高脂对小鼠心肌细胞生物钟基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昼夜节律生物钟(circadian clock)参与调控机体行为与各项生理功能,以近24小时为周期的节律性震荡来适应不断变化的外界环境。昼夜节律的产生依赖于各种生物钟基因(clock gene)之间的协调表达。哺乳动物的中枢生物钟(central clock)位于下丘脑的视交叉上核(superachiasmatic nuclei, SCN)。外周组织如心、肝、肾等也有生物钟基因的表达。生物钟基因可以通过调节下游的钟控基因(clock controlled genes, ccgs)调节多项生理功能。外周细胞也有生物钟基因的表达,可独立地产生以24小时为周期的生物节律。
     研究表明,昼夜节律生物钟不仅参与生理功能的调节,一些生物钟基因表达的改变还参与了心血管系统、肿瘤等疾病的发生发展。在心血管系统疾病中,心肌梗塞(acute myocardial infarction)、脑卒中(stroke)等急性心血管事件的发病具有明显的昼夜节律,通常在清晨高发,但具体机制尚未阐明。本课题组的前期研究发现,apoE-/-小鼠的生物钟基因和凋亡、凝血、血管收缩及脂代谢等生物钟调节基因的表达发生改变。此外,目前生物钟基因与脂质代谢紊乱之间的关系开始受到关注。但新生小鼠最早开始表达生物钟节律的确切时间尚未有相关报道。因此我们首先要明确新生小鼠中枢和心脏生物钟基因节律产生的时间,进一步研究高脂对C57BL/6J小鼠心肌细胞生物钟基因表达的影响,从而探讨生物钟基因与脂质代谢紊乱之间的关系。
     第一部分:C57BL/6J小鼠心脏和中枢生物钟基因表达产生昼夜节律的时间
     目的:明确小鼠心脏和中枢生物钟基因表达产生昼夜节律的时间。
     材料与方法:将C57BL/6J孕鼠在12小时光照/12小时黑暗(Light12h/Dark12h, LD)环境中饲养。乳鼠出生的当天定为P0(postnatal day 0)。在乳鼠出生后的第一天(P1),第三天(P3)和第五天(P5),根据Zeitgaber Time,在ZT0、ZT4、ZT8、ZT12、ZT16、ZT20六个时间点分别处死乳鼠三只(性别不限)。取乳鼠心脏液氮速冻,取脑分离下丘脑视交叉上核(SCN)后液氮速冻,-80℃冰箱保存。利用Real-timeRCR检测C57BL/6J乳鼠SCN和心脏生物钟基因mPer2、mBmal1、mCry1、mRev-erba在不同时间点的表达。
     结果:C57BL/6J乳鼠心脏生物钟基因在出生后第三天(P3)表达出昼夜节律,SCN生物钟基因则在第五天(P5)产生了昼夜节律。另外,乳鼠心脏和SCN中的生物钟基因的节律相位会随着出生时间移动,直到第五天(P5)两者产生同步化。
     第二部分:高脂对小鼠心肌细胞生物钟基因表达的影响
     目的:研究高脂对C57BL/6J小鼠心肌细胞生物钟基因表达的影响。
     材料与方法:采用出生三天的C57BL/6J乳鼠,取其心脏培养心肌细胞。48小时后采用血清休克的方法处理心肌细胞,即用含50%马血清的培养液加入细胞两个小时,心肌细胞中的生物钟基因会产生周期大约为24小时的节律;然后在无血清的培养液中加入5种不同浓度(0.5、1、2.5、5、10mmol/L)的甘油三酯,0mmol/L为对照组。根据Zeitgaber Time,加入50%马血清的时间记为ZT0,以后每四个小时提取一次细胞mRNA,,-80℃冰箱保存。用Real-time RCR的方法检测C57BL/6J乳鼠心肌细胞中五个主要的生物钟基因mPer2、mBmal1、mCry1、mRev-erb a和mClock在不同时间点的表达。
     结果:研究发现采用血清休克方法处理的心肌细胞内的生物钟基因mRNA从ZT12到ZT60表达了两个完整的昼夜节律周期,且第二个周期的高峰比第一个低。加入甘油三酯后,中浓度组(2.5mmol/L)生物钟基因mRNA表达水平与对照组基本相同;低浓度组(0.5, 1mmol/L)比对照组生物钟基因mRNA表达水平低;高浓度组(5, 10mmol/L)比对照组生物钟基因mRNA表达水平高。
     结论:
     1、C57BL/6J小鼠心脏和中枢生物钟基因表达昼夜节律的时间分别为出生后第三天和第五天;中枢和外周生物钟基因表达同步化时间为出生后第五天。
     2、采用血清休克方法处理的心肌细胞生物钟基因mRNA从ZT12到ZT60表达了两个完整的昼夜节律周期,且第二个周期的高峰比第一个低。
     3、高脂可以影响心肌细胞中生物钟基因mRNA的表达,表现为低浓度表达水平降低,高浓度表达水平升高。
The circadian clock is involved in regulating behavior and many physiological functions. The rhythms are entrained to the 24h day by the light-dark (LD) cycle to adapt the natural conditions. Circadian rhythms are generated by the transcription-translation feedback loops of the core circadian genes. In mammals, the master circadian clock is located in suprachiasmatic nucleus (SCN) of the hypothalamus. Apart from SCN, it is shown that peripheral tissues (such as heart, liver, kidney, etc) have circadian oscillators. By regulating the clock controlled genes (CCGs), clock genes regulate many physical functions. Clock genes also can be expressed rhythmically in cultured cells after induced by two-hour serum shock.
