激光等离子体相互作用中的非线性Thomson散射
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用哈密顿-雅科比方法,完整求解了平面电磁波中的电子运动方程。并对于给定的矢势,给出电子运动方程的精确解。利用电子运动方程的精确解,在电子平均静止坐标系求得谐波辐射平均功率的角分布。得到谐波振幅的生成函数f(ρ0,ρ,ψ,t),其按照变量t的罗朗展开的系数αm(ρ0,p,ψ)是谐波振幅的基本组成部分。αm(ρ0,ρ,ψ)被表示为激光强度和偏振以及观测方向等物理量的函数,在数学上是一类新的特殊函数。系统分析了函数αm(ρ0,ρ,ψ)的表示和性质以及各类特殊无穷求和中的整体性质和行为。计算得到在电子初始静止系和电子与激光场对撞的实验室系内谐波辐射功率的角分布。在其他条件保持不变,偏振度变化时,讨论了背向Thomson散射谐波功率的极值问题。对最重要的基频背向Thomson散射情形,证明了其最大值为圆偏振入射场,最小值为线偏振入射场,并给出其表示。运用相对论和规范变换等方法,系统讨论了经典电磁场理论的对称性,指出某些文献中方法与结论之错误。
The equations of motion for an electron in plane wave electromagnetic fields are solved by applying the Hamilton-Jacobi technique. And the exact solutions of the electron motion are given under the given vector potentials. The average power per unit solid angle of the harmonic radiation is caculated using the solution of the electron motion in the frame where the electron is on the average at rest. The generating function f(ρ0,ρ,ψ,t) for the harmonic radiation amplitudes is found and its coefficient of Laurent expantion according to the variable t denoted by am(ρ0,ρ,ψ) is fundamental element of the harmonic radiation amplitude. The function am(ρ0,ρ,ψ) which is a new sort of advanced function in mathematics is expressed by the physical variables such as the intensity of the laser field, the degree of elliptical polarization and the observation direction. The representations and properties of the function am(ρ0,ρ,ψ), and the global characters and behaviors of the infinite summations related to am(ρ0,ρ,ψ) in the special cases are analyzed systematically. The average power per unit solid angle of the harmonic radiation in the frame where the electron is initially at rest and in the laboratory frame where the laser and the electron meet in a collinear geometry is calculated. Keeping all the other situations the same while varying the degree of elliptical polarization, the extremum property of the backscattered radiation power of the nonlinear Thomson scattering is discussed. It is found that the circular polarization reaches maximum while the linear polarization minimum at the same situations in the fundamental backscattered radiation which is the most important case. The symmetry of classical electromagnetic theory is discussed systematically by the methods of special relativity and guage transformations. And the wrong methods and conclusions made in some references are pointed out.
引文
[l]邹英华,孙驹亨.激光物理学.北京:北京大学出版社,1991
    [2]Committee on High Energy Density Plasma Physics, Plasma Science Committee, National Research Council. Frontiers in High Energy Density Physics:The X-Games of Contemporary Science. U. S. A., Washington, D.C.: National Academies Press,2003
    [3]F. Domingo, H. Ramos. A Fluid Dynamics Model for a Plasma Ion Acceleration System. Nanotech 2001,1: 239-241
    [4]张钧,常铁强.激光核聚变靶物理基础.北京:国防工业出版社,2004
    [5]M. Roth, T. E. Cowan, M. H. Key, et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 2001,86(3):436-439
    [6]S. Gordienko, A. Pukhov, O. Shorokhov, et al. Relativistic Doppler Effect:Universal Spectra and Zeptosecond Pulses. Pyhs. Rev. Lett.2004,93(13):115002-1-115002-4
    [7]M. Kh. Khokonov, H. Nitta. Standard Radiation Spectrum of Relativistic Electrons:Beyond the Synchrotron Approximation. Pyhs. Rev. Lett.2002,89(9):094801-1-094801-4
