非均匀介质中的Kadomtsev-Petviashvili方程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先利用拟行列式的性质获得了非交换非等谱Kadomtsev-Petviashvili方程的拟行列式解。作为特例我们研究了一个2×2矩阵环上的非等谱Kadomtsev-Petviashvili方程,分析了解的非等谱特征和耦合作用。由于方程对应于与时间相关的谱参数,由解所描述的孤立波(线孤子)的振幅和传播速度均与时间有关。本文还利用反散射变换获得了非等谱Kadomtsev-Petviashvili 1方程的N-lump解,并分析了解的动力学行为。由于与时间相关的谱参数的影响,不仅可以产生静态的lump波,而且解所提供的lump波在时间上也具有局部性,体现出rouge波的特点。论文对高维非等谱模型的研究和应用提供了可能的背景和基础。。
In the dissertation,we first study a noncommutative nonisospectral Kadomtsev-Petviashvili equation. By means of quasideterminant;we derive exact solutions for the noncommutative nonisospectral Kadomtsev-Petviashvili equation through direct verifica-tion. The obtained solutions are expressed in terms of quasidetcrminants. The solutions behavior like line solitons with time-varying amplitudes and velocities, which coincides with nonisospectral properties resulted from time-dependent spectral parameter. Be-sides, we investigate a nonisospectral Kadomtsev-Petviashvili I equation. We derive its N-lump solutions by means of Inverse Scattering Transform procedure, and investigate nonisospectral dynamics of obtained solutions. Since the spectral parameter of the equa-tion is time-dependent, solutions can provide stationary lump waves which arc localized both spatially and temporally. Such solutions behavior like rogue waves. The study of the dissertation is helpful to understanding backgrounds and possible applications of high dimensional integrablc systems.
引文
[1| X..J. Zabusky. M.D, Kruskal. Interaction of "soliton" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15, (1965) 240-243.
    [2]C.S. Gardner, J.M. Greene, M.D. Kruskal. R.M. Miura. Method for solving the Kortewe deVries equation, Phys. Rev. Lett. 19. (1967) 1095-1097.
    |3| M.J. Ablowitz. H. Segur. Soli tons and the inverse scattering transform. SIAM. Philadelphia. (1981).
    [4]C. Rogers. W. Shadwick. Backlund transformations and their applications. New York. X.Y. Academic Press.( 1982).
    [5]C. Rogers, W.K. Schief, Bdcklund and Darboux transformations, Cambridge university Press. Cambridge. (2002).
    [6]V.B. Mateveev, M.A. Salle, Darboux transfprmation and solitons. Speringer-Verlag, Berlin, (1991).
    [7]谷超豪,胡和生,周子翔.孤子理论中的达布变换及其几何应用,上海科技出版社,上海.(1999).
    [8]J. Nimmo, N. Freeman. The use of Backlund transformations in obtaining N-soliton solu-tions in Wronskian form. J. Phys. A Math. Gen., 17. (1984) 1415-1424.
    [9]R,. Hirota. Exact solution of the Korteweg-de Vries equation for multiple collisions of seli-tons. Phys. Rev. Lett., 27, (1971) 1192-1194.
    [10]Yoshimasa. Matsuno. Bilinear transformation Method, Academic Press. Tokyo, (1984).
    [ll].J. Nimmo. N. Freeman. A method of obtaining the .Nsoliton solution of the Boussinesq equation in terms of a Wronskian. Phys. Lett. A. 95. (1983) 4-6.
    ;12]张大军.邓淑芳孤子解的Wronskian农示.上海大学学报(自然科学版).8.(2002)232-242.
    [13]M. Sato. Soliton equations as dynamical systems on infinite dimensional Grassmann mani-fold. Nonlinear Partial Differential Equations in Applied Science, RIMS, Kyoto Univ..439, (1981) 30-46.
    [14]Y. Ohta, Satsuma., J. Takahashi, T. Tokihiro, An elementary introduction to Sato theory. Prog. Theor. Phys. Suppl,94, (1988) 210-241.
    [15]C. Chevalley, Theory of Lie groups. Princeton University Press, Princeton, (1999).
    [16]P. Olver. Applications of Lie groups to differential equations. Springer Verlag, Berlin, (2000).
    [17]田畴,李群及其在微分方程中的应用,科学出版社,北京,(2001).
    [18]R. Hirota, A new form of Backlund transformations and its relation to the inverse scattering problem, Prog. Theor. Phys.,52, (1974) 1498-1512.
    [19]陈登远,孤子引论,科学出版社,北京,(2006).
