关于唐氏综合征细胞粘附分子在小鼠神经系统发育中的作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不论是对脊椎动物还是无脊椎动物来说,神经系统都堪称最复杂的系统之但目前对于神经网络的形成及其调节的具体机制还了解甚少。
     目前的研究表明,一些膜蛋白特别是细胞粘附分子家族成员参与到神经系统发育以及神经网络形成的调节过程中。唐氏综合征细胞粘附分子(Down Syndrome Cell Adhesion Molecule,DSCAM)编码的跨膜蛋白是免疫球蛋白超家族成员,属于细胞粘附分子家族。DSCAM的功能被认为与神经系统的发育密切相关。果蝇中的Dscam1基因通过选择性剪切可以产生数量众多的蛋白异构体,并通过嗜同型结合产生排斥效应,参与调节神经元轴突的分枝,树突的自我回避以及胞体的“马赛克”分布。脊椎动物DSCAM除介导嗜同型排斥外,还可介导嗜同型粘附和吸引。在脊椎动物中,还发现DSCAM具有嗜异型结合的特性。在鸡胚和小鼠胚胎发育中,DSCAM能够与DCC相互作用,共同参与介导了由netrin-1引起的轴突导向及联合纤维的跨中线转向行为。但DSCAM蛋白发挥生物学功能的具体机制及其信号通路仍需要进一步研究。
     在第一部分工作中,我们发现在3周龄时,与同窝野生型(Wild-type,Wt)小鼠相比,Dscamdell7突变纯合(Homozygous Dscam mutant,Hm)小鼠发育较为迟滞。2月龄时,Hm表现出行走姿势的改变。转棒实验结果显示,Hm小鼠奔跑的持续时间(n=10,28.30s±5.54)与Wt小鼠(n=6,115.70s±23.33)和Dscamdell7突变杂合(Heterozygous Dscam mutant,Het)小鼠(n=5,132.00 s±24.39)相比显著缩短。Hm小鼠掉落时转棒的速度(n=6,14.73 rpm±2.22)与Wt(n=6,33.67 rpm±2.21)和Het小鼠(n=5.35.59 rpm±2.16)掉落时转棒的转速相比也显著减慢。经过训练,Wt小鼠奔跑的持续时间显著延长(n=4,首次:84.50 s±23.29,第八次:188.80 s±29.59),而Het小鼠(n=5,首次:111.80 s±30.08,第八次:187.60 s±23.42)和Hm小鼠则无显著差异(n=3,首次:8.00 s±2.89,第八次:18.33 s±10.87)。
     在第二部分工作中,我们发现在2月龄时,Hm小鼠大脑与同窝Wt小鼠和Het小鼠相比,出现皮层的塌陷。塌陷部位和程度在Hm小鼠中存在个体差异。统计结果显示,Hm小鼠脑室体积较Wt小鼠(P<0.05)和Het小鼠显著增大(P<0.05),Hm小鼠脑室容积与整个大脑体积的百分比也较Wt(P<0.05)和Het小鼠显著升高(P<0.05)。Hm小鼠脑室的扩张还严重影响了大脑皮层,胼胝体,纹状体和海马的发育。不同脑区的大脑皮层(Cg/RS:P<0.001,M:p<0.001,S:P<0.01)和胼胝体的联合纤维(Cg/RS:P<0.001,M:P<0.001,S:P<0.01)较Wt小鼠均显著变薄。
     本论文通过实验发现Dscamdell7突变小鼠存在运动能力的下降,运动学习记忆能力的受损,以及脑室显著扩张,脑内结构发育缺陷等表型。初步探索了Dscam基因在小鼠神经系统发育及大脑结构发育中的作用。并提示Dscam基因可能是一个与脑积水发病机制相关的新基因,为脑积水发病机制的研究提供了新的模型小鼠,也为脑积水的研究提供了新的思路。
The nervous system is one of the most complicated systems in both vertebrates and invertebrates. The mechanisms underlying the formation of this system are still largely unknown.