    [8]Thomas Brabec. Ferenc Krausz. Intense few-cycle laser fields:Frontiers of nonlinear optics. Rev. Mod Phys. 2000,72(2):545-591
    [9]Thomas P. Devereaux, Rudi Hack. Inelastic light scattering from correlated electrons. Rev. Mod. Phys.2007, 79(1):175-233
    [10]M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, et al. Demonstration of laser-frequency upshift by electron-density modulations in a plasmawakefield. Phys. Rev. Lett.2007,99(13):135001-1-135001-4
    [11]J. Workman, M. Nantel, A. Maksimchuk, D. Umstadter. Application of a picosecond soft X-ray source to time-resolved plasma dynamics. Appl. Phys. Lett.1997,70(3):312-314
    [12]Z. M. Sheng, J. Zhang, D. Umstadter. Plasma density gratings induced by intersecting laser pulses in underdense plasmas. Appl. Phys. B,2003,77:673-680
    [13]C. Kan, N. H. Burnett, C. E. Capjack, et al. Coherent XUV generation from gases ionized by several cycle optical pulses. Phys. Rev. Lett.1997,72(2):2971-2974
    [14]R. Y. Chiao, E. Garmire, C. H. Townes. Self-trapping of optical beams. Phys. Rev. Lett.1964,13(15): 479-482
    [15]G. Mourou, Z. Chang, A. Maksimchuk, et al. On the design of experiments for the study of relativistic nonlinear optics in the limit of single-cycle pulse duration and single-wavelength spot size. Plasma Phys. Rep. 2002,28(1):12-27
    [16]B. Bezzerides, R. D. Jones, D. W. Forslund. Plasma mechanism for ultraviolet harmonic radiation due to intense CO2 light. Phys. Rev. Lett.1982,49(3):202-205
    [17]T. Tajima, G Mourou. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. Spec. Top.2002,5(3):031301-1-031301-9
    [18]T. Tajima. Fundamental physics with an X-ray free electron laser. Plasma Phys. Rep.2003,29(3):207-210
    [19]T. Eichner, F. Gruner, S. Becker, et al. Miniature magnetic devices for laser-based, table-top free-electron lasers. Phys. Rev. Spec. Top.2007,10(8):082401-1-082401-14
    [20]George R. Neil, Lia Merminga. Technical approaches for high-average-power free-electron lasers. Rev. Mod. Phys.2002,74(3):685-701
    [21]F.V. Hartemann, D. J. Gibson, W. J. Brown, et al. Compton scattering X-ray sources driven by laser wakefield acceleration. Phys. Rev. Spec. Top.2007,10(1):011301-1-011301-8
    [22]Chen, P., T. Tajima, Y. Takahashi. Plasmawakefield acceleration for ultrahigh-energy cosmic rays. Phys. Rev. Lett.2002,89(16):161101-1-161101-4
    [23]Kenneth Greisen. End to the cosmic-ray spectrum? Phys. Rev. Lett.1966,16(17):748-750
    [24]S. V. Bulanov, T. Zh. Esirkepov, J. Koga, et al. Interaction of electromagnetic waves with plasma in the radiation-dominated regime. Plasma Phys. Rep.2004,30(3):196-213
    [25]Pisin Chen, Toshi Tajima. Testing Unruh radiation with ultraintense lasers. Phys. Rev. Lett.1999,83(2): 256-259
    [26]Ralf Schutzhold, Gernot Schaller, and Dietrich Habs. Signatures of the Unruh effect from electrons accelerated by ultrastrong laser fields. Phys. Rev. Lett.2006,97(12):121302-1-121302-4
    [27]A. I. Akhiezer, R. V. Polovin. Theory of wave motion of an electron plasma. Sov. Ph. JETP.3(6):696-708
    [28]H. Batelaan. Colloquium:Illuminating the Kapitza-Dirac effect with electron matter optics. Rev. Mod. Phys. 2007,79(3):929-941