     Many researches show that the circadian clock plays important roles in several pathological processes such as tumor and cardiovascular diseases besides physiological functions. In cardiovascular disease, the occurrence of stroke and acute myocardial infarction showed a circadian rhythm with the peak in the morning hours. Although the precise mechanism underlying the phenomenon is still not clear, circadian clock may involve in the process. Our previous research demonstrated that the expression amplitude and rhythmicity of all the target clock genes and clock controlled genes which controlled apoptosis, blood clotting, vasoconstriction and lipid metabolism was changed in apoE-/-mice, respectively. Besides, it started to be paid attention to the relationship of the clock genes and metabolic disturbance of lipid. However, no report showed the exact day when the clock genes started to show rhythmicity in mouse. We would ascertain the exact day when the clock genes expressed with circadian rhythms in the mouse SCN and heart, then observed the effect of high fat on the expression of circadian genes in mouse cardiomyocytes and approach the relationship of the clock genes and metabolic disturbance of lipid.
     Part I The time when clock genes expressed circadian rhythms in C57BL/6J mouse heart and central tissue
     Purpose The aim was to ascertain the exact day when the clock genes expressed with circadian rhythms in mouse heart and central tissue.
     Design Female C57BL/6J mice were maintained separately on a 12L:12D light-dark cycle. Day of delivery was designated the postnatal day 0 (PO). For postnatal studies of PI, P3 and P5, infants were kept with their mother through the experiment. According to Zeitgeber time (ZT), three pups of mixed sexes were sampled at different time points including ZTO, ZT4, ZT8, ZT12, ZT16 and ZT20. Hearts were harvested, frozen quickly in liquid nitrogen. Brains were taken away from the skull. And SCN was dissected grossly, quick-frozen in liquid nitrogen and stored at-80℃until RNA isolation. The daily expression of four clock genes mRNA (Bmall, Per2, Cryl and Rev-erb alpha) in mouse SCN and heart was measured at P1, P3 and P5 by real-time PCR.
     Results:All the studied mice clock genes began to express in a circadian rhythms manner in heart and SCN at P3 and P5, respectively. Interestingly, the daily rhythmic phase of some clock genes shifted during the postnatal days. Moreover, the expressions of clock genes in heart were not synchronized with those in SCN until at P5.
     PartⅡEffects of high fat on the expression of circadian genes in mouse cardiomyocytes
     Purpose The goal was to detect the impacts of triglycerides (TGs) on the expression of circadian genes in the cultured mouse cardiomyocytes.
     Design Hearts of C57BL/6J mice were harvested at postnatal day 3. Cardiomyocytes were isolated from the hearts. After cultured on plates for 48 hours, the cardiomyocytes were treated with 50%horse serum for 2 hours (serum shock).Clock genes could be expressed rhythmically except mClock. Serial concentration (0.5,1,2.5,5,10mmol/L) of TGs was given to the cardiomyocytes in different petri dishes after serum treatment, and the Ommol/L TGs group was the control. According to Zeitgeber time (ZT), the time when to give the TGs was ZTO. Then the clock genes mRNA expression level was detected by real-time PCR every 4 hours in the next 60 hours and stored at-80℃until RNA isolation. There are 5 core circadian genes in mouse such as mBmall (brain and arylhydrocarbon receptor nuclear translocator-like protein 1), mRev-erba (reverse strand of the c-erba), mPer2 (period 2), mCry (Cryptochrome) and mClock which were measured by real-time PCR.
