网格[J].遥感学报,2005,9(5):513-520.
    [4]王家耀,祝玉华,吴明光.论网格与网格地理信息系统[J].测绘科学技术学报,2006,23(1):1-7.
    [5]龚健雅等.当代地理信息技术[M].北京:科学出版社,2004.
    [6]杨崇俊.网格及其对地理信息服务的影响[J].地理信息世界,2003,1(1):20-22,29.
    [7]周成虎,欧阳,马廷.地理格网模型研究进展[J].地理科学进展,2009,28(5):657-662.
    [8]中国科学院地学部地球科学发展战略研究组.21世纪中国地球科学发展战略报告[M].北京:科学出版社,2009.
    [9] Sahr K, White D, Kimerling A..Geodesic Discrete Global Grid Sytems [J].Cartography and GeographicInformation Science,2003,30(2):121-134.
    [10] Lukatela H.A Seamless Global Terrain Model in the Hipparchus System [EB/OL].http://www.geodyssey.com/global/papers,2012.5.30.
    [11]韩阳,万刚,曹雪峰.混合式全球网格划分方法及编码研究[J].测绘科学,2009,34(2):136-138.
    [12]韩阳.基于地理空间信息网格的全球空间数据管理与渲染的关键技术研究[D].郑州:解放军信息工程大学测绘学院,2008.
    [13]白建军,孙文彬.球面格网系统特征分析及比较[J].地理与地理信息科学,2011,27(2):1-5.
    [14] Kageyama A, Tetsuya Sato.The “Yin-Yang Grid”: An Overset Grid in Spherical Geometry [J].Geochenmistry Geophisics Geosystems,2004,5(9):1-15.
    [15] Tsuboi S, Komatitsch D. JI C. Computations of global sisimic wave propageation in three dimensionalEarth mode [A]. High Performance Computing[C].2008,434-443.
    [16] Stadler G, Gurnis M, Burstedde C. The Dynamics of Plate Tectonics and Mantle Flow: From Local toGlobal Scales[J]. Science,2010,329(5995):1033-1038.
    [17]吴立新,余接情.地球系统空间格网及其应用模式[J].地理与地理信息科学,2012,28(1):7-13.
    [18]吴立新,余接情.基于球体退化八叉树的全球三维网格与变形特征[J].地理与地理信息科学,2009,25(1):1-4.
    [19]李晓军,朱合华,解福奇.地下工程数字化的概念及其初步应用[J].岩石力学与工程学报,2006,25(10):1975-1980.
    [20]武强,徐华.虚拟地质建模与可视化[M].北京:科学出版社,2011.
    [21]李仲学,李翠平,李春民等.地矿工程三维可视化技术[M].北京:科学出版社,2007.
    [22]岳天祥.地球表层建模研究进展[J].遥感学报,2011,15(6):1105-1124.
    [23]刘雁春,肖付民,暴景阳,徐卫明.海道测量学概论[M].北京:测绘出版社,2006.
    [24]笪良龙.海洋水声环境效应建模与应用[M].北京:科学出版社,2012.
    [25]刘晓东,张方生,朱维庆等.深水声学拖曳系统[J].海洋测绘,2005,25(6):37-44.
    [26]王鹏.基于HLA的空间环境要素建模与仿真技术研究[D].郑州:解放军信息工程大学测绘学院,2006.
    [27]毕思文等.地球系统科学[M].北京:科学出版社,2002.
    [28]秦耀辰,钱乐祥,,千怀遂,马建华等.地球信息科学[M].北京:科学出版社,2004.2.
    [29]刘湘南,黄方,王平.地球信息科学引论[M].长春:吉林教育出版社,2002.
    [30] GTOPO30.U.S. Geological Survey: Global30arc second elevation dataset [EB/OL].http://edcwww.ct.usgs.gov/landdaac/gtopo30/gtopo30.html,1996.12.30.