    [29]Bjorn Henrich, Karen Z. Hatsagortsyan, Christoph H. Keitel. Positronium in intense laser fields. Phys. Rev. Lett.2004,93(1):013601-1-013601-4
    [30]Bulanov, S. V., T. Zh. Esirkepov, T. Tajima. Light intensification towards the Schwinger limit. Phys. Rev. Lett.2003,91(8):085001-1-085001-4
    [31]Julian Schwinger. On gauge invariance and vacuum polarization. Phys. Rev.1951,82(6):664-679
    [32]C. Bamber, S. J. Boege, T. Koffas. et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D,1999,60(9):092004-1-092004-43
    [33]A. Ringwald. Pair production from vacuum at the focus of an X-ray free flectron laser. Phys. Lett. B,2001, 510:107-116
    [34]V.S. Popov. On Schwinger mechanism of e+e- pair production from vacuum by the field of optical and X-ray lasers. Phys. Lett. A,2002,298:83-90
    [35]V. S. Popov. Schwinger mechanism of electron-positron pair production by the field of optical and X-ray lasers in vacuum. JETP Lett.2001,74(3):133-138
    [36]C. Gahn, G. D. Tsakiris, G. Pretzler, et al. Generating positrons with femtosecond-laser pulses. Appl. Phys. Lett.2000,77(17):2662-2664
    [37]N. B. Narozhny, S. S. Bulanov, V. D. Mur, et al. On e+e- pair production by colliding electromagnetic pulses. JETP Lett.2004,80(6):382-385
    [38]C. Bula, K. T. McDonald, E. J. Prebys, et al. Observation of nonlinear effects in compton scattering. Phys. Rev. Lett.1996,76(17):3116-3119
    [39]D. L. Burke, R. C. Field, G. Horton-Smith, et al. Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett.1997,79(9):1626-1629
    [40]V. S. Popov, V. D. Mur and B. M. Karnakov. The imaginary-time method for relativistic problems. JETP Lett. 1997,66(4):229-236
    [41]H. K. Avetissian, A. K. Avetissian, A. Kh. Bagdasarian et al. Nonlinear e+e- pair production in a plasma by a strong electromagnetic wave. Phys. Rev. D,1996,54(9):5509-5514
    [42]H. K. Avetissian, A. K. Avetissian, G. F. Mkrtchian. et al. Electron-positron pair production in the field of superstrong oppositely directed laser beams. Phys. Rev. E,2002,66(1):016502-1-016502-6
    [43]G S. Sarkisov, V. Yu. Bychenkov, V. T. Tikhonchuk, et al. Observation of the plasma channel dynamics and Coulomb explosion in the interaction of a high-intensity laser pulse with a He gas jet. JETP Lett.1997,66(12): 828-834
    [44]K. Nemoto, A. Maksimchuk, S. Banerjee, et al. Laser-triggered ion acceleration and table top isotope production. Appl. Phys. Lett.2001,78(6):595-597
    [45]S. V. Bulanov, T. Zh. Esirkepov, J. Koga, et al. Concerning the maximum energy of ions accelerated at the front of a relativistic electron cloud expanding into vacuum. Plasma Phys. Rep.2004,30(1):18-29
    [46]P. Sprangle, B. Hafizi, F. Mako.New X-ray source for lithography. Appl. Phys. Lett.1989,55(24):2559-2560
    [47]R. L. Kauffman, D. W. Phillion, and R. C. Spitzer. X-ray production 13 nm from laser-produced plasmas for projection x-ray lithography applications. Appl. Opt.1993,32(34):6987-6990
    [48]A. A. MacDowell, J. E. Bjorkholm, J. Bokor, et al. Reduction imaging with soft x rays for projection lithography. Rev. Sci. Instrum.1992,63(1):737-740