     Previous studies show that many membrane proteins, especially cell adhesion molecules participate in various steps of neural development and neural network formation. The transmembrane protein encoded by DSCAM is a member of Immunoglobulin superfamily and belongs to cell adhesion molecule family. DSCAM plays a crucial role in the development of nervous system. Drosophila Dscam can generate thousands of isoforms through alternative splicing from single gene, among which only the same isoforms can bind to each other. The repulsive effect resulted from homophilic binding is involved in many aspects of neural development such as axon branching, dendritic tiling and soma spacing. The vertebrate DSCAM can play similar role in neural development such as axon branching, dendritic tiling and soma spacing. Current data suggest that in chicken retina, DSCAM can also mediate axon layer-specific targeting and synaptic formation by homophilic adhesion. Furthermore, besides mediating homophilic repulsion or adhesion, vertebrate DSCAM can heterophilically bind to DCC to form a complex receptor in the absence of netrin-1, and when netrin is present, this complex begins to dissociate. Thus, DSCAM and DCC may collaborate in mediating axon turning and midline crossing of commissural axon in response to netrin-1. However, the underlying mechanism and signaling pathway are still largely unknown.
     In the first part of this study, we found that, at 3 weeks old, compared with Wild-type (Wt) littermates, homozygous Dscam mutant (Hm) mice showed maldevelopment. At 2 months old, compared with Wt mice, Hm mice exhibited severe change of walking posture. A accelerating rotarod test showed that the average running time of Hm mice (n=10,28.30 s±5.54) were significantly shorter than Wt (n= 6, 115.70 s±23.33) and heterozygous Dscam mutant (Het) (n= 5,132.00 s±24.39) mice. The speed of rotarod when Hm (n= 6,14.73 rpm±2.22) mice fell off was significantly lower than Wt (n= 6,37.67 rpm±2.21) and Het (n= 5,35.59 rpm±2.16) mice. After 8 trials of training, the average running time of the Wt mice was significantly extended (n = 4, first:84.5 s±23.39, eighth:188.80 s±29.59) while that of Het (n= 5, n= 5, first: 111.80 s±30.08, eighth:187.60 s±23.42) and Hm mice (n= 3, first:8.00 s±2.89. eighth:18.33 s±10.87) had no significant difference between before and after the training sessions.
     In the second part of this study, we demonstrated that, at 2 months old, dissected Hm mice brains showed collapsed cortex comparing with littermate Wt and Het mice. There were some variations among individuals of the collapsed area and degree. Quantification results suggested that ventricles of Hm mice were significantly enlarged than Wt (P< 0.05) and Het mice (P< 0.05). The ratio of the ventricular volume to the total brain volume of Hm mice was also significantly higher than Wt (P< 0.05) and Het mice (P< 0.05). In addition, there was no significant difference between Wt and Het mice. Furthermore, we also found that as consequences of ventricular dilation, the thickness of cortex (Cg/RS:P< 0.001, M:P< 0.001, S:P< 0.01) and corpus callosum (Cg/RS:P< 0.001, M:P< 0.001, S:P< 0.01) of Hm mice in different cortical regions were significantly thinner than Wt mice. The hippocampus of Hm mice also showed malformation such as shorter longitude and rough margin. Besides, in Hm mice, the internal capsule fibers of striatum were stretched.
     This work demonstrated that Hm mice had decreased motor function, decreased motor learning ability and enlarged ventricles with preliminary exploring the function of Dscam during neural development and brains structural formation. Moreover, the dilated ventricles suggested that Dscam may be a new candidate gene of hydrocephalus. The Dscam dell7 mutant mouse can be used as new animal model for hydrocephalus, providing a new idea for the researches of hydrocephalus.
引文
[1]Millard SS, Zipursky SL. Dscam-mediated repulsion controls tiling and self-avoidance [J]. Curr Opin Neurobiol,2008,18(1):84-89.
    [2]Kolodziej PA, Timpe LC, Mitchell KJ, Fried SR, Goodman CS, Jan LY, Jan YN. frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance [J]. Cell,1996,87(2):197-204.
    [3]Pappu KS, Zipursky SL. Axon Guidance:Repulsion and Attraction in Roundabout Ways [J]. Current Biology,2010,20(9):400-402.
    [4]Graf ER, Kang Y, Hauner AM, Craig AM. Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain [J]. J Neurosci,2006, 26(16):4256-4265.
    [5]Boucard AA, Chubykin AA, Comoletti D, Taylor P, Sudhof TC. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha-and beta-neurexins [J]. Neuron,2005,48(2):229-236.
