离子自组装制备光敏功能超分子材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光敏聚合物由于在智能响应系统及光学器件中的潜在应用,受到了广泛关注。目前,已经开发了多种光敏材料包括染料掺杂聚合物和各种共价合成的光敏高分子。然而,掺杂聚合物由于相容性问题通常染料掺杂量不高,并且光诱导取向的稳定性差;共价合成的光敏材料光学性能优良但合成过程繁琐复杂,需多步反应,最终产率很低。因此设计合成性能优良的光敏聚合物以满足不同的应用需要,仍是目前重要的研究目标。离子自组装主要利用库仑作用将相反电荷的构筑单元结合在一起,可以根据实际应用需要,选择不同的构筑单元,精确组合复合物的结构,因此离子自组装技术为开发具有独特光物理化学性能的光敏材料提供了非常好的解决方案。本论文利用离子自组装技术探索合成了一系列的光敏超分子材料,详细研究其相态行为、光学性质及对小分子液晶取向的有效性,为新型高性能光敏材料的设计合成提供了新思路。
     首先基于离子自组装技术设计合成了可作为液晶取向层的光敏材料。该复合物材料通过离子偶合聚离子液体和光敏单元甲基橙制得,用傅立叶变换红外、核磁共振、热分析、正交偏光显微镜、X射线衍射、小角X射线散射和双折射等分析手段对光敏复合物材料的结构、相行为和光响应性能进行了详细研究,证实了复合物材料具有高度有序的层状纳米有序结构和较高的光敏特性。利用脉冲紫外激光辐照复合物膜,在较低能量下,可得到光学各向异性表面,取向方向垂直于激光的偏振方向;在较高辐照能量下,得到规则的周期性沟槽结构,沟槽方向平行于激光的偏振方向。液晶盒于正交偏振片间的透光率曲线和偏光显微镜观察证明,不论分子链取向的光学各向异性表面还是具有沟槽结构的形貌各向异性表面都可实现对小分子液晶的均匀取向。
     虽然上述光敏超分子可用于各向异性表面的制备,并实现了对小分子液晶的取向,但刚性的分子结构使聚合物膜的机械性能较差,并且限制了光诱导各向异性取向性能,因此我们进一步设计合成了一系列具有不同烷基链长度的功能组装单元偶氮离子液晶(azo-ILC),偶氮苯基团和季铵离子端间的亚甲基间隔数分别有4、6或12。通过离子自组装聚丙烯酸和偶氮离子液晶,构筑了相态可调、取向性能优良的偶氮热致液晶超分子材料(根据亚甲基间隔数的不同分别指名为PAZO4,PAZO6和PAZO12)。结果证实,该超分子材料呈现不同d间距的层状纳米有序结构。通过偏振紫外和偏振傅立叶变换红外对组装超分子材料的光取向性能进行了研究。在脉冲激光辐照下,可以获得非常突出的光学各向异性,取向方向垂直于激光偏振方向。通过激光辐照和退火处理,PAZO12的最大面内取向度的数值可达0.93,这是目前文献报道的偶氮聚合物光取向的最大值。并且发现最大面内取向度随着光敏材料清亮点温度的提高而增大,此结果可为有效光诱导取向材料的设计提供指导。
     由离子自组装聚电解质和商业化的表面活性剂或精心设计的双亲性功能小分子构筑的超分子材料都是单功能性的,而实际应用中往往对功能材料的要求是多方面的,因此双功能化甚至多功能化,是功能材料发展的必然趋势。为此我们提出了双功能性超分子的概念,利用离子自组装技术将光学各向异性和可调的润湿性结合起来。不同比例的光敏单元MO和全氟十二酸(FDA)作为功能侧链通离子自组装接枝到聚离子液体主链上,制备了系列双功能复合物。通过改变MO和FDA的组装比例可以实现对复合物材料表面润湿性能和光诱导各向异性的调控。488 nm偏振激光室温下辐照,可获得双折射值Δn~10-2的光学各向异性取向,并且该复合物材料光取向稳定性好。复合物膜的表面接触角随着FDA含量的增加而增大,即通过调节氟链的含量可实现表面润湿性的连续变化。更重要的是,通过调节光辐照取向的复合物取向层中FDA的比例,可以实现对液晶小分子从平面取向到垂直取向的转变。
     肉桂酸类聚合物及其衍生物在可见区域是无色透明的,因此在光学器件特别是液晶取向中比偶氮材料更有优势。其光化学反应包括[2+2]的光交联反应和肉桂酸的光异构化,在线性偏振光辐照下,发生光学各向异性取向的同时形成了立体交联网络,因此取向膜的稳定性好。目前,肉桂酸类光敏聚合物的非共价合成还没有报道。为此,我们通过离子自组装技术将聚乙烯苯磺酸与季铵端基的肉桂酸甲酯结合在一起,制备了肉桂酸酯侧链超分子聚合物。根据烷基链间隔长度的不同,6或12个亚甲基单元分别指名为PCAM6和PCAM12。研究了激光辐照下复合物材料的光交联性能和光诱导取向行为。将旋涂膜置于掩模板下,通过激光辐照和显影可以得到清晰的图形结构。取向研究发现,较长的柔性间隔有利于肉桂基团的光异构化,从而PCAM12的光诱导取向较PCAM6的大。另外在该交联性光学各向异性膜上实现了稳定均匀的液晶取向。
Photosensitive polymers have attracted great interest in recent years due to their high potential application in smart response system and optical elements. Presently, various photosensitive materials have been exploited by doping dyes in polymers or covalent synthesis of photosensitive polymers. However, doping films usually have low dye loading and present unstable photoinduced property. Covalent photosensitive materials show better photoinduction stability, nevertheless the synthetic processes usually were rigorous and fussy and involved many steps with low yield. So the design of photosensitive polymer with optimizing properties to satisfy different applications is still the most attractive target. Ionic self-assembly (ISA) mainly employs the coulombic interaction to bind the oppositely charged tectonic units together and the complex architectures can be precisely tailored by selection of constituents according to the desire of different applications, which presents a promising situation for design of photosensitive materials with unique photochemical and photophysical properties. This dissertation describes research that is done aimed to obtain a series of photosensitive materials with improved and tunable properties by ISA technology. Their phase behavior, optical property and utility for LC alignment were investigated in detail. These preliminary studies may put more insight to the synthsis of photosensitive polymer with preferable properties.
     A new strategy based on ISA technology was provided for design of photosensitive material as liquid crystals (LC) alignment layer. The complex material was constructed by the coupling of poly(ionic liquid) and photosensitive unit methyl orange (MO). The structure, phase behavior and photoresponse were examined by a variety of techniques including FTIR, NMR, thermal analysis, polarized optical microscopy, X-ray diffraction, small-angle X-ray scattering and birefringence measurements. Highly ordered lamellar nanostructure and photosensitive character were confirmed. Under the irradiation of pulsed UV laser, the moderate optical anisotropic surface with the preferred direction perpendicular to the pulsed polarization or regular periodic grooves microstructure surface parallel to the pulsed polarization depend on laser fluence was obtained. The anisotropic surface of oriented molecular chain or topography was demonstrated to be resultful for the alignment of LC by the optical transmittance plot and polarizing microscopy images of LC cells with different rotation angle.
