昆虫激肽伪脯氨酸类似物的合成及其构效关系的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】本课题旨在通过引入可诱导cis/trans异构变化的伪脯氨酸(ΨPro),构建高cis构象含量的昆虫激肽类似物,并用蟑螂后肠收缩活性检测来阐明C端五肽H-Phe-Xaa-Yaa-Trp-Gly-NH_2的优势活性构象。Pseudoprolines(ΨPro)是由Ser/Thr和Cys与醛或酮环化缩合而成的Pro类似物,其脯氨酰环中的C_γH_2基被氧或硫原子取代。将ΨPro引入多肽中能够提高Xaa-Pro肽键中的cis构象的比率。【方法】本文描述了由Ser和Cys经过甲醛和2,2-二甲氧基丙烷经缩合环化反应形成伪脯氨酸Ser(~(Me,Me)Pro)-OH、Cys(~(H,H)Pro)-OH和Cys(~(Me,Me)Pro)-OH的过程,同时还描述了昆虫激肽H-Phe~1-Phe~2-Pro~3-Trp~4-Gly~5-NH_2及其ΨPro~3代类似物通过Fmoc固相合成方法的合成,用ESI-MS和HPLC对昆虫激肽类似物的结构和纯度进行分析。【结果】通过用不同ΨPro取代的昆虫激肽类似物进行促蟑螂后肠收缩活性研究,结果表明Pro-kinin、Ser(Me,Me)-kinin、Cys(H,H)-kinin和Cys(Me,Me)-kinin分别保留了昆虫激肽Achetakinin 1在1.1×10~7M时62%、93%、68%和88%的最大活性;而与之对应的EC_(50)值分别为2.81×10~(-8)M,3.74×10~(-8)M,2.12×10~(-8)M和1.79×10~(-8)M。【结论】以上实验结果表明,含具有诱导高顺式构象的双甲基取代的ΨPro昆虫激肽类似物有更高的活性,有利于形成Phe~1-Trp~4 cis-ProⅥ型β-转角的cis构象是昆虫激肽类似物产生生理活性的优势活性构象。
[Objective]In this work,pseudoprolines(ΨPro) was introduced to substitute the Pro residue in Incsect Kinin Core pentapetide H-Phe~1-Phe~2-Pro~3-Trp~4-Gly~5-NH_2 for forming a Xaa_(i-1)-Pro_i cis peptide bond,which can be strongly enhanced by the introduction of aΨPro residue depending on its C(2) substituents,to elucidate the bioactive conformation of the H-Phe~1-Phe~2-Pro~3-Trp~4-Gly~5-NH_2 using the myotropic activities on isolated cockroach hindgut.[Methods]Ser(~(Me,Me) Pro)-OH,Cys(~(H,H) Pro)-OH and Cys(~(Me,Me) Pro)-OH were obtained by cyclocondensation of the amino acids cysteine,threonine,or serine with aldehydes or ketones.Incsect Kinin and its analogs were synthesized by Fmoc solid peptide synthesis methods,the structures were analyzed with ESI-MS and HPLC.[Results]After measured with the cockroach hindgut myotropic activity of theΨPro analogs,the results indicated that Pro-kinin, Ser(Me,Me)-kinin,Cys(H,H)-kinin and Cys(Me,Me)-kinin have the activity of AchetakininⅠ62%,93%,68%and 88%,respectively,shown that the 2,2-dimethylated neuropeptide analogues appeared higher effect than others. [Conclusion]The cisΨPro~3-kinin conformer is the bioactive conformation when interact with kinin receptor on cockroach hindgut.Theβ-turn preference of residues Phe~1-Phe~2-Pro~3-Trp~4 implicates this as the bioactive conformation.