    [31] ETOPO5.U.S. geogolical survey:5minute gridded earth topography data [EB/OL].http://edcwww.ct.usgs.gov/webglis/glisbin/guide.pl/g1is/hyper/guide/gtopo5,2011.12.30.
    [32]李德仁,肖志峰,朱欣焰,龚健雅.空间信息多级网格的划分方法及编码研究[J].测绘学报,2006,35(1):53-56,70.
    [33] NIMA.Digital terrain elevation data[EB/OL].http://www.niama.mil/,2011.12.30.
    [34] Ottosm P, Hauska H.Ellipsoidal Quadtree for indexing of global geographical data[J].InternationalJournal of Geo graphical-Information Science,2002,16(3):213-226.
    [35] Bjork J T, Grytten J K, et al.A Global Grid Model based on “Constant Area” Quadrilaterals[J].Scan GIS,2003:239-250.
    [36] Bjork J T, Grytten J K, et al.Examination of A Constant-Area Quadrilateral Grid in Representation ofGlobal Digital Elevation Models[J].International Journal of Geographic Information Science,2004,18(7):653-664.
    [37]崔马军,赵学胜.球面退化四叉树格网的剖分及变形分析[J].地理与地理信息科学,2007,23(6):23-25.
    [38]赵学胜,王磊,王洪彬,李颖.全球离散格网的建模方法及基本问题[J].地理与地理信息科学,2012,28(1):29-34.
    [39]贲进.地球空间信息离散网格数据模型的理论与算法研究[D].郑州:中国人民解放军信息工程大学,2005.
    [40]贲进,童晓冲,张永生,张衡.对施奈德等积多面体投影的研究[J].武汉大学学报信息科学版,2006,31(10):900-903.
    [41]童晓冲.空间信息剖分组织的全球离散格网理论与方法[D].郑州:中国人民解放军信息工程大学,2010.
    [42]袁文.地理格网STQIE模型及原型系统[D].北京:北京大学,2004.
    [43] Dutton, G.H.A hierarchical coordinate system for geoprocessing and cartography.Lecture Notes in EarthScience78, Springer-Verlag, Berlin,1998.
    [44] Fekete G., Treinish L..Sphere quadtrees: a new data structure to support the visualization of sphericallydistributed data.Proceedings of the SPIE, Extracting Meaning from Complex Data: Processing, Display,Interaction, International Society for Optical Engineering,1990,1259:242–253.
    [45] Kevin Sahr, Denis White, and A. Jon Kimerling.Geodesic Discrete Global Grid Systems[J].Cartographyand Geographic Information Science,2003,30(2):121-134.
    [46]赵学胜,白建军.基于菱形块的全球离散格网层次建模[J].中国矿业大学学报,2007,36(3):398-401.
    [47]贲进,童晓冲,元朝鹏.孔径为4的全球六边形格网系统索引方法[J].测绘学报,2011,40(6):785-789,795.
    [48] Kolar J.Representaion of Geographic Terrain Surface using Global Indexing[A].Proceeding of the12thInternational Conference on Geoinformatics[C].2004.
    [49] Mostafavi A, Gold C.A Global Kinetic Spatial Data Structure for A Marine Simulation[J].InternationalJournal of Geographic Information Science,2004,18(3):211-227.
    [50] Gorski K. M., Hivon E., et al.HEALPix: a framework for high-resolution discretization and fast analysisof data distributed on the sphere [J]. Astrophysical Journal,2005,622:759–771.
    [51] GeoFusion.GeoMatrix Toolkit Programmer’s Manual[EB/OL].http://www.geofusion.com,2012.4.3.
    [52] Kageyama A., Yoshida M. Geodynamo and Mantle Convection Simulation on the Earth Simulator usingthe Yin-Yang Grid[A].Sicentific Discovery throught Advanced Computing[C].2005.
    [53] Choblet G. Modeling thermal convection with large viscosity gradients in one blocak of the cubedsphere[J]. Computaional Physics,2005,205(1):269-291.