    [20]R. Hirota, A. Nagai, J. Nimmo, The direct method in soliton theory, Cambridge university Press, Cambridge, (2004).
    [21]J. Satsuma, A Wronskian representation of N-soliton solutions of nonlinear evolution equa-tions, J. Phys. Soc. Jpn.,46, (1979) 359-360.
    [22]P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comrn. Pure. Appl. Math.,21, (1968) 467-490.
    [23]M. Wadati, T. Kamijo, On the extension of inverse scattering method, Prog. Theor. Phys., 52(2), (1974) 397-414.
    [24]F. Calogero, A. Dcgaspcris, Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back:the "boomeron", Lett. Nuovo Cimento, 16(14), (1976) 425-433.
    [25]F. Calogero, A. Degasperis. E. Corporation, Spectral transform and solitons, North-Holland Publishing Company, Amsterdam. (1982).
    [26]B.A.Dubrevin.Completelv integrablc hamilionian system comecter with nmirix (?) tors and Abel manifokls.Fulnct.Anal.Appl..11.(1977) 265-277..
    [27]G.Wilson Commuting flows and conservation laws for Lax equations.Math.Proe.Cam-bridge Philos..86,(1979)131-143.
    [28]T.Tsuchida M.Wadati.The coupled modifide Korteweg-de Vries eqnations,J.Phys Soe. Japan.67.(1998) 1175-1187.
    [29]T.Kanna.M.Lakshmanan.Exaet soliton solutions,shape changing eollisions and ps tially coherent solitons in coupled nonlinear schrodinger equations.Phys.Rev.Lett.86(22), (2001)5043-5046.
    [30]VAI.Goneharenke.Mnltisoiiton soiutions of the matrex KdV {i[Ijn..equations.Theor.Math. Phys.,126(1),(2001)81-91.
    [31]V.M.Goneharenko.A.Veselov.Yang-Baxter maps and matris solitons.In Neu trends ingegrability and portial solcability Kluwer Aeadenrec Publishers,Dordreeht.(2004)
    [32]V.G.Drinfeld.On some unsolved problems in quantum group theory,in Quantum groups Springcr.Berlin.(1992)l-8.
    [33]A.Weinstein,P Xu.Classical solutions of the quantum Yang-Baxter equation.Comm. Math.Phys.148.(1992)309-343.
    [34]周世勋,量子力学教程,高等教育出版社,北京.(1979).
    [35]曾谨言,量子力学卷Ⅰ,科学出版社.北京、(2003).
    [36]S.Martin.A supersymmetry primer.Perspectives on Supersgmmetry Ⅱ World Seientific Publishing Co Ptcb.Ltd..Singapere.(2010).
    [37]P.Di Vecchia.S.Ferrara.classical solutions in two-dimensional supersymmetric field theory field theories.Xuelear Phys.B.130C(1977)93-104.
    [38]S.Ferrara.L.Girardello.S.Sciuto.Au infiuitc set of conservation laws of the supcrsym-metric sine-Gordon theory Phys Lett.B..76(3).(1978)303-306.
    [39]K. Becker. M. Becker. Nouperturbative.solution of the.super-Virasoro constraints. Mod. Phys. Lett. A,8, (1993) 1205-1214.
    [40]P. Mathicu, Supersymmetric extension of the Korteweg-de Vrics equation, J. Math. Phys., 29, (1988) 2499-2506.
    [41]B.A. Kupershmidt, A super Korteweg-de Vries equation:an integtable system, Phys. Lett. A,102(5-6), (1984) 213-215.
    [42]B.A. Kupershmidt, Bosonsand fermions interacting integrably with Korteweg-de Vries field. J. Phys. A,17, (1985) L869-872.
    [43]M. Gurses,O. Oguz, A super ANKS scheme, Phys. Lett. A,108(9), (1985) 437-440.
    [44]M. Gurses, O. Oguz. A super soliton conuncetiou. Lett. Math. Phys..11(3). (1986) 235-246.
    [45]C.M. Yung, The N=2 supersymmetric Boussinesq hierarchies, Phys. Lett.B,309(1-2), (1993) 75-84.
    [46]Z. Popowicz, Extensions of the N=2 supersymmetric a=-2 Boussinesq hierarchy, Phys. Lett. A,236(5-6), (1997) 455-461.
    [47]Q.P. Liu, M. Manas, Darboux transformations for SUSY integrable systems, Supersymme-try and integrable models, Springer, Berlin, (1998) 269-281.
    [48]Q.P. Liu, M. Manas, Darboux transformations for super-symmetric KP hierarchies, Phys. Lett. B,485, (2000) 293-300.