引文
1. Torfs P, Nieto J, Veelaert D, et al. The kinin peptide family in invertebrates. Neuropeptides: Structure and Function in Biology and Behavior, 1999, 897: 361-373
    2. Taneja-Bageshwar S, Strey A, Zubrzak P, et al. Comparative structure-activity analysis of insect kinin core analogs on recombinant kinin receptors from southern cattle tick Boophilus microplus (Acari : Ixodidae) and mosquito Aedes aegypti (Diptera : Culicidae). Archives of Insect Biochemistry and Physiology, 2006, 62(3): 128-140
    3. Nachman R J, Issac R E, Coast G M, et al.Aib-containing analogues of the insect kinin neuropeptide family demonstrate resistance to an insect angiotensin-converting enzyme and potent diuretic activity. Peptides, 1997,18(1): 53-57
    4. Ronald J. Nachman, Janusz Zabrocki, Victoria A. Roberts.Tetrazole cis-amide bond mimetics identify the β-turn conformation of insect kinin neuropeptides. Peptides Biology and Chemistry, 2000:158—162
    5. Cox K J A, Tensen C P, VanderSchors R C, et al. Cloning, characterization, and expression of a G-protein-coupled receptor from Lymnaea stagnalis and identification of a leucokinin-like peptide, PSFHSWSamide, as its endogenous ligand. Journal of Neuroscience, 1997, 17(4): 1197-1205
    6. Pietrantonio P V, Gibson G E, Strey A A, et al. Characterization of a leucokinin binding protein in Aedes aegypti (Diptera : Culicidae) Malpighian tubule. Insect Biochemistry and Molecular Biology, 2000,30(12): 1147-1159
    7. Nachman R J, Coast G M, Douat C, et al.A C-terminal aldehyde insect kinin analog enhances inhibition of weight gain and induces significant mortality in Helicoverpa zea larvae. Peptides, 2003,24(10): 1615-1621
    8. Veenstra J A, Pattillo J M, Petzel D H.A single cDNA encodes all three Aedes leucokinins, which stimulate both fluid secretion by the malpighian tubules and hindgut contractions. Journal of Biological Chemistry, 1997,272(16): 10402-10407
    9. Moyna G, Williams H J, Nachman R J, et al. Conformation in solution and dynamics of a structurally constrained linear insect kinin pentapeptide analogue. Biopolymers, 1999, 49(5): 403-413
    10. Cook B J, Holman G M, Wagner R M, et al. Pharmacological Actions of a New Class of Neuropeptides, the Leucokinins-I-Iv, on the Visceral Muscles of Leucophaea-Maderae. Comparative Biochemistry and Physiology C-Pharmacology Toxicology & Endocrinology, 1989, 93(2): 257-262
    11. Radford J C, Davies S A, Dow J A T.Systematic G-protein-coupled receptor analysis in Drosophila melanogaster identifies a leucokinin receptor with novel roles. Journal of Biological Chemistry, 2002, 277(41): 38810-38817
    12. Terhzaz S, O'Connell F C, Pollock V P, et al. Isolation and characterization of a leucokinin-like peptide of Drosophila melanogaster. The Journal of Experimental Biology, 1999,202: 3667-3676
    13. Hayes T K, Holman G M, Pannabecker T L, et al. Culekinin Depolarizing Peptide - a Mosquito Leucokinin-Like Peptide That Influences Insect Malpighian Tubule Ion-Transport. Regulatory Peptides, 1994, 52(3): 235-248
    14. Yu M J, Beyenbach K W.Effects of leucokinin-VIII on Aedes Malpighian tubule segments lacking stellate cells. The Journal of Experimental Biology, 2004, 207: 519-526
    15. Blackburn M B, Wagner R M, Shabanowitz J, et al. The Isolation and Identification of 3 Diuretic Kinins from the Abdominal Ventral Nerve Cord of Adult Helicoverpa-Zea. Journal of Insect Physiology, 1995, 41(8): 723-730
    16. Nieto J, Veelaert D, Derua R et al. Identification of one tachykinin- and two kinin-related peptides in the brain of the white shrimp, Penaeus vannamei. Biochemical and Biophysical Research Communications, 1998, 248(2): 406-411
    17. Coast G M.Synergism between diuretic peptides controlling ion and fluid transport in insect malpighian tubules. Regulatory Peptides, 1995, 57(3): 283-96
    18. Holman G M, Nachman R J, Coast G M.Isolation, characterization and biological activity of a diuretic myokinin neuropeptide from the housefly, Musca domestica. Peptides, 1999, 20(1): 1-10