     Although the above photosensitive supramoleculethe prove to be useful in fabrication of anisotropic surface and subsequent LC alignment, its rigid structure results in poor mechanical property and also restricts photo-orientation. So we further elaborately design a series functional unit azobenzene ionic liquid crystal (azo-ILC) with a spacer length of 4, 6 or 12 methylene units, respectively, aim to obtain azobenzene thermotropic liquid crystalline polymer (LCP) for tunable phase behavior and improved optical orientation. The thermotropic LCP was fabricated by ISA of PAA and azo-ILC. Highly ordered liquid-crystalline structure with a lamellar morphology of different d-spacing was observed. The photo-induced orientation of azobenzene groups in thin films of the obtained ionic-bonding supramolecules was studied by polarized UV–Vis and FTIR. Under the irradiation of pulsed laser, very effective induction of optical anisotropy with the preferred direction perpendicular to the pulsed polarization was observed. Typically, the maximum in-plane orientation order of 0.93 for PAZO12 was achieved after irradiation and subsequent anneal, which was the reported crown valve up to now. It was found that the maximum S can be increased by increasing the clearing temperature of the photosensitive material. These results may provide guidelines for the design of effective photo-induced anisotropic materials.
     Supramolecular materials from ISA of polyelectrolyte and surfactant or elaborate amphiphilic molecules are mono-functional, while practical applications usually request material having multidimensional properties or functions. The design of difunctional and even multifunctional materials is becoming a trend of material development. Thus we proposed a concept of dual-functionalized supramolecules for effective optical anisotropy and tunable wettability. These complexes were fabricated by ISA technique that involved grafting different proportions of the photoresponsive units of MO and perfluorinated dodecanoic acid (FDA), as functional side-chains, onto a poly(ionic liquid). Surface wettability and photoinduced anisotropy could be tuned by changing of the molar ratio of MO and FDA. A pronounced anisotropic orientation with a birefringence valueΔn~10-2 was achieved at room temperature, and the complex films were found to possess the characteristics of long-term optical storage. Continuous tunable wetting properties were demonstrated and contact angles of the test liquids increased with an increase in the FDA content. Furthermore, LC orientational transition from planar to homeotropic alignment was achieved by adjusting the FDA content in the orientated complex alignment layers.
     Polymeric films composed of cinnamate derivatives are transparent in a visible region should be more attractive for optical devices and LC alignment. The photoreaction of cinnamate polymer includes a [2+2] photocross-linking reaction and photoisomerization of the cinnamic acid. The photocross linking make the film insluable and the photoinduced orientation very stable. In addition, it can be used to fabricate the photolithographic images for electronics applications. Herein, a kind of photosensitive polymer with photo-cross-linkable side chain group was devoloped based on ISA technology. The photo-cross-linkable supramolecules were constructed by the coupling of polyelectrolyte and cinnamate units with different spacer length (6 or 12 methylene units designated PCAM6 and PCAM12, respectively). Photochemical properties including photo-cross-linking and photoinduced orientation of complex materials were investigated by irradiating with a polarized laser. A clear photolithographic image was obtained by laser exposure. Its photoorientation result proved that long spacer length favors the photo-isomerization of the cinnamate group, which leads to higher photoinduced anisotropy for PCAM12 than that of PCAM6. Furthermore, a homogeneous and stable liquid crystals alignment was achieved on the resultant anisotropic orientation film.
引文
1. Faul C.F.J., Antonietti M., Ionic self-assembly, Facile synthesis of supramolecular materials, Adv. Mater. 2003, 15, 673-683.
    2. Natansohn A., Rochon P., Photoinduced motions in azo-containing polymers, Chem. Rev. 2002, 102, 4139-4175.
    3. O’Neill M., Kelly S. M., Photoinduced surface alignment for liquid crystal displays, J. Phys. D, Appl. Phys. 2000, 33, 67-84.
    4. Ichimura K., Photoalignment of Liquid-Crystal Systems, Chem. Rev. 2002, 102, 4139-4175.
    5. Zakrevskyy Y., Faul C. F. J., Guan Y., Stumpe J., Alignment of a perylene-based ionic self-assembly complex in thermotropic and lyotropic liquid-crystalline phases, Adv. Funct. Mater. 2004, 14, 835-841.
    6. Guan Y., Zakrevskyy Y., Stumpe J., Antoniettia M., Faul, C. F. J., Perylenediimide-surfactant complexes, thermotropic liquid-crystalline materials via ionic self-assembly, Chem. Commun. 2003, 894-895.
    7. Zakrevskyy Y., Stumpe J., Faul C. F. J., A supramolecular approach to optically anisotropic materials, Photosensitive ionic self-assembly complexes, Adv. Mater. 2006, 18, 2133-2136.
    8. Camerel F., Ulrich G., BarberáJ., and Ziessel R., Ionic Self-Assembly of Ammonium-Based Amphiphiles and Negatively Charged Bodipy and Porphyrin Luminophores, Chem. Eur. J. 2007, 13, 2189-2200.
    9. Camerel F., Strauch P., Antonietti M., Faul C. F. J., Copper-metallomesogen structures obtained by ionic self-assembly (ISA), Molecular electromechanical switching driven by cooperativity, Chem. Eur. J. 2003, 9, 3764-3771.
    10. Camerel F., Faul C. F. J., Combination of ionic self-assembly and hydrogen bonding as a tool for the synthesis of liquid-crystalline materials and organogelators from a simple building block, Chem. Commun., 2003, 1958-1959.
    11. Faul C. F. J., Camerel F., Smarsly B.M., and Wennemers H., Ionic self-assembled molecular receptor-based liquid crystals with tripeptide recognition capabilities, J. Mater. Chem., 2008, 18, 2962-2967.
    12. Zhou S., Chu B., Assembled materials, Polyelectrolyte-surfactant complexes, Adv. Mater. 2000, 12, 545-556.
    13. Antonietti M., Conrad J., Thünemann A., Polyelectrolyte-surfactant complexes: a new type ofsolid mesomorphous material, Macromolecules 1994, 27, 6007-6011.
    14. Thünemann A. F. General S., Poly(ethylene imine) n-alkyl carboxylate complexes, Langmuir 2000, 16, 9634-9638.
    15. Thünemann A. F., Ultrathin solid polyelectrolyte-surfactant complex films, Structure and wetting, Langmuir 2000, 16, 824-828.
    16. Chen H.-L., Lu J.-S., Yu C.-H., Yeh C.-L., Jeng U.-S., Chen W.-C., Tetragonally packed cylinder structure via hierarchical assembly of comb-coil diblock copolymer, Macromolecules 2007, 40, 3271-3276.
    17. Tung S.-H, Kalarickal N., Mays J., Xu T., Hierarchical Assemblies of Block-Copolymer-Based Supramolecules in Thin Films, Macromolecules 2008, 41, 6453–6462.
    18. Hanski S., Junnila S., Almásy L., Ruokolainen J., and Ikkala O., Structural and conformational transformations in self-Assembled polypeptide-surfactant complexes, Macromolecules 2008, 40, 866-872.
    19. Hanski S., Houbenov N., Ruokolainen J., Chondronicola D., Iatrou H., Hadjichristidis N., Ikkala O., Hierarchical ionic self-assembly of rod-comb block copolypeptide-surfactant complexes, Biomacromolecules 2006, 7, 3379-3384.
    20. Zhou S.R., Shi H.F., Zhao Y., Jiang S.C., Lu Y.L., Cai Y.L., Wang D.J., Han C. C., Xu D.F., Mesogen-free supramolecular liquid crystalline state formed by a polyelectrolyte/amphiphile complex, Macromol. Rapid Commun. 2005, 26, 226-231.
    21. Canilho N., Kas?mi E., Schlüter A. D., Mezzenga R., Comblike liquid-crystalline polymers from ionic complexation of dendronized polymers and lipids, Macromolecules 2007, 40, 2822-2830.
    22. Canilho N., Kas?mi E., Schlüter A. D., Ruokolainen J., and Mezzenga R., Real Space imaging and molecular packing of dendronized polymer-lipid supramolecular complexes, Macromolecules 2007, 40, 7609-7616.
    23. Canilho N., choll M., Klok H.-A., Mezzenga R., Thermotropic ionic liquid crystals via self-Assembly of cationic hyperbranched polypeptides and anionic surfactants, Macromolecules 2007, 40, 8374-8383.