    [6]Yamakawa K, Huot YK, Haendelt MA, Hubert R, Chen XN, Lyons GE, Korenberg JR. DSCAM:a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system [J]. Hum Mol Genet,1998,7(2):227-237.
    [7]Agarwala KL, Nakamura S, Tsutsumi Y, Yamakawa K. Down syndrome cell adhesion molecule DSCAM mediates homophilic intercellular adhesion [J]. Brain Res Mol Brain Res,2000,79(1-2):118-126.
    [8]Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity [J]. Cell,2000,101(6):671-684.
    [9]Agarwala KL, Ganesh S, Tsutsumi Y, Suzuki T, Amano K, Yamakawa K. Cloning and functional characterization of DSCAML1, a novel DSCAM-like cell adhesion molecule that mediates homophilic intercellular adhesion [J]. Biochem Biophys Res Commun,2001,285(3):760-772.
    [10]Zhu K, Xu Y, Liu J, Xu Q, Ye H. Down syndrome cell adhesion molecule and its functions in neural development [J]. Neurosci Bull,2011,27(l):45-52.
    [11]Millard SS, Flanagan JJ, Pappu KS, Wu W, Zipursky SL. Dscam2 mediates axonal tiling in the Drosophila visual system [J]. Nature,2007,447(7145):720-724.
    [12]Celotto AM, Graveley BR. Alternative splicing of the Drosophila Dscam pre-mRNA is both temporally and spatially regulated [J]. Genetics,2001, 159(2):599-608.
    [13]Neves G, Zucker J, Daly M, Chess A. Stochastic yet biased expression of multiple Dscam splice variants by individual cells [J]. Nat Genet,2004,36(3):240-246.
    [14]Wojtowicz WM. Flanagan JJ, Millard SS, Zipursky SL, Clemens JC. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding [J]. Cell,2004,118(5):619-633.
    [15]Brites D, McTaggart S, Morris K, Anderson J, Thomas K, Colson I, Fabbro T, Little TJ, Ebert D, Du Pasquier L. The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects [J]. Mol Biol Evol,2008, 25(7):1429-1439.
    [16]Yu HH, Yang JS, Wang J, Huang Y, Lee T. Endodomain diversity in the Drosophila Dscam and its roles in neuronal morphogenesis [J]. J Neurosci,2009, 29(6):1904-1914.
    [17]Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL. A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains [J]. Cell,2007,130(6):1134-1145.
    [18]Meijers R, Puettmann-Holgado R, Skiniotis G, Liu JH, Walz T, Wang JH, Schmucker D. Structural basis of Dscam isoform specificity [J]. Nature,2007, 449(7161):487-491.
    [19]Hattori D, Demir E, Kim HW, Viragh E, Zipursky SL, Dickson BJ. Dscam diversity is essential for neuronal wiring and self-recognition [J]. Nature,2007, 449(7159):223-227.
    [20]Hummel T, Vasconcelos ML, Clemens JC, Fishilevich Y, Vosshall LB, Zipursky SL. Axonal targeting of olfactory receptor neurons in Drosophila is controlled by Dscam [J]. Neuron,2003,37(2):221-231.
    [21]Sawaya MR, Wojtowicz WM, Andre Ⅰ, Qian B, Wu W, Baker D, Eisenberg D, Zipursky SL. A double S shape provides the structural basis for the extraordinary binding specificity of Dscam isoforms [J]. Cell,2008,134(6):1007-1018.
    [22]Chen BE, Kondo M, Gamier A, Watson FL, Puettmann-Holgado R, Lamar DR, Schmucker D. The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila [J]. Cell,2006,125(3):607-620.
    [23]Wang J, Zugates CT, Liang IH, Lee CH, Lee T. Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons [J]. Neuron,2002,33(4):559-571.
    [24]Hughes ME, Bortnick R, Tsubouchi A, Baumer P. Kondo M, Uemura T, Schmucker D. Homophilic Dscam interactions control complex dendrite morphogenesis [J]. Neuron,2007,54(3):417-427.
    [25]Matthews BJ, Kim ME, Flanagan JJ, Hattori D, Clemens JC, Zipursky SL, Grueber WB. Dendrite self-avoidance is controlled by Dscam [J]. Cell,2007, 129(3):593-604.
    [26]Soba P, Zhu S, Emoto K, Younger S, Yang SJ, Yu HH, Lee T, Jan LY, Jan YN. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization [J]. Neuron,2007,54(3):403-416.