    [49]Q.P. Liu, M. Manas, Pfaffian solutions for the Manin-Radul-Mathieu SUSY KdV and SUSY sine-Gordon equations. Phys. Lett. B,436(3-4). (1998) 306-310.
    [50]Q.P. Liu, Y.F. Xic, Nonlinear superposition formula for N=l supersymmetric KdV equa-tion, Phys. Lett. A,325, (2004) 139-143.
    [51]Q.P. Liu, X.B. Hu. M.X. Zhang, Supersymmetric modified Kortewcg-de Vrics equation: bilinear approach, Nonlincarity.18, (2005) 1597-1603.
    [52]Q.P. Liu, X. X. Yang, Supersymmetric two-boson equation:Bilincarization and solutions, Phys. Lett. A,351(3), (2006) 131-135.
    [53]M.X.(?),Q.P.Liu.Y.L.Shen.K.Wn.(?)(?)to X=2(?)(?)(?). equations.Sci.China.Ser.A(?)..52(9).(2009) 1973-1981.
    [54]S.Q.Ln.X.B.Hu.Q.P.Lin.A supersymmctrie itos equiation and its soliton solutions J. Phys.SOC.Jpn.,75(6),(2006)064004.1-064004.5.
    [55]E.G.Fan.Y,C.Hon.Quasipcriodic Wave Solutions (?)=2 Supersymmetric KdV Equation in Superspace.Stud.Appl..Math.,125(4).(20lO) 343-371.
    [56]E.P.Wigner.On the quantum correction for thermodynanic equilibrium.Phvs.Rev.40(5 (1932)749-759.
    [57]H.Weyl.Quantum mechanics and group rheory Z.Phys.,46(1),(1927),
    [58]曾谨言.量子力学卷Ⅰ,科学出版社.北京.(2003) 244-244.
    [59]H.J.Groenewold,On the Principles of clementary quantum meehanies,Physica 12(7) (1946) 405-460.
    [60]J.E.Moyal、Quantum nechanics as a statistical (?).Math.Proc.Camoridge Phil.(?) 45(1),(1949) 99-124.
    [61]]M.W.Wong.Weyl transformations.Springer Verlag.New York:(1998).
    [62]W.Schlcich.J.Wiley.Quantum optics in phase space.Wilcy-VCH Verlag Berlin GmbH. Berlin,(2001)
    [63]N.DOuglas.N.Nekrasov.(?) field theory,Rev.Mod.Phys..73(4),(2001) 977-1029.
    [64]R.Szabo.(?)lield (?)on uoncommutative spaces+1.Phys.Rep..378(4).(2003) 207-299.
    [65]L.D.Paniak.Exact (?) KP and KdV multi-solitons.arXiv:hep-th/010518 (2001)
    [66]M.Hamanaka.K.Toda.Towards noncommutative integrable systems.Pbys.Lctt.A.316(1-2).(2003)77-83.
    [67]A. Dimakis. F. Muller-Hoisson. Extension of Moyal-deformed hierarchies of soliton equa-tions, arXiv:nlin/0408023, (2004).
    [68]A. Connes, Non-commutative differential geometry, Publ. Math. IHES,62(1), (1985) 41-144.
    [69]G. Landi, An introduction to noncommutative space and their Geometry, arXiv:hep-th/9701078, (1997).
    [70]P. Etingof, I. Gelfand, V. Retakh. Factorization of differential operatora, quasideterminants and nonablian Toda filed equations, Math. Res. Lett.,4, (1997) 413-425.
    [71]I. Gelfand, S. Gelfand, V. Retakh, R.L. Wilson, Quasideterminants, Adv. Math.,193(1), (2005) 56-141.
    [72]Z. Zheng, Noncommutative KP hierarchy and its constraints, Ph. D thesis, University of Science and Technology of China, (2002).
    [73]R. Gopakumar, S. Minwalla, A. Strominger, Noncommutative solitons, J. High Energy Phys.,12,020, (2000).
    [74]J.A. Harvey, P. Kraus, F. Larsen, Exact noncommutative solitons, J. High Energy Phys., 12,024, (2000).
    [75]A. Roy Chowdhury, S. Roy, On the Backlund transformations and Hamiltonian properties of superevalauation equations, J. Math. Phys.,27, (1986) 2464-2468.