    [54] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton, L. Wilcox. Extreme-scale AMR.Proceedings of the2010ACM/IEEE International Conference for High Performance Computing,Networking, Storage and Analysis, SC’10,(Washington, DC, USA), IEEE Computer Society,2010,1–12.
    [55]余接情,吴立新.球体退化八叉树网格编码与解码研究[J].地理与地理信息科学,2009,25(1):5-9,31.
    [56]余接情,吴立新.适应性球体退化八叉树格网及其编码方法[J].地理与地理信息科学,2012,28(1):14-18.
    [57]刘瑜,龚咏喜,张晶,等.地理空间中的空间关系表达和推理[J].地理与地理信息科学,2007,23(5):1—7.
    [58]刘新,刘文宝,李成明.三维空间关系的描述及其定性推理[M].北京:测绘出版社,2010.
    [59]吴长彬,闾国年.空间拓扑关系若干问题研究现状的评析[J].地球信息科学学报,2010,12(4):524-531.
    [60] EgenhoferM J, Herring J R. A Mathematical Framework for the Definition of Topological Relationships
    [C]. In: Brassel K and Kishimoto H, eds. In Proceedings of4th International Symposium on Spatial DataHandling. Zurich, Switzerland,1990,803-813.
    [61]陈军,郭薇.三维空间实体间拓扑关系的矩阵描述[J].武汉测绘科技大学学报,1998,23(4):359-363.
    [62] Zlatanova S. On3D Topological Relationships. Proc. of the11th International Workshop on Database andExpert System Applications. Greenwich, London [C/OL].[2008-2-1].http://www.gdmc.nl/alatanova/thesis/html/refer/ps/sz_asdm.pdf.
    [63]侯妙乐,赵学胜,陈军.数字拓扑研究现状及其在GIS中的应用[J].地理与地理信息科学,2005,21(1):5-8.
    [64] Egenhofer M, Sharma J.Between Regions in IR2and ZZ2, Advances in Spatial Database
    [M].Springer-Verlag,1993,316-336.
    [65] Rosenfeld A.Connectivity in Digital Picture[J].Journal Assoc. Compt. Mach,1970,17:146-160.
    [66] Rosenfeld A.Arcs and Curves in Digital Picture[J].Journal Assoc. Compt. Mach,1973,20:81-87.
    [67] Rosenfeld A.Adjacency in Digital Picture [J].Information and Control,1974,26:24-33.
    [68] Winter S. Frank AU.Topology in Raster and Vector Representation[J].GeoInformatica,2000,4(1):35-65.
    [69] Ying Bai, Xiao Han, Jerry L. Prince.Digital Topology on Adaptive Octree Grids [J].J. Math. Imaging Vis,2009,34(2):165–184.
    [70]侯妙乐,赵学胜,陈军.球面数字空间下的基本拓扑模型[J].地理信息世界,2004,2(2):38-43.
    [71]侯妙乐,赵学胜,陈军.球面栅格空间中的Jordan曲线性质及其拓扑矛盾分析[J].武汉大学学报信息科学版,2006,31(2):149-151.
    [72]侯妙乐,赵学胜,陈军.球面四元三角网的三拓扑数计算[J].武汉大学学报信息科学版,2008,33(1):60-63,104.
    [73]侯妙乐,赵学胜,陈军.球面四元三角网局部拓扑不变量的计算及应用[J].武汉大学学报信息科学版,2010,35(12):1505-1507.
    [74]陈军,侯妙乐,赵学胜.球面四元三角网的基本拓扑关系描述和计算[J].测绘学报,2007,36(2):176-180.
    [75]侯妙乐,刑华侨,赵学胜,陈军.球面四元三角网的复杂拓扑关系计算[J].武汉大学学报信息科学版,2012,37(4):469-471,481.
    [76] Luczak E.Rosenfeld.Distance on a Hexagonal Grid[J].IEEE Transactions on Computers,1976,25(5):532-533.