    [27]Hattori D, Chen Y, Matthews BJ, Salwinski L, Sabatti C, Grueber WB, Zipursky SL. Robust discrimination between self and non-self neurites requires thousands of Dscaml isoforms [J]. Nature,2009,461(7264):644-648.
    [28]Schmucker D. Molecular diversity of Dscam:recognition of molecular identity in neuronal wiring [J]. Nat Rev Neurosci,2007,8(12):915-920.
    [29]Millard SS, Lu Z, Zipursky SL, Meinertzhagen IA. Drosophila dscam proteins regulate postsynaptic specificity at multiple-contact synapses [J]. Neuron,2010, 67(5):761-768.
    [30]Agarwala KL, Ganesh S, Amano K, Suzuki T, Yamakawa K. DSCAM, a highly conserved gene in mammals, expressed in differentiating mouse brain [J]. Biochem Biophys Res Commun,2001,281(3):697-705.
    [31]Fuerst PG, Koizumi A, Masland RH, Burgess RW. Neurite arborization and mosaic spacing in the mouse retina require DSCAM [J]. Nature,2008,451(7177):470-474.
    [32]Fuerst PG, Bruce F, Tian M, Wei W, Elstrott J, Feller MB, Erskine L, Singer JH, Burgess RW. DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina [J]. Neuron,2009,64(4):484-497.
    [33]Yamagata M, Sanes JR. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina [J]. Nature,2008,451(7177):465-469.
    [34]Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stcin E. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion [J]. Cell,1999, 97(7):927-941.
    [35]Nishiyama M, Hoshino A, Tsai L, Henley JR, Goshima Y, Tessier-Lavigne M, Poo MM, Hong K. Cyclic AMP/GMP-dependent modulation of Ca2+channels sets the polarity of nerve growth-cone turning [J]. Nature,2003,423(6943):990-995.
    [36]Tessier-Lavigne M, Placzek M, Lumsden AG, Dodd J, Jessell TM. Chemotropic guidance of developing axons in the mammalian central nervous system [J]. Nature,1988. 336(6201):775-778.
    [37]Hedgecock EM, Culotti JG, Hall DH. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C elegans [J]. Neuron,1990,4(1):61-85.
    [38]Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord [J]. Cell,1994, 78(3):425-435.
    [39]Mitchell KJ, Doyle JL, Serafini T, Kennedy TE, Tessier-Lavigne M, Goodman CS, Dickson BJ. Genetic analysis of Netrin genes in Drosophila:Netrins guide CNS commissural axons and peripheral motor axons [J]. Neuron,1996,17(2):203-215.
    [40]Leung-Hagesteijn C, Spence AM, Stern BD, Zhou Y, Su MW, Hedgecock EM, Culotti JG. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans [J]. Cell,1992, 71(2):289-299.
    [41]Chan SS, Zheng H, Su MW, Wilk R, Killeen MT, Hedgecock EM, Culotti JG. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues [J]. Cell,1996,87(2):187-195.
    [42]Deiner MS, Kennedy TE, Fazeli A, Serafini T, Tessier-Lavigne M, Sretavan DW. Netrin-1 and DCC mediate axon guidance locally at the optic disc:loss of function leads to optic nerve hypoplasia [J]. Neuron,1997,19(3):575-589.
    [43]Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor [J]. Cell,1996,87(2):175-185.
    [44]Ly A, Nikolaev A, Suresh G, Zheng Y, Tessier-Lavigne M, Stein E. DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1 [J]. Cell,2008,133(7):1241-1254.
    [45]Liu G, Li W, Wang L, Kar A, Guan KL, Rao Y, Wu JY. DSCAM functions as a netrin receptor in commissural axon pathfinding [J]. Proc Natl Acad Sci U S A,2009, 106(8):2951-2956.
    [46]Amano K, Fujii M, Arata S, Tojima T, Ogawa M, Morita N, Shimohata A, Furuichi T, Itohara S, Kamiguchi H, et al. DSCAM deficiency causes loss of pre-inspiratory neuron synchroneity and perinatal death [J]. J Neurosci,2009,29(9):2984-2996.
    [47]Jacobs PA, Baikie AG, Court Brown WM, Strong JA. The somatic chromosomes in mongolism [J]. Lancet,1959, 1(7075):710.