    [49]Y. Glinec, J. Faure, V. Malka, et al. Radiotherapy with laser-plasma accelerators:Monte Carlo simulation of dose deposited by an experimental quasimonoenergetic electron beam. Med. Phys.2006,33(1):155-162
    [50]Qian Peng, Asta Juzeniene, Jiyao Chen. Lasers in medicine. Rep. Prog. Phys.2008,71(6): 056701-056701-28
    [51]Stepan S. Bulanov, Andrei Brantov, Valery Yu. Bychenkov. et al. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses. Med. Phys.2008,35(6):1770-1776
    [52]Gerard A. Mourou, Toshiki Tajima, and Sergei V. Bulanov. Optics in the relativistic regime. Rev. Mod. Phys. 2006,78(2):309-371
    [53]G Mourou, D. Umstadter. Development and applications of compact high-intensity lasers. Phys. Fluids B, 1992,4(7):2315-2325
    [54]Mourou G A., C. P. J. Barty, M. D. Perry. Ultrahigh-intensity lasers:Physics of the extreme on a tabletop. Phys. Today,1998,51(1):22-28
    [55]Gerard A. Mourou, Donald Umstadter. Extreme light focusing light with the power of 1,000 HOOVER DAMS onto a point the size of a cell nucleus accelerates electrons to the speed of light in a femtosecond. Sci. Am.2002(6):81-86
    [56]Donald Umstadter. Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas,2001,8(6):1774-1785
    [57]Yousef I. Salamin, S.X. Hu, Karen Z. Hatsagortsyan, et al. Relativistic high-power laser-matter interactions. Phys. Rep.2006,427:41-155
    [58]Alexander Pukhov. Strong field interaction of laser radiation. Rep. Prog. Phys.2003,66:47-101
    [59]Patrick Mora. Physics of relativistic laser-plasmas. Plasma Phys. Control. Fusion 2001,43:A31-A37
    [60]Donald Umstadter. Relativistic laser-plasma interactions. J. Phys. D:Appl. Phys.2003,36:R151-R165
    [61]T. Tajima, J.M. Dawson. Laser electron accelerator. Phys. Rev. Lett.1979,43(4):267-270
    [62]V. Malka, S. Fritzler, E. Lefebvre, et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science,2002,298:1596-1600
    [63]. C. G. R.Geddes, Cs. Tothl, J. van Tilborg, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 2004,431:538-541
    [64]D. Strickland, G. Mourou. Compression of amplified chirped optical pulses. Opt. Commun.1985,53: 219-223
    [65]P. Maine, D. Strickland, P. Bado, M. Pessot, And G. Mourou. Generation of ultrahigh peak power pulses by chirped pulse amplification (Invited paper). Ieee J. Quantum Electron.1988,24(2):398-401
    [66]Michael D. Perry, Gerad Mourou. Terawatt to petawatt subpicosecond lasers. Science,1994,264:917-924
    [67]M. D. Perry, D. Pennington, B. C. Stuart, et al. Petawatt laser pulses. Optics Letters,1999,24(3):160-162
    [68]Robert F Serivce. Laser labs race for the petawatt. Science,2003,301:154-156
    [69]S.-W. Bahk; P. Rousseau, T. A. Planchon, V. Chvykov, et al. Generation and characterization of the highest laser intensities(1022 W/cm2). Opt. Lett.2004,29(24):2837-2839
    [70]W. Becker, F. Grasbon, R. Kopold, et al. Above-threshold ionization:from classical features to quantum effects. Adv. At, Mol., Opt. Phys.2002,48:35-98
    [71]S. Suirez, C. Garibotti, W. Meckbach, et al. Experimental evidence of the asymmetry of the soft electron peak in ion-atom ionization. Phys. Rev. Lett.1993,70(4):418-421
    [72]P. B. Corkum, Claude Rolland. Supercontinuum generation in gases. Phys. Rev. Lett.1986,57(18): 2268-2272