    [77] Nagy B.Finding Shortest Path with Neighbourhood Sequences in Triangular Grids[C].2nd InternationalSymposium on Image and Signal Processing and Analysis.Pula: IEEE,2001:55-60.
    [78] Nagy B.Distances with Neighbourhood Sequences in Cubic and Triangular Grids[J].Pattern RecognitionLetters,2007,28(1):99-l09.
    [79] Nagy B.Calculating Distance with Neighborhood Sequences in the Hexagonal Grid[J].Lecture Notes inComputer Science,2005,3322:98-109.
    [80]袁文,庄大方,袁武,唐志峰,邱冬生.离散三角网格系统距离量测方法[J].测绘学报,2011,40(1):59-65.
    [81]曾庆存,林朝辉.地球系统动力学模式和模拟研究的进展[J].地球科学进展,2010,25(1):1-6.
    [82]王斌,周天军,愈永强.地球系统模式发展展望[J].气象学报,2008,66(6):854-869.
    [83]崔铁军.地理信息科学基础理论[M].北京:科学出版社,2012.
    [84]王家耀.空间信息系统原理[M].北京:科学出版社,2000.
    [85]胡鹏,刘沛兰,胡海,杨传勇.地球信息的度量空间和GlobalGIS.武汉大学学报·信息科学版,2005,30(4):317-321.
    [86]赵学胜,侯妙乐,白建军.全球离散格网的空间数字建模[M].北京:测绘出版社,2007.5.
    [87]吴立新.GIS从区域到全球再到地球系统[R].第四届中国GIS博士生论坛,2010.11.20.
    [88] Qian Xue Sen.Engineering technology for environmental protection environmental systematicengineering[J].Environmental Protection.1983(6):1-4.
    [89]周俊.地球表层再讨论[J].自然灾害学报,2004,13(6):1-7.
    [90]张猛刚,雷祥义.地球表层系统浅论[J].西北地质,2005,38(2):99-101.
    [91]李德仁,彭明军.城市空问信息规则网格与不规则网格的数据转换[J].武汉大学学报·信息科学版,2007,32(2):95-99.
    [92] Suess, M., et al. Processing of SMOS level1c data onto a Discrete Global Grid[C]. In: InternationalGeoscience and Remote Sensing Symposium (IGARSS '04),2004,3:1914-1917.
    [93]马廷.离散格网系统与地理元胞自动机模型研究[D].北京:中国科学院研究生院,2006.
    [94] Bertrand G. A new characterization of three-dimensional simple points. Pattern Recognition Letters,1994,15:169–175.
    [95] Bertrand G. Simple points, topological numbers and geodesic neighborhoods in cubic grids. PatternRecognition Letters1994,15:1003–1011.
    [96] Kong TY, Rosenfeld A. Digital topology: Introduction and survey. CVGIP: Image Understanding,1989,48:357–393.
    [97] Kong TY, Rosenfeld A. If we use4-or8-connectedness for both the objects and the background, the eulercharacteristics is not locally computable. Pattern Recognition Letters,1990,11:231–232.
    [98] Rosenfeld A. Connectivity in digital pictures. Journal of the Association for Computing Machinery,1970,17:146–160.
    [99] Kong TY. A digital fundamental group. Computer Graphics1989;13:159–166.
    [100] Natarajan B. On generating topologically consistent isosurfaces from uniform samples. Visual Computer1994;11(1):52–62.
    [101] Nielson, GM.; Hamann, B. The asymptotic decider: Resolving the ambiguity in marching cubes. IEEEVisualization. Los Alamitos; Calif.:1991.83-91.
    [102] Lachaud J-O, Montanvert A. Continuous analogs of digital boundaries: A topological approach toisosurfaces. Graphical Models2000;62:129–164.
    [103]熊金城.点集拓扑讲义(第4版)[M].北京:高等教育出版社,2011.
    [104] Billen, R., Zlatanova, S., Mathonet, P., Boniver, F. The Dimensional Model: a Framework To DistinguishSpatial Relationships [C]. In: Int. Symp. on Advances in Spatial Databases.(2002)285-298.