    24. Kulikovska O., Goldenberg L. M., Stumpe J., Supramolecular azobenzene-based materials for optical generation of microstructures, Chem. Mater. 2007, 19, 3343-3348.
    25. Kulikovska O., Goldenberg L. M., Kulikovsky L., Stumpe J., Smart ionic sol?gel-basedazobenzene materials for optical generation of microstructures, Chem. Mater. 2008, 20, 3528-3534.
    26. Zhang Q., Bazuin C. G., Barrett C. J., Simple spacer-free dye-polyelectrolyte ionic complex, side-chain liquid crystal order with high and stable photoinduced birefringence, Chem. Mater. 2008, 20, 29-31.
    27. Marcos M., AlcaláR., BarberáJ., Romero P., Sánchez C., Serranno J. L., Photosensitive ionic nematic liquid crystalline complexes based on dendrimers and hyperbranched polymers and a cyanoazobenzene carboxylic acid, Chem. Mater. 2008, 20, 5209-5217.
    28. IIer R. K., J. Multilayers of colloidal particles, J. Colloid and Interface Sci. 1966, 21, 569-594.
    29. Decher G., Hong J. D., Buildup of ultrathin multilayer films by a self-assembly process. 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces, Macromol. Chem. Macromol. Symp. 1991, 46, 321-327.
    30. Decher G., Hong J. D., Bunsenges B., Buildup of ultrathin multilayer films by a self-assembly process. 2. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces, Phys.Chem. 1991, 95, 1430-1434.
    31. Decher G., Fuzzy nanoassemblies: Toward layered polymeric multicomposites, Science 1997, 277, 1232-1237.
    32. Lvov Y., Decher G., Moehwald H., Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine), Langmuir 1993, 9, 481-486.
    33. Nalwa H.S., Handbook of Advanced Electronic and Photonic Materials and Devices, Volume 7, Liquid Crystals, Display and Laser Materials, Academic Press, 2000.
    34. L u J., Deshpande S. V., Gulari E., Kanickia J. Ultraviolet light induced changes in polyimide liquid-crystal alignment films, J. App l. Phys. 1999, 80, 5028-5034.
    35. Blinov L. M., Photoinduced molecular reorientation in polymers, Langmuir-Blodgett films and liquid crystals, J. Nonlinear Optic. Phys. & Mater., 1996, 5, 165-187.
    36. Kawatsuki N., Takatsuka H., Yamamoto T., et al. Photoregulated liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer Jpn. J. App l. Phys. 1997, 36, 6464-6469.
    37. Kim J. H., Acharya B. R., Kumar S., A method for liquid crystal alignment using in situ ultraviolet exposure during imidization of polyimide, Appl. Phys. Lett. 1998, 73, 3372-3374.
    38. Yang K. H., Tajima K., Takenaka A., Takano H., Charge trapping properties of uv-exposedpolyimide films for the alignment of liquid crystals, Japan. J. Appl. Phys. 1996, 35, L561- L563.
    39. Gao J., He Y. N., Liu F., Zhang X., Wang Z. Q., Wang X. G., Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings, Chem. Mater. 2007, 19, 3877-3811.
    40. Li M., Lu Q. H., Yin J., Sui Y., Li G., Qian Y., Wang Z. G., Periodic microstructure induced by 532 nm polarized laser illumination on poly(urethane-imide) film: orientation of the azobenzene chromophore, Applied surface science, 2005, 193, 46-51.
    41. Uchida E., Kawatsuki N., Photoinduced orientation in photoreactive hydrogen-bonding liquid Crystalline polymers and liquid crystal alignment on the resultant films, Macromolecules 2006, 39, 9357-9364.
    42. Wu Y., Demachi Y., Tsutsumi O., Kanazawa A., Shiono T., Ikeda T., Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior, Macromolecules 1998, 31, 349-354.
    43. Sapich B., Vix, A., Rabe J. P., Stumpe J., Photoinduced self-organization and photoorientation of a LC main-chain polyester containing azobenzene moieties, Macromolecules 2005, 38, 10480-10486.
    44. Li X., Lu X. M., Lu Q. H., Yan D. Y., Photoorientation of liquid crystalline azo-dendrimer by nanosecond pulsed laser for liquid crystal alignment, Macromolecules 2007, 40, 3306-3312.
    45. Gibbons W. M., Shannon P. J., Sun S. T., Swetlin B. J., Surface-mediated alignment of nematic liquid crystals with polarized laser ligh, Nature 1991, 351, 49-50.
    46. O’Neill M., Kelly S. M., Photoinduced surface alignment for liquid crystal displays, J. Phys. D, Appl. Phys. 2000, 33, 67-84.
    47. Gao J., He Y. N., Liu F., Zhang X., Wang Z. Q., Wang X. G., Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings, Chem. Mater. 2007, 19, 3877-3811.
    48. Xiao S. F., Lu X. M., Lu Q. H., Photosensitive liquid-crystalline supramolecules self-assembled from ionic liquid crystal and polyelectrolyte for laser-induced optical anisotropy, Macromolecules 2007, 40, 7944-7950.
    49. Uchida E., Shiraku T., Ono H., Kawatsuki N., Control of thermally enhanced photoinduced reorientation of polymethacrylate films with 4-methoxyazobenzene side groups by irradiating with 365 and 633 nm light and annealing, Macromolecules 2004, 37, 5282-5291.
    50. Egerton P. L., Pitts E., Reiser A., Photocycloaddition in solid poly(vinyl cinnamate). The photoreactive polymer matrix as an ensemble of chromophore sites, Macromolecules 1981, 14, 95-100.
    51. Schadt M., Schmitt K., Kozinkov V., Chigrinov V. G., Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers, Japan. J. Appl. Phys. 1992, 31, 2155-2164.
    52. Yoo J.-H., Cho I., Kim S. Y.,Sequence-controlled ethylene/vinyl cinnamate copolymers, synthesis and application to the photoalignment of liquid crystals, J. Poly. Sci. Part A, Polym. Chem. 2004, 42, 5401-5406.
    53. Allcock H. R., Cameron C. G., Synthesis and characterization of photo-cross-linkable small-molecule and high-Polymeric phosphazenes bearing cinnamate groups, Macromolecules 1994, 27, 3125-3130.
    54. Tamilvanan M., Pandurangan A., Subramanian K., Reddy B. S. R., Synthesis and characterization of mono- and di-methoxy substituted acrylate polymers containing photocrosslinkable pendant chalcone moiety, Polym. Adv. Technol. 2008, 19, 1218–1225.
    55. Lee S. W., Kim S. I., Lee B., Choi W., Chae B., Kim S. B., Ree M., Photoreactions and photoinduced molecular orientations of films of a photoreactive polyimide and their alignment of liquid crystals, Macromolecules 2003, 36, 6527-6536.
    56. Furumi S., Ichimura K., Surface-assisted photoalignment of discotic liquid crystals by nonpolarized light irradiation of photo-cross-linkable polymer thin films, J. Phys. Chem. B 2007, 111, 1277-1287.
    57. Uchida E., Kawatsuki N., Photoinduced orientation in photoreactive hydrogen-bonding liquid crystalline polymers and liquid crystal alignment on the resultant films, Macromolecules 2006, 39, 9357-9364.
    58. Finkelmann H., Nishikawa E., Pereira G. G., et al., A new opto-mechanical effect in solids, Phys. Rev. Lett. 2001, 87, (015501)1-4.
    59. Li M. H., Keller P., Li B., et al., Light-driven side-on nematic elastomer actuators, Adv. Mater. 2003, 15, 569-572.
    60. Ikeda T., Nakano M., Yu Y. L., Tsutsumi O., Kanazawa A., Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure, Adv. Mater. 2003, 15, 201-205.