    19. Coast G M. Insect Diuretic Peptides: Structures, Evolution and Actions. American Zoologist, 1998,38: 442-449.
    20. O'Donnell M J, Dow J A, Huesmann GR, et al. Separate control of anion and cation transport in malpighian tubules of Drosophila Melanogaster. Journal of Experimental Biology, 1996, 199(5): 1163-1175
    21. Orchard I, Brugge V T.Contractions associated with the salivary glands of the blood-feeding bug, Rhodnius prolixus: evidence for both a neural and neurohormonal coordination. Peptides, 2002,23(4): 693-700
    22. Harshini S, Nachman R J, Sreekumar S.Inhibition of digestive enzyme release by neuropeptides in larvae of Opisina arenosella (Lepidoptera : Cryptophasidae). Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 2002,132(2): 353-358
    23. Seinsche A, Dyker H, Losel P, et al. Effect of helicokinins and ACE inhibitors on water balance and development of Heliothis virescens larvae. Journal of Insect Physiology, 2000, 46(11): 1423-1431
    24. Saideman S R, Christie A E, Torfs P, et al. Actions of kinin peptides in the stomatogastric ganglion of the crab Cancer borealis. Journal of Experimental Biology, 2006, 209(18): 3664-3676
    25. Taneja-Bageshwar S, Strey A, Kaczmarek K, et al. Comparison of insect kinin analogs with cis-peptide bond, type VI-turn motifs identifies optimal stereochemistry for interaction with a recombinant arthropod kinin receptor from the southern cattle tick Boophilus microplus. Peptides, 2008, 29(2): 295-301
    26. Nachman R J, Coast G M, Holman G M, et al. Diuretic activity of C-terminal group analogues of the insect kinins in Acheta domesticus. Peptides, 1995,16(5): 809-813
    27. Roberts V A, Nachman R J, Coast G M, et al. Consensus chemistry and beta-turn conformation of the active core of the insect kinin neuropeptide family. Chemistry & Biology, 1997, 4(2): 105-117
    28. Zubrzak P, Williams H, Coast G M, et al. beta-amino acid analogs of an insect neuropeptide feature potent bioactivity and resistance to peptidase hydrolysis. Biopolymers, 2007, 88(1): 76-82
    29. Coast G M, Holman G M, Nachman R J.The Diuretic Activity of a Series of Cephalomyotropic Neuropeptides, the Achetakinins, on Isolated Malpighian Tubules of the House Cricket, Acheta-Domesticus. Journal of Insect Physiology, 1990,36(7): 481-488
    30. Nachman R J, Coast G M, Kaczmarek K, et al. Stereochemistry of insect kinin tetrazole analogues and their diuretic activity in crickets. Acta Biochimica Polonica, 2004, 51(1): 121-127
    31. Huang Y, Cong Z Y, Yang L F, et al.A photoswitchable thioxopeptide bond facilitates the conformation-activity correlation study of insect kinin. Journal of Peptide Science, 2008, 14(9): 1062-1068
    32. Claeys I, Poels J, Simonet G, et al. Insect neuropeptide and peptide hormone receptors: current knowledge and future directions. Vitamins & Hormones, 2005, 73: 217-282
    33. Hewes R S, Taghert P H.Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Research, 2001,11(6): 1126-1142
    34. Holmes S P, Barhoumi R , Nachman R J , et al. Functional analysis of a G protein-coupled receptor from the Southern cattle tick Boophilus microplus (Acari: Ixodidae) identifies it as the first arthropod myokinin receptor Insect Molecular Biology, 2003,12(1): 27-38
    35. Radford J C, Terhzaz S, Cabrero P, et al. Functional characterisation of the Anopheles leucokinins and their cognate G-protein coupled receptor. Journal of Experimental Biology, 2004, 207(26): 4573-4586
    36. Pietrantonio P V, Jagge C, Taneja-Bageshwar S, et al. The mosquito Aedes aegypti (L.) leucokinin receptor is a multiligand receptor for the three Aedes kinins. Insect Molecular Biology, 2005,14(1): 55-67
    37. Nachman RJ, Moyna G, Williams HJ, et al. Comparison of active conformations of the insectatachykinin/tachykinin and insect kinin/Tyr-W-MIF-1 neuropeptide family pairs. Neuropeptides: Structure and Function in Biology and Behavior, 1999,897: 388-400
    38. Mutter M, Wohr T, Gioria S, et al. Pseudo-prolines: Induction of cis/trans-conformational interconversion by decreased transition state barriers. Biopolymers,, 1999,51(2): 121-128
    39. Wittelsberger A, Keller M, Scarpellino L, et al. Pseudoprolines: Targeting a cis Conformation in a Mimetic of the gpl20 V3 Loop of HIV-1 We are grateful to Dipl.-Biol. Raymond Jacquet for helpful advice. This work was supported by the Swiss National Science Foundation. Angew Chem Int Ed Engl, 2000,39(6): 111-1115
    40. Pascal Dumy, Michael Keller, Declan E. Ryan, et al. Pseudo-Prolines as a Molecular Hinge: Reversible Induction of cis Amide Bonds into Peptide Backbones. J. Am. Chem. Soc, 1997, 119(5): 918-925
    41. Kang Y K, Park H S.Conformational preferences of pseudoproline residues. J Phys Chem B. Nov 1;():, 2007,111(43): 12551-12562.