    [105] Christopher Amante Barry W. Eakins.ETOPO11ARC-minute global relief model: procedures, datasources and analysis [M]. NOAA Technical Memorandum NESDIS NGDC-24,2009.
    [106] Barto Lt, KeithP.Model GTOPO30Data in ArcView GIS [M].2000.
    [107]訾国杰,郭增长,何荣.多源异构岩石圈板块数据处理与可视化[J].河南城建学院学报,2011,20(2):58-62.
    [108] Demets C G, Gordon R G, Argus D, et al.Current plate motions [J]. Geophys J Int,1990,101:425-478.
    [109] Peter Bird.An updated digital model of plate boundaries [J].Geochem Geophys Geosyst,2003,4(3):1027.
    [110]刘雪亚,王荃.中国地质图集[M].北京:地质出版社,2002.
    [111]朱介寿,蔡学林,曹家敏,等.中国及相邻区域岩石圈结构及动力学意义[J].中国地质,2006,33(4):794-801.
    [112] Falutsos C, Roseman S. Fractals for Sencondary Key Retrieval [C]. Proceeding of the8th ACMSIGACT-SIGMOD-SIGART Symposium on Priciples of Databse Systems, Philadelphia,1989:247-252.
    [113]陆锋,周成虎.一种基于空间层次分解的Hilbert码生成算法[J].中国图形图形学报,2001,6A(5):465-469.
    [114]李晨阳,段雄文,冯玉才.N维Hilbert曲线生成算法[J].中国图象图形学报,2006,11(8):1068-1075.
    [115]王永杰,孟令奎,赵春宇.基于Hilbert空间排列码的海量空间数据划分算法研究[J].武汉大学学报·信息科学版,2007,32(7):650-653.
    [116]周燕,朱庆,张叶廷.基于Hilbert曲线层次分解的空间数据划分方法[J].地理与地理信息科学,2007,23(4):13-17.
    [117] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering properties of theHilbert space-filling curve. IEEE Trans. Knowledge and Data Engineering,13(1):124-141,2001.
    [118] A. R. Butz. Alternative algorithm for Hilbert's space-filling curve [J]. IEEE Transactions on Computers,1971,4:424-426.
    [119] S. W. Thomas. Utah raster toolkit [EB/OL]. http://web.mit.edu/afs/athena/contrib/urt/src/urt3.1/urt-3.1b.tar.gz,1991.
    [120] D. Moore. Fast hilbert curve generation, sorting, and range queries [EB/OL].http://web.archive.org/web/20050212162158/http://www.caam.rice.edu/~dougm/twiddle/Hilbert/,1999.
    [121] F. Gray. Pulse code communication. US Patent Number2,632,058, March171953.
    [122] J. A. Fill and S. Janson. The number of bit comparisons used by quicksort: an average-case analysis [C].15th ACM-SIAM Symp. on Discrete Algorithms,2004,300–307.
    [123]曹雪峰.基于地理信息网格的矢量数据组织管理和三维可视化技术研究[D].郑州:解放军信息工程大学测绘学院,2009.
    [124]王律迪.基于区域结构的多尺度体数据表达及应用[D].北京:清华大学,2011.
    [125] Benes B., Forsbach R. Layered data representation for visual simulation of terrain erosion [C]. InComputer Graphics, Spring Conference (2001), IEEE,2001,80–86.
    [126] Peytavie A., Galin E., Merillou S., Grosjean J. Arches: a Framework for Modeling Complex Terrains[C].Proceedings of Eurographics28th,2009,2:457–467.
    [127] F. L ffler, Andreas Müller, H. Schumann. Real-time Rendering of Stack-based Terrains [C]. Vision,Modeling, and Visualization (2011), The Eurographics Association,2011,161-168.
    [128]童晓冲,吴立新,余接情,等.利用ESSG模型管理空间轨道目标的方法研究[J].地理与地理信息科学,2012,28(1):19-23.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.