    61. Yu Y. L., Nakano M., Ikeda T., Directed bending of a polymer film by light, Nature, 2003,425, 145 -145.
    62. Mamiya J., Yoshitake A., Kondo M., Yub Y. L., Ikeda T., Is chemical crosslinking necessary for the photoinduced bending of polymer films?J. Mater. Chem. 2008, 18, 63–65.
    63. Todorov T., Nikolova L., Tomowa N., Dragonostinova V., Photoinduced anisotropy in rigid dye solutions for transient polarization holography, IEEE J. Quantum Electron 1986, 22, 1262-1267.
    64. Holme N. C. R., Nikolova L., Hvilsted S., et.al, Optically induced surface relief phenomena in azobenzene polymers, Appl. Phys. Lett. 1999, 74, 519-521.
    65. Phillips H. M., Sauerbrey R. A., Excimer-laser-induced nanostructures in polymers, Opt. Eng. 1993, 32, 2424-2436.
    66. Ozaki M., Nagata T., Matsui T., Yoshino K., Kajzar F., Photoinduced surface relief grating on composite film of conducting polymer and polyacrylate containing azo-substituent, Jpn. J. Appl. Phys. Part 2 2000, 39, L614-L616.
    67. Lee T. S., Kim D. Y., Jiang X. L., Photoinduced surface relief gratings in high-Tg main-chain azoaromatic polymer films, J. Polym. Sci. Part A, Polym. Chem. 1998, 36, 283-289.
    68. Fukuda T., Matsuda H., Shiraga T., Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization, Macromolecules 2000, 33, 4220-4225.
    69. He J. A., Bian S., Li L., Photochemical behavior and formation of surface relief grating on self-assembled polyion/dye composite film, J. Phys Chem. B 2000, 104, 10513-10521.
    70. Ubukata T., Seki T., Ichimura K., Surface relief gratings in host-guest supramolecular materials, Adv. Mater. 2000, 12, 1675-1678.
    71. Zettsu N., Seki T., Highly efficient photogeneration of surface relief structure and its immobilization in cross-linkable liquid crystalline azobenzene polymers, Macromolecules 2004, 37, 8692-8698.
    72. Zhao Y., Bai, S., Asatryan K., Galstian T., Holographic recording in a photoactive elastomer, Adv. Funct. Mater. 2003, 13, 781-788.
    73. Viswanathan N. K., Balasubramanian S., Li L., Tripathy S. K., Kumar J., A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films, Jpn. J. Appl. Phys. Part 1 1999, 38, 5928-5937.
    74. Tsutsumi N., Fujihara A., Pulsed laser induced spontaneous gratings on a surface of azobenzene polymer, Appl. Phys. Lett. 2004, 85, 4582-4584.
    75. Lazare S., Srinvasan R., Surface properties of poly(ethylene terephthlate) films modified by far-ultraviolet radiation at 193 nm (laser) and 185 nm (low intensity), J Phys. Chem. 1986, 90, 2124-2131.
    76. Niino. H., Shimoyama M., Yabe A., XeCl excimer laser ablation of a polyethersulfone film, dependence of periodic microstructures on a polarized beam, Appl. Phys. Lett. 1990, 57, 2368-2371.
    77. Dye P. E., Farley J., Periodic surface structure in the excimer laser ablative etching of polymer, Appl. Phys. Lett. 1990, 57, 765-767.
    78. Bolle M., Lazare S., Blanc L., Submicro periodic structure produced on polymer surfaces with polarized excimer laser ultraviolet radiation, Appl. Phys. Lett. 1992, 60, 674-676.
    79. Bolle M., Lazare S., Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet laser radiation, J. Appl. Phys.1993, 73, 3516-3524.
    80. Hiraoka H., Sendova M., Laser-induced sub-half-micrometer periodic structure on polymer surfaces, Appl. Phys. Lett. 1994, 64, 563-565.
    81. Sendova M., Hiraoka H., Sub-half-micron periodic structures on polymer surfaces with polarized laser irradiation, Jpn. J. Appl. Phys. Part 1 1993, 32, 6182-6184.
    82. Csete M., Bor Zs., Laser-induced periodic surface structure formation on polyethylene-terephthalate, Appl. Surf. Sci. 1998, 133, 5-16.
    83. Csete M., Marti O., Bor Zs., Laser-induced periodic surface structures on different poly-carbonate films, Appl. Phys. A 2001, 73, 521-526.
    84. Hiraoka H., Wong W. Y. Y., Wong T. M., Interaction of pulsed UV laser with polymer surfaces, periodic structures, functional group alignment, and diamond deposition, Proc. SPIE 1997, 3093, 204-212.
    85. Lu Q. H., Wang Z. G., Yin J., Zhu Z. K., Hiraoka H., Molecular orientation in laser-induced periodic microstructure on polyimide surface, Appl. Phys. Lett. 2000, 76, 1237-1239.
    86. Kawatsuki N, Kawanishi T, Uchida E, Photoinduced cooperative reorientation in photoreactive hydrogen-bonded copolymer films and LC alignment using the resultant films, Macromolecules 2008, 41, 4642-4650.
    87. Kawatsuki N., Tsutsumi. R., Hiraiwa A., et al., Thermally enhanced photoinduced in-plane reorientation in photo-cross-linkable polymer liquid crystalline films and its application to linear polarizer, J. Polym. Sci. PART A-Poly. Chem. 2008, 46, 4712-4718.
    88. Kawatsuki N., Tsutsumi R., Takatsuka H., et al., Influence of alkylene spacer length on thermal enhancement of photoinduced optical anisotropy in photo-cross-linkable liquid crystalline polymeric films and their composites with non-liquid-crystalline monomers, Macromolecules 2007, 40, 6355-6360.
    89. Kawatsuki N., Uchida E., Photoinduced orientation of liquid crystalline copolymer films containing 4-oxybenzoic acid side groups and photo-cross-linkable mesogenic side groups, Polymer 2007, 48, 3066-3073.
    90. Kawatsuki N., Kato K., Shiraku T., et al., Photoinduced reorientation and multiple optical data storage in photo-cross-linkable liquid crystalline copolymer films using 405 nm light, Macromolecules 2006, 39, 3245-3251.
    91. Uchida E., Kawatsuki N., Photoinduced optical anisotropy and reorientation in copolymers containing 4-methoxyazobenzene side groups and methyl methacrylate units using linearly polarized 633 nm light, Polymer 2006, 47, 2322-2329.
    92. Kawatsuki N., Fujii Y., Kitamura C., et al., Photoinduced orientation in photo-cross-linkable liquid crystalline polymer film containing tolane moiety, Chem. Lett. 2006, 35, 52-53.
    93. Kawatsuki N., Tachibana T., An M. X., et al., Photoinduced optical Anisotropy based on axis-selective triplet energy transfer and thermally enhanced reorientation in a photo-cross-linkable liquid crystalline polymer film, Macromolecules 2005, 38, 3903-3908.
    94. Kawatsuki N., Fukumoto H., Takeuchi O., et al., Influence of substituents on the reorientational behavior in photocrosslinkable polymer liquid crystal films with p-substituted cinnamoyloxybiphenyl side groups by irradiating with linearly polarized ultraviolet light and annealing, Polymer 2004, 45, 2615-2621.
    95. Kawatsuki N., Takatsuka H., Yamamoto T., Thermally stable photoalignment layer of a novel photo-crosslinkable polymethacrylate for liquid crystal display, Jpn. J. Appl. Phys. Part 2 2001, 40, R209-201.
    96. Kawatsuki N., Matsuyoshi K., Yamamoto T., Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet irradiation and thermal treatment: Effect of copolymerization ratio, Macromolecules 2000, 33, 1698-1702.