    42. Torsten Wohr, Franck Wahl, Adel Nefzi, et al. Pseudo-Prolines as a Solubilizing, Structure-Disrupting Protection Technique in Peptide Synthesis. J. Am. Chem. Soc, 1996, 118(39): 9218-9227
    43. Mutter M, Nefzi A, Sato T, et al. PSEUDO-PROLINES (PSI-PRO) FOR ACCESSING INACCESSIBLE PEPTIDES. Peptide Research, 1995, 8(3): 145-153
    44. Michael Keller, Christophe Boissard, Luc Patiny, et al. Pseudoproline-Containing Analogues of Morphiceptin and Endomorphin-2: Evidence for a Cis Tyr-Pro Amide Bond in the Bioactive Conformation. J. Med. Chem., 2001, 44(23): 3896-3903
    45. Angela Wittelsberger, Luc Patiny, Jirina Slaninova, et al. Introduction of a cis-Prolyl Mimic in Position 7 of the Peptide Hormone Oxytocin Does Not Result in Antagonistic Activity. J. Med. Chem., 2005, 48(21): 6553-6562
    46. Michael Keller, Cedric Sager, Pascal Dumy, et al. Enhancing the Proline Effect: Pseudo-Prolines for Tailoring Cis/Trans Isomerization. J. Am. Chem. Soc, 1998, 120(12): 2714-2720
    47. William S. DiMenna, Claude Piantadosi.Synthetic Sulfur-Containing Amino Acids.Inhibition of Transport Systems in 537 Ascites Tumor Cells. American Chemical Society, 1978 21(10): 1070-1073
    48. Christine Kaduk, Holger Wenschuh, Michael Beyermann, et al. Synthesis of Fmoc-amino acid fluorides via DAST, an alternative fluorinating agent Letters in Peptide Science, 1995, 2(285-288):
    49. Holman GM, Nachman RJ, Schoofs L, et al. The Leucophaea Maderae hindgut preparation - a rapid and sensitive bioassay tool for the isolation of insect myotropins of other insect species. Insect Biochemistry 1991,21: 107-112
    50. Nachman RJ, Roberts VA, Holman GM, et al. Pseudodipeptide analogs of the Pyrokinin/PBAN (FXPRLa) Insect neuropeptide family containing carbocyclic Pro-mimetic conformational components. Regulatory Peptides, 1995,57: 359-370
    51. Lin L N, Brandts J F.Kinetic Mechanism for Conformational Transitions between Poly-L-Prolines-I and Poly-L-Prolines-Ii - a Study Utilizing the Cis-Trans Specificity of a Proline-Specific Protease. Biochemistry, 1980,19(13): 3055-3059
    52. Lin L N, Brandts J F.Evidence Suggesting That Some Proteolytic-Enzymes May Cleave Only the Trans Form of the Peptide-Bond. Biochemistry, 1979,18(1): 43-47
    53. Yamazaki T, Ro S, Goodman M, et al. A Topochemical Approach to Explain Morphiceptin Bioactivity. Journal of Medicinal Chemistry, 1993,36(6): 708-719
    54. Ottleben H, Haasemann M, Ramachandran R, et al. An NMR study of the interaction of N-15-labelled bradykinin with an antibody mimic of the bradykinin B2 receptor. European Journal of Biochemistry, 1997,244(2): 471-478
    55. Jomana Elaridi, W. Roy Jackson, Robinson A J.A catalytic asymmetric synthesis of 5,5-dimethylproline. Tetrahedron: Asymmetry 2005,16: 2025-2029
    56. Reimer U, Fischer GLocal structural changes caused by peptidyl-prolyl cis/trans isomerization in the native state of proteins. Chemical Biophysics, 2002, 96: 203-212
    57. Schutkowski M, Jakob M, Landgraf G, et al. Probing substrate backbone function in prolyl oligopeptidase catalysis - Large positional effects of peptide bond monothioxylation. European Journal of Biochemistry, 1997, 245: 381-385
    58. Bardi R, Piazzesi AM, Toniolo C, et al.molecular and crystal-structures of 3 monothiated analogs of the terminally blocked Ala-Aib-Ala sequence of peptaibol antibiotics. Biopolymers, 1988, 27: 747-761
    59. Yao J, Dyson HJ, PE. W.3-Dimensional structures of a type-VI turn in a linear peptide in water solution - evidence for stacking of aromatic rings as a major stabilizing factor. Journal of Molecular Biology, 1994,243: 754-66
    60.Hutchinson E G,M T J.A revised set of potentials for beta-turn formation in proteins.Protein Science,1994,3:2207-2216.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.