     Results We found that the mRNA expressions in the cells started to show 2 circles of daily rhythms from ZT12 to ZT60 after serum treatment, and the peak of the second circle was lower than the first. The mRNA expressions of circadian genes in cardiomyocytes treated with 2.5mmol/L TGs were equal with TGs-free group. However, the expressions of circadian genes in cardiomyocytes were decreased with lower concentration of TGs (0.5, 1mmol/L), and were dramatically increased with higher level of TGs (5,10mmol/L).
     Conclusion
     1. In mouse, clock genes began to express in a circadian rhythms manner in heart and SCN at P3 and P5 respectively, and the central clock synchronized the peripheral clock as early as P5.
     2. The mRNA expressions in the cells started to show 2 circles of daily rhythms from ZT12 to ZT60 after serum treatment, and the peak of the second circle was lower than the first.
     3. The mRNA expression of clock genes could be affected by the TGs and the tendency was bidirectional according to the concentration of TGs.
引文
1. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB:Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002,109(3):307-320.
    2. Rusak B, Zucker I:Neural regulation of circadian rhythms. Physiol Rev 1979, 59(3):449-526.
    3. Sladek M, Sumova A, Kovacikova Z, Bendova Z, Laurinova K, Illnerova H: Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2004,101(16):6231-6236.
    4. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM:Characterization of peripheral circadian clocks in adipose tissues. Diabetes 2006,55(4):962-970.
    5. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M:Entrainment of the circadian clock in the liver by feeding. Science 2001,291(5503):490-493.
    6. Reilly DF, Curtis AM, Cheng Y, Westgate EJ, Rudic RD, Paschos G, Morris J, Ouyang M, Thomas SA, FitzGerald GA:Peripheral circadian clock rhythmicity is retained in the absence of adrenergic signaling. Arterioscl Throm Vas 2008, 28(1):121-126.
    7. Silver R, LeSauter J, Tresco PA, Lehman MN:A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 1996,382(6594):810-813.
    8. Buijs RM, Kalsbeek A:Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2001,2(7):521-526.
    9. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL et al: Positional cloning of the mouse circadian clock gene. Cell 1997,89(4):641-653.
    10. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA:Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000,103(7):1009-1017.
    11. Ko CH, Takahashi JS:Molecular components of the mammalian circadian clock. Hum Mol Genet 2006:R271-R277.
    12. Panda S, Hogenesch JB, Kay SA:Circadian rhythms from flies to human. Nature 2002,417(6886):329-335.
    13. Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM:mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 1999,98(2):193-205.
    14. Kunieda T, Minamino T, Katsuno T, Tateno K, Nishi J, Miyauchi H, Orimo M, Okada S, Komuro I:Cellular senescence impairs circadian expression of clock genes in vitro and in vivo. Circ Res 2006,98(4):532-539.
    15. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U:Circadian gene expression in individual fibroblasts:cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 2004,119(5):693-705.
    16. Guillaumond F, Dardente H, Giguere V, Cermakian N:Differential control of Bmall circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 2005,20(5):391-403.
    17. Preitner N, Damiola F, Luis-Lopez-Molina, Zakany J, Duboule D, Albrecht U, Schibler U:The orphan nuclear receptor REV-ERB alpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002,110(2):251-260.
    18. McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, FitzGerald GA: Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature:a humoral mechanism to reset a peripheral clock. Cell 2001,105(7):877-889.
    19. Reick M, Garcia JA, Dudley C, McKnight SL:NPAS2:an analog of clock operative in the mammalian forebrain. Science 2001,293(5529):506-509.
    20. Sakamoto K, Oishi K, Nagase T, Miyazaki K, Ishida N:Circadian expression of clock genes during ontogeny in the rat heart. Neuroreport 2002,13(10):1239-1242.
    21. Ansari N, Agathagelidis M, Lee C, Korf H, von Gall C:Differential maturation of circadian rhythms in clock gene proteins in the suprachiasmatic nucleus and the pars tuberalis during mouse ontogeny. Eur JNeurosci 2009,29(3):477-489.
    22. Ansari N, Agathagelidis M, Lee C, Korf H, von Gall C:Differential maturation of circadian rhythms in clock gene proteins in the suprachiasmatic nucleus and the pars tuberalis during mouse ontogeny. Eur JNeurosci 2009,29(3):477-489.