    [73]P. B. Corkum, N. H. Burnett, F. Brunel. Above-Threshold ionization in the long-wavelength limit. Phys. Rev. Lett.1989,62(11):1259-1262
    [74]P. B. Corkum. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett.1993,71(13): 1994-1997
    [75]C. J. Joshi, P. B. Corkum. Interactions of ultra-intense laser light with matter. Phys. Today,1995,48(1):36-43
    [76]K. Ta Phuoc, A. Rousse, M. Pittman, et al. X-Ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma. Phys. Rev. Lett.2003,91(19): 195001-1-195001-4
    [77]Murnane, Margaret M, Kapteyn, et al. Ultrafast X-ray pulses from laser-produced plasmas. Science,1991, 251:531-533
    [78]S. J. Spector, C. J. Jacobsen, D. M. Tennant. Process optimization for production of sub-20 nm soft X-ray zone plates. J. Vac. Sci. Technol. B,1997,15(6):2872-2877
    [79]C. Wulker, W. Theobald, D. R. Gnass, et al. Soft X-ray emission from plasmas produced by ultraintense KrF-laser pulses in colloidal Al.Appl. Phys. Lett.1996,68(10):1338-1343
    [80]T. Nishikawa, H. Nakano, N. Uesugi, et al. Porous layer effects on soft X-ray radiation emitted froma plasma generated by 130-fs laser pulses irradiating a porous silicon target. Appl. Phys. B,1998,66:567-570
    [81]Tadashi Nishikawa, Hidetoshi Nakano, Katsuya Oguri, et al. Nanohole-array size d ependence of soft X-ray generation enhancement from femtosecond-laser-produced plasma. J. Appl. Phys.2004,96(12):7537-7546
    [82]G Kulcsar, D. AlMawlawi, F.W. Budnik, et al. Intense picosecond X-ray pulses from laser plasmas by use of nanostructured "velvet" targets. Phys. Rev. Lett.2000,84(22):5149-5153
    [83]Tadashi Nishikawa, Hidetoshi Nakano, Naoshi Uesugi, et al. Greatly enhanced soft X-ray generation from femtosecond-laser-produced plasma by using a nanohole-alumina target. Appl. Phys. Lett.1999,75(26): 4079-4081
    [84]Bixue Hou, John A. Nees, Wolfgang Theobald, et al. Dependence of hard x-ray yield on laser pulse parameters in the wavelength-cubed regime. Appl. Phys. Lett.2004,84(13):2259-2263
    [85]M. Schnurer, Ch. Spielmann, P. Wobrauschek, et al. Coherent 0.5-keV X-Ray emission from helium driven by a sub-10-fs laser. Phys. Rev. Lett.1998,80(15):3236-3239
    [86]K. Lee and Y. H. Cha, M. S. Shin, et al. Relativistic nonlinear Thomson scattering as attosecond X-ray source. Phys. Rev. E,2003,67(2):026502-1-0265024
    [87]Markus Drescher, Michael Hentschel, Reinhard Kienberger, et al. X-ray pulses approaching the attosecond frontier. Science,2001,291:1923-1927
    [88]S. P. Gordon, T. Donnelly, A. Sullivan, et al. X rays from microstructured targets heated by femtosecond lasers. Opt. Lett.1994,19(7):484-487
    [89]Tadashi Nishikawa, Hidetoshi Nakano, Hyeyoung Ahn, et al. X-ray generation enhancement from a laser-produced plasma with a porous silicon target. Appl. Phys. Lett.1997,70 (13):1653-1657
    [90]P. P. Rajeev, P. Taneja, P. Ayyub, et al. Metal nanoplasmas as bright sources of hard X-ray pulses. Phys. Rev. Lett.2003,90(11):115002-1-115002-4
    [91]K. J. Kim. S. Chattopadhyay, C.V. Shank. Generation of femtosecond X-rays by 90° Thomson scattering. Nucl. Instr. and Meth. A,1994,341:351-354
    [92]Mitsuru Uesaka, Hidyuki Kotaki, Kazuhisa Nakajima, et al. Generation and application of femtosecond X-ray pulse. Nucl. Instr. and Meth. A,2000,455:90-98