    1. Faul C.F.J., Antonietti M., Ionic self-assembly: facile synthesis of supramolecular materials, Adv. Mater. 2003, 15, 673-683.
    2. Binnemans K., Ionic liquid crystals, Chem. Rev. 2005, 105, 4148-4204.
    3. Zhou S., Chu B., Assembled materials: polyelectrolyte-surfactant complexes, Adv. Mater. 2000, 12, 545-556.
    4. Zakrevskyy Y., Stumpe J., Faul C. F. J., A supramolecular approach to optically anisotropic materials: photosensitive ionic self-assembly complexes, Adv. Mater. 2006, 18, 2133-2136.
    5. Franke D., Vos M., Antonietti M., Sommedijk N.A.J.M., Faul C. F. J., Induced supramolecular chirality in nanostructured materials: ionic self-assembly of perylene-chiral surfactant complexes, Chem. Mater. 2006, 18, 1839-1847.
    6. Zakrevskyy Y., Faul C. F. J., Guan Y., Stumpe J., Alignment of a perylene-based ionic self-assembly complex in thermotropic and lyotropic liquid-crystalline phases, Adv. Funct. Mater. 2004, 14, 835-841.
    7. Guan Y., Zakrevskyy Y., Stumpe J., Antoniettia M., Faul, C. F. J., Perylenediimide-surfactant complexes: thermotropic liquid-crystalline materials via ionic self-assembly, Chem. Commun. 2003, 894-895.
    8. Camerel F., Strauch P., Antonietti M., Faul C. F. J., Copper-metallomesogen structures obtained by ionic self-assembly (ISA): Molecular electromechanical switching driven by cooperativity, Chem. Eur. J. 2003, 9, 3764-3771.
    9. Zhang T., Spitz C., Antonietti M., Faul C. F. J., Highly photoluminescent polyoxometaloeuropate-surfactant complexes by ionic self-assembly, Chem. Eur. J. 2005, 11, 1001-1009.
    10. Faul C. F. J., Antonietti M., Facile synthesis of optically functional, highly organized nanostructures: dye-surfactant complexes, Chem. Eur. J. 2002, 8, 2764-2768.
    11. Guan Y., Antonietti M., Faul C. F.J., Ionic self-assembly of dye-surfactant complexes: influence of tail lengths and dye architecture on the phase morphology, Langmuir 2002, 18, 5939-5945.
    12. Camerel F., Faul C. F. J., Combination of ionic self-assembly and hydrogen bonding as a tool for the synthesis of liquid-crystalline materials and organogelators from a simple building block, Chem. Commun., 2003, 1958-1959.
    13. General S., Antonietti M., Supramolecular organization of oligopeptides, through complexation with surfactants, Angew. Chem. Int. Ed. 2002, 41, 2957-2960.
    14. Canilho N., Kas?mi E., Mezzenga R., Schlüter A. D., Liquid-crystalline polymers from cationic dendronized polymer-anionic lipid complexes, J. Am. Chem. Soc. 2006, 128, 13998-13999.
    15. Ozer B. H., Smarsly B., Antoniettia M., Faul C. F. J., DNA-analogous structures from deoxynucleophosphates and polylysine by ionic self-assembly, Soft Matter 2006, 2, 329-336.
    16. Thünemann A. F., Ruppelt D., Burger C., Müllen K., Long-range ordered columns of a hexabenzo[bc,ef,hi,kl,no,qr]coronene-polysiloxane complex: towards molecular nanowires, J. Mater. Chem. 2000, 10, 1325-1329.
    17. Thünemann A. F., Ruppelt D., Ito, S., Müllen K., Supramolecular architecture of a functionalized hexabenzocoronene and its complex with polyethyleneimine, J. Mater. Chem. 1999, 9, 1055-1057.
    18. Zhou S. R., Shi H. F., Zhao Y., Jiang S. C., Lu Y. L., Cai Y. L., Wang D. J., Han C. C., Xu D. F., Mesogen-free supramolecular liquid crystalline state formed by a polyelectrolyte-amphiphile complex, Macromol. Rapid Commun. 2005, 26, 226-231.
    19. Thünemann A. F., Ultrathin solid polyelectrolyte-surfactant complex films: structure and wetting, Langmuir 2000, 16, 824-828.
    20. Gohy J. F., Antoun S., Sobry R., den Bossche G. V., Jér?me R., Synthesis and characterization of non-covalent liquid crystalline diblock copolymers, Macromol. Chem. Phys. 2000, 201, 31-41.
    21. Thünemann A. F., General S., Poly(ethylene imine) n-alkyl carboxylate complexes, Langmuir 2000, 16, 9634-9638.
    22. Li H., Zhang X., Zhang R., Shen J., Zhao B., Xu W., Macromolecules 1995, 28, 8178-8181.
    23. Antonietti M., Conrad J., Thünemann A., Macromolecules 1994, 27, 6007-6011.
    24. O’Neill M., Kelly S. M., Photoinduced surface alignment for liquid crystal displays, J. Phys. D: Appl. Phys. 2000, 33, 67-84.
    25. AlcaláR., Giménez R., Oriol L., Pi?ol M., Serrano J. L., Villacampa B., Vi?uales A. I., Synthesis, characterization, and induction of stable anisotropy in liquid crystalline photo-addressable PPI dendrimers, Chem. Mater. 2007, 19, 235-246.
    26. Stewart D., Imrie C. T., Synthesis and characterization of spin-labelled and spin-probed side-chain liquid crystal polymers, Polymer 1996, 37, 3419-3425.
    27. He X., Zhang H., Yan D., Wang X., Synthesis of side-chain liquid-crystal line homopolymers and triblock copolymers with p-methoxyazobenzene moieties and poly(ethylene glycol) as coil segments by atom transfer radical polymerization and their thermotropic phase behavior, J. Polym. Sci. Part A: Polym. Chem.2003, 2854-2864.
    28. Acierno D., Amendola E., Bugatti V., Concilio S., Giorgini L., Iannelli P., Piotto S. P., Synthesis and characterization of segmented liquid crystalline polymers with the azo group in the main chain, Macromolecules 2004, 37, 6418-6423.
    29. He X., Yan D., Mai Y. J., Synthesis of novel multi-arm star azobenzene side-chain liquid crystalline copolymers with a hyperbranched core, Eur. Polym. J. 2004, 1759-1765.
    30. Gibbons W. M., Shannon P. J., Sun S. T., Swetlin B. J., Surface-mediated alignment of nematic liquid crystals with polarized laser light, Nature 1991, 351, 49-50.
    31. Ramanujam P. S., Pedersen M., Hvilsted S., Instant holography, Appl. Phys. Lett. 1999, 74, 3227-3229.
    32. Li X., Lu X. M., Lu Q. H., Yan D.Y., Photoorientation of liquid crystalline azo-dendrimer by nanosecond pulsed laser for liquid crystal alignment, Macromolecules 2007, 40, 3306-3312.
    33. Rochon P., Batalla E., Natansohn A., Optically induced surface gratings on azoaromatic polumer-films, Appl. Phys. Lett. 1995, 66, 136-138.
    34. Kim D. Y., Tripathy S. K., Li L., Kumar J., Laser-induced holographic surface-relief gratings on nonlinear-optical polymer-films, Appl. Phys. Lett. 1995, 66, 1166-1168.
    35. Ubukata T., Seki T., Ichimura K., Surface relief gratings in host-guest supramolecular materials, Adv. Mater. 2000, 12, 1675-1678.
    36. Bai S., Zhao Y., Azobenzene elastomers for mechanically tunable diffraction gratings, Macromolecules 2002, 35, 9657-9664.
    37. Bolle M., Lazare S., Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet-laser radiation, J. Appl. Phys. 1993, 73, 3516-3524.