    23. Reppert SM:Interaction between the circadian clocks of mother and fetus. Ciba Found Symp 1995,183:198-207,207-211.
    24. Moore RY, Bernstein ME:Synaptogenesis in the rat suprachiasmatic nucleus demonstrated by electron microscopy and synapsin I immunoreactivity. JNeurosci 1989,9(6):2151-2162.
    25. Klein DC:Suprachiasmatic Nucleus:The Mind's Clock. In. Edited by S RYM. New York:Oxford Univ. Press; 1991:467.
    26. Devlin PF:Signs of the time:environmental input to the circadian clock. J Exp Bot 2002,53(374):1535-1550.
    27. Lee TM, Zucker I:Suprachiasmatic nucleus and photic entrainment of circannual rhythms in ground squirrels. JBiol Rhythms 1991,6(4):315-330.
    28. Munoz LM, Huerta JJ, Cernuda-Cernuda R, Garcia-Fernandez JM:Ontogeny of a photic response in the retina and suprachiasmatic nucleus in the mouse. Brain Res Dev Brain Res 2000,120(1):1-6.
    29. Stephan FK:The "other" circadian system:food as a Zeitgeber. JBiol Rhythms 2002,17(4):284-292.
    30. Sladek M, Jindrakova Z, Bendova Z, Sumova A:Postnatal ontogenesis of the circadian clock within the rat liver. Am J Physiol-Reg I 2007, 292(3):R1224-R1229.
    31. Ohta H, Honma S, Abe H, Honma K:Periodic absence of nursing mothers phase-shifts circadian rhythms of clock genes in the suprachiasmatic nucleus of rat pups. Eur JNeurosci 2003,17(8):1628-1634.
    32. Yamazaki S, Yoshikawa T, Biscoe EW, Numano R, Gallaspy LM, Soulsby S, Papadimas E, Pezuk P, Doyle SE, Tei H et al: Ontogeny of circadian organization in the rat. J Biol Rhythms 2009,24(1):55-63.
    33. Torres-Farfan C, Rocco V, Monso C, Valenzuela FJ, Campino C, Germain A, Torrealba F, Valenzuela GJ, Seron-Ferre M:Maternal melatonin effects on clock gene expression in a nonhuman primate fetus. Endocrinology 2006,147(10):4618-4626.
    [1]Young MW. Circadian rhythms. Marking time for a kingdom[J]. Science, 2000,288(5465):451-453
    [2]Miller BH, McDearmon EL, Panda S, et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation[J]. Proc Natl Acad Sci U S A,2007,104(9):3342-3347
    [3]Tanaka A, Kawarabayashi T, Fukuda D, et al. Circadian variation of plaque rupture in acute myocardial infarction[J]. Am J Cardiol,2004,93(1):1-5
    [4]Muller JE, Stone PH, Turi ZG, et al. Circadian variation in the frequency of onset of acute myocardial infarction[J]. N Engl J Med,1985,313(21):1315-1322
    [5]Rudic RD, McNamara P, Reilly D, et al. Bioinformatic analysis of circadian gene oscillation in mouse aorta[J]. Circulation,2005,112(17):2716-2724
    [6]Oishi, K., Miyazaki, K., Kadota, K., Kikuno, R., Nagase, T., Atsumi, G.,Ohkura, N., Azama, T., Mesaki, M., Yukimasa, S., et al. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J. Biol. Chem.2003 278,41519-41527.
    [7]Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, Evans RM. Nuclear receptor expression links the circadian clock to metabolism.Cell. 2006 Aug 25;126(4):801-10
    [8]Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science.2001 Jul 20;293(5529):437-8
    [9]Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002 Jul 26; 110(2):251-60
    [10]Nakamura K, Inoue I, Takahashi S, Komoda T, Katayama S. Cryptochrome and Period Proteins Are Regulated by the CLOCK/BMAL1 Gene:Crosstalk between the PPARs/RXRalpha-Regulated and CLOCK/BMAL1-Regulated Systems. PPAR Res. 2008;2008:348610
    [11]. Akira Kohsaka, Aaron D. Laposky, Kathryn Moynihan Ramsey, Carmela Estrada,1 Corinne Joshu, High-Fat Diet Disrupts Behavioral and Molecular Circadian Rhythms in Mice. Cell Metabolism 6,414-421, November 2007
    [12]Mohri T, Emoto N, Nonaka H, et al. Alterations of circadian expressions of clock genes in Dahl salt-sensitive rats fed a high-salt diet[J]. Hypertension, 2003,42(2):189-194
    [13]Naito Y, Tsujino T, Kawasaki D, et al. Circadian gene expression of clock genes and plasminogen activator inhibitor-1 in heart and aorta of spontaneously hypertensive and Wistar-Kyoto rats[J]. J Hypertens,2003,21(6):1107-1115
    [14]Turek FW, Joshu C, Kohsaka A et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science.2005 May 13;308(5724):1043-5
    [15]Rudic RD, McNamara P, Curtis AM, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2(11):e377
    [16]Aurelio Balsalobre, Francesca Damiola and Ueli SchiblerA. Serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998;93:929-937.