    [93]Hideyuki Kotaki, Masaki Kando, Hideki Dewa, et al. Compact X-ray sources by intense laser interactions with beams and plasmas. Nucl. Instr. and Meth. A,2000,455:166-171
    [94]R. W. Schoenlein, W. P. Leemans, A. H. Chin, et al. Femtosecond X-ray pulses at 0.4 (?) generated by 90° Thompson scattering:A tool for probing the structural dynamics of materials. Science,1996,274:236-238
    [95]H. Schwoerer, B. Liesfeld, H. P. Schlenvoigt, et al. Thomson-backscattered X rays from laser-accelerated electrons. Phys. Rev. Lett.2006,96(1):014802-1-014802-4
    [96]T. Kumita, Y. Kamiya, M. Babzien, et al. OBSERVATION OF NONLINEAR THOMSON SCATTERING AT BNL-ATF. Inter. J. Mod. Phys. B,2007,21:473-480
    [97]Marcus Babzien, Ilan Ben-Zvi, Karl Kusche, et al. Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons. Phys. Rev. Lett,2006,96(5):054802-1-054802-4
    [98]T. D. Donnelly, M. Rust, I. Weiner, et al. Hard x-ray and hot electron production from intense laser irradiation of wavelength-scale particles. J. Phys. B:At. Mol. Opt. Phys.2001,34:L313-L320
    [99]M. B. Smirnov, W. Becker. X-ray emission by clus ters in a strong electromagnetic field. Phys. Rev. A,2004, 69(1):013201-1-013201-7
    [100]Ch. Spielmann, N. H. Burnett, S. Sartania, et al. Generation of coherent X-rays in the water window using 5-femtosecond laser pulses. Science,1997,278:661-664
    [101]K. Ta Phuoc, A. Rousse, L. Notebaert, et al. Polychromatic X-ray production in helium from a femtosecond high-intensity laser system. J. Opt. Soc. Am. B,2003,20(1):221-223
    [102]Hellemans, Alexander. With mirrors and finesse, labs domesticate the X-ray laser. Science,1996,273:32-34
    [103]Yoichiro Hironaka, Yasushi Fujimoto, Kazutaka G Nakamura, et al. Enhancement of hard X-ray emission from a copper target by multiple shots of femtosecond laser pulses. Appl. Phys. Lett.1999,74(12): 1645-1647
    [104]S. Kashiwagi, M. Washio, T. Kobuki, et al. Observation of high-intensity X-rays in inverse Compton scattering experiment. Nucl. Instr. and Meth. A,2000,455:36-40
    [105]A. Mcpherson, B. D. Thompson, A. B. Borisov, et al. Mutiphton-induced X-ray emission at 4-5 keV from Xe atoms with mutiple core vacancies. Nature,1994,370:631-634
    [106]I.V. Pogorelsky, I. Ben-Zvi, T. Hirose, et al. Demonstration of 8×1018 photons second peaked at 1.8 A in a relativistic Thomson scattering experiment. Phys. Rev. Spec. Top.2000,3(9):090702-1-090702-8
    [107]Y. Glinec, J. Faure, L. Le Dain, et al. High-resolution gamma-ray radiography produced by a laser-plasma driven electron source. Phys. Rev. Lett.2005,94(2):025003-1-025003-4
    [108]Mangles, S. P. D. et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature,2004, Vol.431:535
    [109]Faure, J. et al. A laser-plasma accelerator producing monoenergetic electron beams. Nature 2004, Vol.431: 541
    [110]M. J. Hogan, C. D. Barnes, et al. Multi-GeV Energy Gain in a Plasma-Wakefield Accelerator. Phys. Rev. Lett. 2005, Vol.95, No.5:054802
    [111]W. P. LEEMANS1, B. NAGLER, et al. GeV electron beams from a centimetre-scale accelerator. Nature physics,2006, Vol.2:696