    38. Hiraoka T., Sendova M., Laser-induced sub-half-micrometer periodic structure on polymer surfaces, Appl. Phys. Lett. 1994, 64, 563-565.
    39. Csete M., Marti O., Bor Z., Laser-induced periodic surface structures on different poly-carbonate films, Appl. Phys. A 2001, 73, 521-526.
    40. Lu Q. H., Wang Z. G., Yin J., Zhu Z. K., Hiraoka H., Molecular orientation in laser-induced periodic microstructure on polyimide surface, Appl. Phys. Lett. 2000, 76, 1237-1239.
    41. Lu X. M., Lu Q. H., Zhu Z. K., Alignment mechanism of a nematic liquid crystal on a pre-rubbed polyimide film with laser-induced periodic surface structure, Liq. Cryst. 2003, 30, 985-990.
    42. Lu X. M., Lu Q. H., Zhu Z. K., Yin J., Liquid crystal alignment on periodic microstructure induced by single-beam 532 nm polarized laser illumination on poly(urethane-imide) film, Chem. Phys. Lett. 2003, 337, 433-438.
    43. Lu X. M., Lu Q. H., Zhu Z. K., Yin J., Wang Z. G., Laser induced periodic structure on lecithin-doped polyimide film surface and its ability to align liquid crystal molecules, Polymer 2003, 44, 4501-4507.
    44. Zhang D., Liu Y. X., Wan X. H., Zhou Q. F., Synthesis and characterization of a new series of "mesogen-jacketed liquid crystal polymers" based on the newly synthesized vinylterephthalic acid, Macromolecules 1999, 32, 5183-5185.
    45. Bazuin C. G., Boivin J., Tork A., Tremblay H., Bravo-Grimaldo E., Variable composition mixtures of a tertiary amine-functionalized mesogen and poly(acrylic acid), Macromolecules 2002, 35, 6893-6899.
    46. Tork A., Bazuin C. G., Mixtures of tertiary amine-functionalized mesogens with poly(acrylic acid), Macromolecules 2001, 34, 7699-7706.
    47. Canilho N., Kas?mi E., Schlüter A. D., Mezzenga R., Comblike liquid-crystalline polymers from ionic complexation of dendronized polymers and lipids, Macromolecules 2007, 40, 2822-2830.
    48. Pan X., Wang C., Xu H., Wang C., Zhang X., Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer, Appl. Phys. B 2007, 86, 693-697.
    49. Sipe J. E., Young J. F., Preston J. S., van Drie H. M., Laser-induced periodic surface structure. Ⅰ. Theory, Phys. Rev. B 1983, 27, 1141-1154.
    1. Natansohn A., Rochon P., Photoinduced motions in azo-containing polymers, Chem. Rev. 2002, 102, 4139-4175.
    2. Wu Y., Demachi Y., Tsutsumi O., Kanazawa A., Shiono T., Ikeda T., Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior, Macromolecules 1998, 31, 349-354.
    3. Sapich B., Vix, A., Rabe J. P., Stumpe J., Photoinduced self-organization and photoorientation of a LC main-chain polyester containing azobenzene moieties, Macromolecules 2005, 38, 10480-10486.
    4. Li X., Lu X. M., Lu Q. H., Yan D. Y., Photoorientation of liquid crystalline azo-dendrimer by nanosecond pulsed laser for liquid crystal alignment, Macromolecules 2007, 40, 3306-3312.
    5. Gibbons W. M., Shannon P. J., Sun S. T., Swetlin B. J., Surface-mediated alignment of nematic liquid crystals with polarized laser ligh, Nature 1991, 351, 49-50.
    6. O’Neill M., Kelly S. M., Photoinduced surface alignment for liquid crystal displays, J. Phys. D: Appl. Phys. 2000, 33, 67-84.
    7. Gao J., He Y. N., Liu F., Zhang X., Wang Z. Q., Wang X. G., Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings, Chem. Mater. 2007, 19, 3877-3811.
    8. Xiao S. F., Lu X. M., Lu Q. H., Photosensitive liquid-crystalline supramolecules self-assembled from ionic liquid crystal and polyelectrolyte for laser-induced optical anisotropy, Macromolecules 2007, 40, 7944-7950.
    9. Kawatsuki N., Uchida E., Ono H., Photoinduced reorientation of polymethacrylate film with 4-methoxyazobenzene side groups using linearly polarized He-Ne laser and annealing, Chem. Lett. 2004, 33, 12-13.
    10. Kawatsuki N, Uchida E, Ono H, Formation of pure polarization gratings in 4-methoxyazobenzene containing polymer films using off-resonant laser light, Appl. Phys. Lett. 2003, 83, 4544-4566.
    11. Meier J. G., Ruhmann R., StumpeJ., Planar and homeotropic alignment of LC polymers by the combination of photoorientation and self-organization, Macromolecules 2000, 33, 843-850.
    12. Uchida E., Shiraku T., Ono H., Kawatsuki N., Control of thermally enhanced photoinduced reorientation of polymethacrylate films with 4-methoxyazobenzene side groups by irradiatingwith 365 and 633 nm light and annealing, Macromolecules 2004, 37, 5282-5291.
    13. Valkama, S., Lehtonen, O., Lappalainen, K., Kosonen, H., Castro, P., Repo, T., Torkkeli, M., Serimaa, R., ten Brinke, G., Leskel?, M., Ikkala, O., Multicomb polymeric supramolecules and their self-organization: combination of coordination and ionic interactions, Macromol. Rapid Commun. 2003, 24, 556-560.
    14. Zhou S., Shi H., Zhao Y., Jiang S., Lu Y., Cai, Y., Wang D., Han C. C., Xu D., Mesogen-free supramolecular liquid crystalline state formed by a polyelectrolyte/amphiphile complex, Macromol. Rapid Commun. 2005, 26, 226-231.
    15. Bazuin C. G., Boivin J., Tork A., Tremblay H., Bravo-Grimaldo E., Variable composition mixtures of a tertiary amine-functionalized mesogen and poly(acrylic acid), Macromolecules 2002, 35, 6893-6899.
    16. Tork A., Bazuin C. G., Mixtures of tertiary amine-functionalized mesogens with poly(acrylic acid), Macromolecules 2001, 34, 7699-7706.
    17. Thünemann A. F. General S., Poly(ethylene imine) n-alkyl carboxylate complexes, Langmuir 2000, 16, 9634-9638.
    18. Zakrevskyy Y., Stumpe J., Faul C. F. J., A supramolecular approach to optically anisotropic materials: Photosensitive ionic self-assembly complexes, Adv. Mater. 2006, 18, 2133-2136.
    19. Franke D., Vos M., Antonietti M., Sommedijk N. A. J. M., Faul C. F. J., Induced supramolecular chirality in nanostructured materials: Ionic self-assembly of perylene-chiral surfactant complexes, Chem. Mater. 2006, 18, 1839-1847.
    20. Zakrevskyy Y., Faul C. F. J., Guan Y., Stumpe, J., Alignment of a perylene-based ionic self-assembly complex in thermotropic and lyotropic liquid-crystalline phases, Adv. Funct. Mater. 2004, 14, 835-841.
    21. Canilho N., Kas?mi E., Schlüter A. D., Mezzenga R., Comblike liquid-crystalline polymers from ionic complexation of dendronized polymers and lipids, Macromolecules 2007, 40, 2822-2830.
    22. Chen H.-L., Lu J.-S., Yu C.-H., Yeh C.-L., Jeng U.-S., Chen W.-C., Tetragonally packed cylinder structure via hierarchical assembly of comb-coil diblock copolymer, Macromolecules 2007, 40, 3271-3276.
    23. Hanski S., Houbenov N., Ruokolainen J., Chondronicola D., Iatrou H., Hadjichristidis N., Ikkala O., Hierarchical ionic self-assembly of rod-comb block copolypeptide-surfactant complexes, Biomacromolecules 2006, 7, 3379-3384.