    [17]Welsh, D.K., Logothetis, D.E., Meister, M., and Reppert, S.M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron.1995:14,697-706.
    [18]Chen Xu, Chao Lu, Huiming Jin, Luchun Hua, Lianhua Yin, Sifeng Chen, Ruizhe Qian,. Rhythm changes of circadian and apoptosis-related genes in apoE knock-out atherosclerotic mouse heart. (accepted by The Canadian Journal of Cardiology)
    1. Cohen-Tannoudji M, Babinet C. Beyond 'knock-out' mice:new perspectives for the programmed modification of the mammalian genome. Mol Hum Reprod, 1998,4(10):929-38.
    2. Plump AS, Smith JD, Hayek T, et al. Severe hypercholes2 terolemia and atherosclerosis in apolipop rotein E2deficient mice created by homologous recombination in ES cells[J]. Cell,1992,71:343-353.
    3. Zhang Sunny H, Reddick RL, Piedrahita JA, et al. Spon2 taneous hypercholesterolemia and arterial lesions in mice lacking apolipop rotein E [J]. Science,1992,258:468-471.
    1. Abe M, et al. Circadian rhythms in isolated brain regions. J Neurosci 200222:350-356.
    2. Reppert SM, Weaver DR. Coordination of circadian timing in mammal [J]. Nature, 2002,418(6901):935-941.
    3. Silver R, LeSauter J, Tresco PA, Lehman MN. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature.1996,382(6594):810-813.
    4. Klein DC. Suprachiasmatic Nucleus:The Mind's Clock.In Edited by S RYM. New York:Oxford Univ. Press.1991:467.
    5. Devlin PF. Signs of the time:environmental input to the circadian clock. J Exp Bot 2002,53(374):1535-1550.
    6. Lee TM, Zucker I. Suprachiasmatic nucleus and photic entrainment of circannual rhythms in ground squirrels. J Biol Rhythms 1991,6(4):315-330.
    7. Hirota T. Fukada Y. Resetting mechanism of central and peripheral circadian clocks in mammals[J]. Zoological Science,2004,21(4):359-368
    8. Balsalobre A. Clock genes in mammalian peripheral tissues [J]. Cell & Tissue Research,2002,309(1):193-199
    9. Yamazaki S, Numano R, Abe M, et al. Resetting central and peripheral circadian oscillators [J]. Science,2000,288(5466):682-685
    10. Balsalobre A, Brown SA, Marcacci L et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling[J]. Science,2000,289(5488): 2344-2347
    11. Tosini G, Menaker M. Circadian rhythms in cultured mammalian retina. Science, 1996,272:419-421.
    12. Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in cultured Rat-1 fibroblasts. Cell,1998,93:929-937.
    13. Yamazaki S, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science,2000,288:682-685.
    14. Damiola F, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev,2000, 14:2950-2961.
    15. Joseph S. Takahashi, Hee-Kyung Hong, Caroline H. Ko and Erin L. McDearmon. The genetics of mammalian circadian order and disorder:implications for physiology and disease. Nature Reviews| genetics 2008,9,764-775.
    16. Bell-Pedersen, D. et al. Circadian rhythms from multiple oscillators:lessons from diverse organisms. Nature Rev. Genet.2005,6,544-556
    17. Lowrey, P. L.& Takahashi, J. S. Mammalian circadian biology:elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum.Genet. 2000,45,407-441.
    18. Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S.& Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell,2001,107, 855-867.
    19. Preitner, N. et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell, 2002,110,251-260.
    20. Sato, T. K. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron,2004,43,527-537.
    21. Lee C, Etchegaray J P, Cagampang F R, et al. Po sttrans21ationalmechanism s regulate themammalian circadian clock. Cell,2001,107:855-867.
    22. Eide E J,Vielhaber E L, Hinz W A, et al. The circadian regulatory protein BMAL1 and cryptochromes are substrates of casein kinase IE (CK IE). J Bio 1 Chem. 2002,277:17248-17254.