    [113]S. S. Bulanov. Pair production by a circularly polarized electromagnetic wave in a plasma. Phys. Rev. E, 2004,69(3):036408-1036408-7
    [114]N. B. Narozhny, M. S. Fofanov. Scattering of relativistic electrons by a focused laser pulse. JETP.2000, 90(6):753-768
    [115]Hawking, S. W. Black hole explosions? Nature,1974,248:30-31
    [116]W. G. Unruh. Notes on black-hole evaporation. Physical Review D,1976, Vol.14, No.4:870
    [117]P. Sprangle, A. Ting, E. Esarey, A. Fisher. Tunable, short pulse hard X-rays from a compact laser synchrotron source. J. Appl. Phys.1992,72 (11):5032-5238
    [118]E. Esarey, A. Ting, P. Sprangle, D. Umstadter, et al. Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas. IEEE Trans. Plama Sci.1993,21(1):95-104
    [119]Eric Esarey, Sally K. Ride, Phillip Sprangle. Nonlinear Thomson scattering of intense laser pulses from beams and plasma. Phys. Rev. E,1993,48(4):3003-3021
    [120]Sally K. Ride, Eric Esary, Michael Baine.Thomson scattering of intense lasers from electron beams at arbitrary interaction angles. Phys. Rev. E,1995,52(6):5425-5442
    [121]w·泡利.凌德洪,周万生译.相对论.上海:上海科学技术出版社,1984
    [122]W·仑德勒.江山译.相对论精义.安徽:安徽科学技术出版社,1986
    [123]Steven. Weinberg. The Quantum Theory of Fields Volume I. New York:Cambrige University Press,1995
    [124]J·D·杰克逊.朱培豫译.经典电动力学上.北京:人民教育出版社,1979
    [125]J·D·杰克逊.朱培豫译.经典电动力学下.北京:人民教育出版社,1979
    [126]A·爱因斯坦等.赵志田,刘一贯译.相对论原理.北京:科学出版社,1980
    [127]P·G.柏格曼.周奇,郝萍译.相对论引论.北京:人民教育出版社,1979
    [128]李子平,廖理几.群论及其在物理学中的应用.新疆:新疆人民出版社,1988
    [129]Michael E·Peskin, Daniel V·Schroeder. An Introduction to Quantum Field Theory. USA:Addsion-Wesley Publishing Company,1995
    [130]Itzykson C, Zuber J-B.杜东生等译.量子场论.北京:科学出版社,1986
    [131]H·戈德斯坦.陈为恂译.经典力学.北京:科学出版社,1986
    [132]李应乐,黄际英.电磁场的多尺度变换理论及其应用.西安:西安电子科技大学出版社,2006.7
    [133]Li Ying-Le, Huang Ji-Ying, Wang Ming-Jun, et al. Distribution characteristic of scattering field for an ellipsoidal target irradiated by an electromagnetic wave from an arbitrary direction. Chin. Phys. B,2008, 17(9):3394-3401
    [134]Li Ying-Le, Huang Ji-Ying. The scale-transformation of electromagnetic theory and its applications. Chin. Phys.2005,14(4):646-655
    [135]Li Ying-Le, Huang Ji-Ying. The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction. Chin. Phys.2006,15(2):281-285
    [136]李应乐,弓树宏,王芳.伸缩坐标系的电磁场及变换关系.大学物理,2004,23(7):28-31
    [137]赵诗华.关于伸缩坐标系与麦克斯韦方程组对称性的讨论.大学物理,2009,28(1):28-30
    [138]E. S. Sarachik, G T. Schappert. Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D,1970,1(10):2738-2753
    [139]Joseph H. Eberly, Arthur Sleeper. Trajectory and mass shift of a classical electron in a radiation pulse. Phys. Rev.1968,176(6):1570-1573
    [140]L. D. Landau, E. M. Lifshitz. Classical Theory of Fields,2nd ed. USA:Addsion-Wesley Publishing Company,1962
    [141]F. Rohrlich. Classical Charged Particles. USA:Addsion-Wesley Publishing Company,1965
    [142]Vachaspati. Harmonics in the scattering of light by free electrons. Phys. Rev.1962,128(2):664-666
    [143]G. N. Watson. A Treatise on the Theory of Bessel Functions,2nd ed. England:Cambridge University Press, 1965
    [144]J. Hanus, J. Ernest. Phys. Lett.1965,16:262-264
    [145]王竹溪,郭敦仁.特殊函数概论.北京:科学出版社,1979
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.