    24. Canilho N., Kas?mi E., Mezzenga R., Schlüter A. D., Liquid-crystalline polymers from cationic dendronized polymer-anionic lipid complexes, J. Am. Chem. Soc. 2006, 128, 13998-13999.
    25. Ozer B. H., Smarsly B., Antonietti M., Faul C. F. J., DNA-analogous structures from deoxynucleophosphates and polylysine by ionic self-assembly, Soft Matter 2006, 2, 329-336.
    26. Yang J., Zhang Q. H., Zhu L. Y., Zhang S. G., Li J., Zhang X. P., Deng Y. Q., Novel ionic liquid crystals based on N-alkylcaprolactam as cations, Chem. Mater. 2007, 19, 2544-2550.
    27. Chiou J. Y. Z., Chen J. N., Lei J. S., Lin Ivan J. B., Ionic liquid crystals of imidazolium salts with a pendant hydroxyl group, J. Mater. Chem. 2006, 16, 2972-2977.
    28. Meier J. G., Ruhmann R., StumpeJ., Planar and homeotropic alignment of LC polymers by the combination of photoorientation and self-organization, Macromolecules 2000, 33, 843-850.
    29. Zakrevskyy Y., Stumpe J., Smarsly B., Faul C. F. J., Photoinduction of optical anisotropy in an azobenzene-containing ionic self-assembly liquid-crystalline material, Physical Review E 2007, 75, 031703(1)-031703(12).
    30. Guan Y., Antonietti M., Faul C. F. J., Ionic self-assembly of dye-surfactant complexes: Influence of tail lengths and dye architecture on the phase morphology, Langmuir 2002, 18, 5939-5945.
    31. Fischer, T., L?sker L., Czapla S., Rübner J., Stumpe J., Interdependence of photoorientation and thermotropic self-organization in photochromic liquid crystalline polymers, Mol. Cryst. Liq. Cryst. 1997, 297, 489-496.
    32. Uchida E., Kawatsuki N., Photoinduced orientation in photoreactive hydrogen-bonding liquid crystalline polymers and liquid crystal alignment on the resultant films, Macromolecules 2006, 39, 9357-9364.
    33. Evans K. E., Thermal stress mechanisms in optical storage thin films, J. Appl. Phys. 1988, 63, 4946-4950.
    34. Bartholomeusz B. J., Thermal modeling studies of organic compact disk-writable media, Appl. Opt. 1992, 31, 909-918.
    35. Lu Q. H., Wang Z. G., Yin J., Zhu Z. K., Hiraoka H., Molecular orientation in laser-induced periodic microstructure on polyimide surface, Appl. Phys. Lett. 2000, 76, 1237-1239.
    36. Hildebrandt R., Hegelich M., Keller H. M., Marowsky G., Hvilsted S., Holme N. C. R., Ramanujam P. S., Time-resolved investigation of photoinduced birefringence in azobenzene side-chain polyester films, Phys. Rev. Lett. 1998, 81, 5548-5551.
    1. Zakrevskyy Y., Stumpe J., Faul C. F. J., A supramolecular approach to optically anisotropic materials: Photosensitive ionic self-assembly complexes, Adv. Mater. 2006, 18, 2133-2136.
    2. Franke D., Vos M., Antonietti M., Sommedijk N.A.J.M., Faul C. F. J., Induced supramolecular chirality in nanostructured materials: ionic self-assembly of perylene-chiral surfactant complexes, Chem. Mater. 2006, 18, 1839-1847.
    3. Zakrevskyy Y., Faul C. F. J., Guan Y., Stumpe J., Alignment of a perylene-based ionic self-assembly complex in thermotropic and lyotropic liquid-crystalline phases, Adv. Funct. Mater. 2004, 14, 835-841.
    4. Faul C.F.J., Antonietti M., Ionic self-assembly: facile synthesis of supramolecular materials, Adv. Mater. 2003, 15, 673-683.
    5. Binnemans K., Ionic liquid crystals, Chem. Rev. 2005, 105, 4148-4204.
    6. Zhou S., Chu B., Assembled materials: Polyelectrolyte-surfactant complexes, Adv. Mater. 2000, 12, 545-556.
    7. Hanski S., Junnila S., Almásy L., Ruokolainen J., Ikkala O., Structural and conformational transformations in self-assembled polypeptide-surfactant complexes, Macromolecules 2008, 41, 866-872.
    8. Canilho N., Kas?mi E., Schlüter A. D., Ruokolainen J., Mezzenga R., Real space imaging and molecular packing of dendronized polymer-lipid supramolecular complexes, Macromolecules 2007, 40, 7609-7616.
    9. Chen H.-L., Lu J.-S., Yu C.-H., Yeh C.-L., Jeng U.-S., Chen W.-C., Tetragonally packed cylinder structure via hierarchical assembly of comb-coil diblock copolymer, Macromolecules 2007, 40, 3271-3276.
    10. Hanski S., Houbenov N., Ruokolainen J., Chondronicola D., Iatrou H., Hadjichristidis N., Ikkala O., Hierarchical ionic self-assembly of rod-comb block copolypeptide-surfactant complexes, Biomacromolecules 2006, 7, 3379-3384.
    11. Ozer B. H., Smarsly B., Antoniettia M., Faul C. F. J., DNA-analogous structures from deoxynucleophosphates and polylysine by ionic self-assembly, Soft Matter 2006, 2, 329-336.
    12. Kulikovska O., Goldenberg L. M., Kulikovsky L., Stumpe J., Smart ionic sol?gel-based azobenzene materials for optical generation of microstructures, Chem. Mater. 2008, 20, 3528-3534.
    13. Kulikovska O., Goldenberg L. M., Stumpe J., Supramolecular azobenzene-based materials for optical generation of microstructures, Chem. Mater. 2007, 19, 3343-3348.
    14. Xiao S. F., Lu X. M., Lu Q. H., Photosensitive polymer from ionic self-Assembly of azobenzene dye and poly(ionic liquid) and its alignment characteristic toward liquid crystal molecules, Macromolecules 2007, 40, 7944-7950.
    15. Zhang Q., Bazuin C. G., Barrett C. J., Simple spacer-free dye-polyelectrolyte ionic complex: side-chain liquid crystal order with high and stable photoinduced birefringence, Chem. Mater. 2008, 20, 29-31.
    16. Xiao S. F., Lu X. M., Lu Q. H., Photosensitive liquid-crystalline supramolecules self-Assembled from ionic liquid crystal and polyelectrolyte for laser-induced optical anisotropy, Macromolecules 2008, 41, 3884-3892.
    17. Zhao Y., Li M., Lu Q. H., Tunable wettability of polyimide films based on electrostatic self-assembly of ionic liquids, Langmuir 2008, 24, 3937-3943.
    18. Azzaroni O., Brown A. A., Huck W. T. S., Tunable wettability by clicking counterions into polyelectrolyte brushes, Adv. Mater. 2007, 19, 151-154.
    19. Azzaroni O., Moya S., Farhan T., Brown A. A., Huck W. T. S., Switching the properties of polyelectrolyte brushes via“hydrophobic collapse”, Macromolecules 2005, 38, 10192-10199.
    20. Lee B. S., Chi Y. S., Lee J. K., Choi I. S., Song C. E., Namgoong S. K., Lee S., Imidazolium ion-terminated self-assembled monolayers on Au: effects of counteranions on surface wettability, J. Am. Chem. Soc. 2004, 126, 480-481.
    21. Li X., Lu X. M., Lu Q. H., Yan D.Y., Photoorientation of liquid crystalline azo-dendrimer by nanosecond pulsed laser for liquid crystal alignment, Macromolecules 2007, 40, 3306-3312.