    23. Sanada K, Okano T, Fukada Y. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J Bio 1 Chem,2002,277:267-271.
    24. Lowrey P L, Shimomura K, Antoch M P, et al. Positional systemic cloning and functional characterization of a mammalian circadian mutation tau. Science,2000, 288:483-491.
    25. Toh K L, Jones C R, He Y, et al. An mPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science,2001,291:1040-1043.
    26. Zheng B, Mills A, Bradley A, et al. Nonredundant roles of the mPerl and mPer2 genes in the mammalian circadian clock. Cell,2001,105:683-694.
    27. Akashi M, Tsuchiya Y, Yoshino T, et al. Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CK IE) and CK I D in cultured cells. Mo 1 Cell Bio 1,2002,22:1693-1703.
    28. Martinek S, Inonog S,M anouk ian,A S, et al. A role for the segment polarity gene shaggyoGSK23 in the Drosophila circadian clock. Cell,2001,105:769-779.
    29. Vielhaber E L, Durcka D, Ullman K S, et al. Nuclear export of mammalian PERIOD proteins. J Bio 1 Chem,2001,276:45921-45927.
    30. Yagita K, Dong X, Tamanini F, et al. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 protein. EMBO J,2002,21: 1301-1314.
    31. Bunney W E, Bunney B G. Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuro Psych Pharmacology,2000,22:335-345.
    32. Muller JE, Tofler GH. Circadian variation and cardiovascular-disease. N Engl J Med.1991;325:1038-9.
    33. Ridker PM, Manson JE, Buring JE, Muller JE, Hennekens CH. Circadian variation of acute myocardial-infarction and the effect of low-dose aspirin in a randomized trial of physicians. Circulation.1990,82:897-902.
    34. Manfredini R, Portaluppi F, Zamboni P, Salmi R, Gallerani M. Circadian variation in spontaneous rupture of abdominal aorta. Lancet.1999,201:546-557.
    35. Turek FW, Joshu C, Kohsaka A et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science.2005,308:1043-5.
    36. Scott, E. M., Carter, A. M.& Grant, P. J. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int. J. Obes. (Lond.) 32, 658-662
    37. Woon, P. Y. et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc. Natl Acad. Sci. USA.2007,104:14412-14417.
    38. Shimba, S. et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc. Natl Acad. Sci. USA.2005,102: 12071-12076.
    39. Oishi, K., Miyazaki, K., Kadota, K., Kikuno, R., Nagase, T., Atsumi, G.,Ohkura, N., Azama, T., Mesaki, M., Yukimasa, S., et al. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J. Biol. Chem.2003, 278:41519-41527.
    40. Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, Evans RM. Nuclear receptor expression links the circadian clock to metabolism.Cell. 2006 Aug 25;126(4):801-10
    41. Vu-Dac N, Chopin-Delannoy S, Gervois P et al. The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. J Biol Chem. 1998;273:25713-20.
    42. Raspe E, Duez H, Mansen A et al. Identification of Rev-erbalpha as a physiological repressor of apoC-Ⅲ gene transcription. J Lipid Res.2002,43:2172-9.
    43. Duez H, Mansen A, Fievet C et al. Rev-erba:an orphan nuclear receptor regulating lipoprotein metabolism. Atherosclerosis.2000,149:229-38.
    44. Hummasti S, Tontonoz P. The Peroxisome Proliferator-activated Receptor N-terminal Domain Controls isotype-selective Gene Expression and Adipogenesis. Molecular endocrinology.2006,20 (6):1261-1275.
    45. Bhatia V, Viswanatan P. Insulin Resistance and PPAR Insulin Sensitizers. Current opinion in investigational drugs.2006,7 (10):891-897.
    46. Nakamura K, Inoue I, Takahashi S, Komoda T, Katayama S. Cryptochrome and Period Proteins Are Regulated by the CLOCK/BMAL1 Gene:Crosstalk between the PPARs/RXRalpha-Regulated and CLOCK/BMAL1-Regulated Systems. PPAR Res. 2008,2008:348610
    47. Migita H, Morser J, Kawai K. Rev-erbalpha upregulates NF-kappaBresponsive genes in vascular smooth muscle cells. FEBS Lett.2004,561:69-74.
    48. Barish GD, Downes M, Alaynick WA et al. A nuclear receptor atlas:macrophage activation. Mol Endocrinol.2005,19:2466-77.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.