    [48]Lejeune J, Turpin R. Somatic chromosomes in mongolism [J]. Res Publ Assoc Res Nerv Ment Dis,1962,39:67-77.
    [49]Marin-Padilla M. Structural abnormalities of the cerebral cortex in human chromosomal aberrations:a Golgi study [J]. Brain Res,1972,44(2):625-629.
    [50]Alves-Sampaio A, Troca-Marin JA, Montesinos ML. NMDA-mediated regulation of DSCAM dendritic local translation is lost in a mouse model of Down's syndrome [J]. J Neurosci,2010,30(40):13537-13548.
    [51]Agarwala KL, Ganesh S, Suzuki T, Akagi T, Kaneko K, Amano K, Tsutsumi Y, Yamaguchi K, Hashikawa T, Yamakawa K. Dscam is associated with axonal and dendritic features of neuronal cells [J]. J Neurosci Res,2001,66(3):337-346.
    [52]Barlow GM, Lyons GE, Richardson JA, Sarnat HB, Korenberg JR. DSCAM:an endogenous promoter drives expression in the developing CNS and neural crest [J]. Biochem Biophys Res Commun,2002,299(1):1-6.
    [53]Barlow GM, Micales B, Chen XN, Lyons GE, Korenberg JR. Mammalian DSCAMs:roles in the development of the spinal cord, cortex, and cerebellum? [J]. Biochem Biophys Res Commun,2002,293(3):881-891.
    [54]Frankin KBJ, Paxinos G. The mouse brain in stereotaxic coordinates [M]:New York:Academic,1997.
    [55]Rapoport SI. Blood-brain barrier in physiology and medicine. [M]:New York: Raven Press,1976:316.
    [56]Cao Y, Brown SL, Knight RA, Fenstermacher JD, Ewing JR. Effect of intravascular-to-extravascular water exchange on the determination of blood-to-tissue transfer constant by magnetic resonance imaging [J]. Magn Reson Med,2005, 53(2):282-293.
    [57]Schiller F. The cerebral ventricles. From soul to sink [J]. Arch Neurol,1997, 54(9):1158-1162.
    [58]Johanson CE, Duncan JA,3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions:New challenges in health and disease [J]. Cerebrospinal Fluid Res,2008,5:10.
    [59]Dennis M, Landry SH, Barnes M, Fletcher JM. A model of neurocognitive function in spina bifida over the life span [J]. J Int Neuropsychol Soc,2006, 12(2):285-296.
    [60]Hannay HJ, Walker A, Dennis M, Kramer L. Blaser S, Fletcher JM. Auditory interhemispheric transfer in relation to patterns of partial agenesis and hypoplasia of the corpus callosum in spina bifida meningomyelocele [J]. J Int Neuropsychol Soc,2008, 14(5):771-781.
    [61]1Del Bigio MR. Ependymal cells:biology and pathology [J]. Acta Neuropathol, 2010,119(1):55-73.
    [62]Del Bigio MR, Enno TL. Effect of hydrocephalus on rat brain extracellular compartment [J]. Cerebrospinal Fluid Res,2008,5:12.
    [63]Haverkamp F, Wolfle J, Aretz M, Kramer A, Hohmann B, Fahnenstich H, Zerres K. Congenital hydrocephalus internus and aqueduct stenosis:aetiology and implications for genetic counselling [J]. Eur J Pediatr,1999,158(6):474-478.
    [64]Jouet M, Rosenthal A, MacFarlane J, Kenwrick S, Donnai D. A missense mutation confirms the L1 defect in X-linked hydrocephalus (HSAS) [J]. Nat Genet,1993, 4(4):331.
    [65]Zhang J, Williams MA, Rigamonti D. Genetics of human hydrocephalus [J]. J Neurol,2006,253(10):1255-1266.
    [66]Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, et al. New neurons follow the flow of cerebrospinal fluid in the adult brain [J]. Science,2006,311(5761):629-632.
    [67]Hu H. Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain [J]. Neuron,1999,23(4):703-711.
    [68]Nguyen-Ba-Charvet KT, Picard-Riera N, Tessier-Lavigne M, Baron-Van Evercooren A, Sotelo C, Chedotal A. Multiple roles for slits in the control of cell migration in the rostral migratory stream [J]. J Neurosci,2004,24(6):1497-1506.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.