    22. Sapich B., Vix A., Rabe J. P., Stumpe J., Photoinduced self-organization and photoorientation of a LC main-chain polyester containing azobenzene moieties, Macromolecules 2005, 38, 10480-10486.
    23. Ahn J. H., Kim J. B., Kim K. C., Hwang B. H., Park J. S., Kang D., Liquid crystal angle control using adjustable wetting properties of alignment layers, Appl. Phys. Lett. 2007, 90, 253505 (1-3).
    24. Ha K., West J. L., Control of liquid crystal pretilt angles by chemical derivatization reaction of polyvinyl alcohol films, Liq. Cryst. 2004, 31, 753-757.
    25. Thünemann A. F., Ultrathin solid polyelectrolyte-surfactant complex films: structure and wetting, Langmuir 2000, 16, 824-828.
    26. O’Neill M., Kelly S. M., Photoinduced surface alignment for liquid crystal displays, J. Phys. D: Appl. Phys. 2000, 33, 67-84.
    27. AlcaláR., Giménez R., Oriol L., Pinol M., Serrano J. L., Villacampa B., Vi?uales A. I., Synthesis, characterization, and induction of stable anisotropy in liquid crystalline photo-addressable PPI dendrimers, Chem. Mater. 2007, 19, 235-246.
    28. Lu X. M., Lu Q. H., Zhu Z. K., et al., Laser-induced periodic surface structure on polyimide doped with lecithin, Mater. Lett. 2003, 57, 3636-3640.
    29. Pan X., Wang C., Xu H., Wang C., Zhang X., Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer, Appl. Phys. B 2007, 86, 693-697.
    1. Lu J., Deshpande S. V., Gulari E., Kanickia J., Ultraviolet light induced changes in polyimide liquid-crystal alignment films, J. App l. Phys. 1999, 80, 5028-5034.
    2. Gibbons W. M., Shannon P. J., Sun S. T., Swetlin B. J., Surface-mediated alignment of nematic liquid crystals with polarized laser ligh, Nature 1991, 351, 49-50.
    3. Kawatsuki N., Takatsuka H., Yamamoto T., et al., Photoregulated liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer Jpn. J. App l. Phys. 1997, 36, 6464-6469.
    4. Kim J. H., Acharya B. R., Kumar S., A method for liquid crystal alignment using in situ ultraviolet exposure during imidization of polyimide, Appl. Phys. Lett. 1998, 73, 3372-3374.
    5. Yang K. H., Tajima K., Takenaka A., Takano H., Charge trapping properties of uv-exposed polyimide films for the alignment of liquid crystals, Japan. J. Appl. Phys. 1996, 35, L561- L563.
    6. Gao J., He Y. N., Liu F., Zhang X., Wang Z. Q., Wang X. G., Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings, Chem. Mater. 2007, 19, 3877-3811.
    7. Li X., Lu X. M., Lu Q. H., Yan D. Y., Photoorientation of liquid crystalline azo-dendrimer by nanosecond pulsed laser for liquid crystal alignment, Macromolecules 2007, 40, 3306-3312.
    8. O’Neill M., Kelly S. M., Photoinduced surface alignment for liquid crystal displays, J. Phys. D: Appl. Phys. 2000, 33, R67–R84.
    9. Uchida E., Kawatsuki N., Photoinduced orientation in photoreactive hydrogen-bonding liquid crystalline polymers and liquid crystal alignment on the resultant films, Macromolecules 2006, 39, 9357-9364.
    10. Egerton P. L., Pitts E., Reiser A., Photocycloaddition in solid poly(vinyl cinnamate). The photoreactive polymer matrix as an ensemble of chromophore sites, Macromolecules 1981, 14, 95-100.
    11. Schadt M., Schmitt K., Kozinkov V., Chigrinov V. G., Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers, Japan. J. Appl. Phys. 1992, 31, 2155-2164.
    12. Yoo J.-H., Cho I., Kim S. Y., Sequence-controlled ethylene/vinyl cinnamate copolymers: synthesis and application to the photoalignment of liquid crystals, J. Poly. Sci. Part A: Polym. Chem. 2004, 42, 5401-5406.
    13. Allcock H. R., Cameron C. G., Synthesis and characterization of photo-cross-linkable small-molecule and high-polymeric phosphazenes bearing cinnamate groups, Macromolecules 1994, 27, 3125-3130.
    14. Tamilvanan M., Pandurangan A., Subramanian K., Reddy B. S. R., Synthesis and characterization of mono- and di-methoxy substituted acrylate polymers containing photocrosslinkable pendant chalcone moiety, Polym. Adv. Technol. 2008, 19, 1218–1225.
    15. Lee S. W., Kim S. I., Lee B., Choi W., Chae B., Kim S. B., Ree M., Photoreactions and photoinduced molecular orientations of films of a photoreactive polyimide and their alignment of liquid crystals, Macromolecules 2003, 36, 6527-6536.
    16. Furumi S., Ichimura K., Surface-assisted photoalignment of discotic liquid crystals by nonpolarized light irradiation of photo-cross-linkable polymer thin films, J. Phys. Chem. B 2007, 111, 1277-1287.
    17. Gupta P., Trenor S. R., Long T. E., Wilkes G. L., In situ photo-cross-linking of cinnamate functionalized poly(methyl methacrylate-co-2-hydroxyethyl acrylate) fibers during electrospinning, Macromolecules 2004, 37, 9211-9218.
    18. Zakrevskyy Y., Stumpe J., Faul C. F. J., A supramolecular approach to optically anisotropic materials: Photosensitive ionic self-assembly complexes, Adv. Mater. 2006, 18, 2133-2136.
    19. Kulikovska O., Goldenberg L. M., Stumpe J., Supramolecular Azobenzene-Based Materials for Optical Generation of Microstructures, Chem. Mater. 2007, 19, 3343-3348.
    20. Xiao S. F., Lu X. M., Lu Q. H., Photosensitive polymer from ionic self-assembly of azobenzene dye and poly(ionic liquid) and its alignment characteristic toward liquid crystal Molecules, Macromolecules 2007, 40, 7944-7950.
    21. Zhang Q., Bazuin C. G., Barrett C. J., Simple spacer-free dye-polyelectrolyte ionic complex: side-chain liquid crystal order with high and stable photoinduced birefringence, Chem. Mater. 2008, 20, 29-31.
    22. Xiao S. F., Lu X. M., Lu Q. H., Photosensitive liquid-crystalline supramolecules self-assembled from ionic liquid crystal and polyelectrolyte for laser-induced optical anisotropy, Macromolecules 2008, 41, 3884-3892.
    23. Ozer B. H., Smarsly B., Antoniettia M., Faul C. F. J., DNA-analogous structures from deoxynucleophosphates and polylysine by ionic self-assembly, Soft Matter. 2006, 2, 329-336.
    24. Thünemann A. F., Ultrathin solid polyelectrolyte-surfactant complex films: Structure and wetting, Langmuir 2000, 16, 824-828.
    25. Furumi S., Ichimura K., Sata H., Nishiura Y., Photochemical manipulation of discotic liquid crystal alignment by a poly(vinyl cinnamate) thin film, Appl. Phys. Lett. 2000, 77, 2689-2691.
    26. Ichimura K., Akita Y., Akiyama H., Kudo K., Hayashi Y., Photoreactivity of polymers with regioisomeric cinnamate side chains and their ability to regulate liquid crystal alignment, Macromolecules 1997, 30, 903-911.
    27. Obi M., Morino S., Ichimura K., Reversion of photoalignment direction of liquid crystals induced by cinnamate polymer films, Jpn. J. Appl. Phys. 1999, 38, L145-L147.
    28. Schadt M., Seiberle H., Schuster A., Optical patterning of multidomain liquid-crystal displays with wide viewing angles, Nature 1996, 381, 212-215.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.