    [76]C. Gilson, J. Nimmo, Y. Ohta, Quasideterminant solutions of a non-Abelian Hirota-Miwa equation. J. Phys. A,40, (2007) 12607-12617.
    |77] C. Gilson, J. Nimmo, C. Sooman, Matrix solutions of a noncommutative KP equation and a noncommutative mKP equation, Theor. Math. Phys.,159, (2009) 796-805.
    [78]C.X. Li. J. Nimmo, Quasideterminant solutions of a non-Abelian Toda lattice and kink solutions of a matrix sine-Gordon equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,464(2092), (2008) 951-966.
    [79]H.H. Chen, C.S. Liu, Solitons in nonuniform media, Phys. Rev. lett.,37(11), (1976) 693-697.
    [80]W'.L. Chan.K.S.Li Y.S.Li Line soliton interactions of a nouisospeetral and Variable coeffieiint Kadomtsev-Petviashvili equation, J. Math. Phys..33. (1992) 3759-3773.
    [81]J.R. Wu, R. Kcolian, I. Rudnick, Observation of a nonpropagating hydrodynamic soliton, 52(16), (1984) 1421-1424.
    [82]A.C. Newell, The general structure of integrable evolution equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,365(1722), (1979) 283-311.
    |83] W.L. Chan, K.S. Li, Nonpropagating solitons of the variable coefficient and nonisospectral Korteweg-de Vrics equation, J. Math. Phys,30, (1989) 2521-2526.
    [84]S. Burtsev, V. Zakharov and A. Mikhailov, Inverse scattering method with variable spectral parameter. Thcor. Math. Phys..70(3). (1987) 227-240.
    [85]V.E. Adlcr, A.B. Shabat. R.I. Yamilov, Symmetry approach to the integrability problem, Thcor. Math. Phys.,125(3), (2000) 1603-1661.
    [86]R. Hirota, J. Satsuma, N soliton solution of the KdV equation with loss and nonuniformity terms, J. Phys. Soc. Jpn.,41(6), (1976) 2141-2142.
    [87]W. Ma, B. Fuchssteiner, Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations, J. Math. Phys.,40, (1999) 2400-2418.
    [88]A. Kimura, T. Ohta, Probability of the freak wave appearance in a 3-dimensional sea condition, Proc. Coastal. Eng. Conf., ASCE, New York, NY, USA,1, (1995) 356-369.
    [89]C. Kharif. E. Pelinovsky, Physical mechanisms of the rogue wave phenomenon, Eur. J. Mech. B:Fluids,22(6), (2003) 603-634.
    [90]D. R. Solli, C. Ropers, P. Koonath. B. Jalali. Optical rogue waves. Nature,450(7172). (2007) 1054-1057.
    [91]L. Pitacvski, S. Stringari, Bose-Einstein Condensation, Oxford University Press. USA, (2003).
    [92]V. Bludov, V.V. Konotop, N. Akhmedicv, Vector rogue waves in binary mixtures of Bosc-Einstcin condensates, Eur. Phys. J. Spec. Top.,185(1), (2010) 169-180.
    [93]A.N. Ganshin. V.B. Efunov. G.V. Kolmakov. L.P. Mezhov-Deglin. P.V.E. MeClincock. Observation of an Inverse Energy Cascade in Developed Acoustic Turbulence in Superrluid Helium, Phys. Rev. Lett.101(6),065303. (2008).
    [94]Fedele, Francesco. Rogue waves in oceanic turbulence, Phys. D:Nonlinear Phenom.,237(14-17), (2008) 2127-2131.
    [95]L. Stenflo, M. Marklund, Rogue waves in the atmosphere, J. Plasma Phys.,76(3-4), (2010), 293-295.
    [96]C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue waves in the ocean, Springer Verlag, Berlin, (2009).
    [97]C.A. Chase. Rogue Waves 2004, Sea Tech Week 2004. Lc Quartz. Brest. France, (2004).
    [98]B. White, B. Fornberg, On the chance of freak waves at sea, J. Fluid Mcch.,355, (1998) 113-138.
    [99]A. Slunyaev, C. Kharif, E. Pelinovsky and T. Talipova. Nonlinear wave focusing on water of finite depth, Phys. D:Nonlinear Phenom.,173(1-2), (2002) 77-96.
    [100]V. Zakharov, A. Dyachenko, O. Vasilyev, New method for numerical simulation of a non-stationary potential flow of incompressible fluid with a free surface, Eur. J. Mech. B:Fluids, 21(3), (2002) 283-291.
    [101]V.E, Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaevskii, Soliton Theory-Method of The Inverse Scattering Problem, Nauka, Moscow, (1980).
    [102]A.R. Osborne, M. Onorato, M. Serio. The nonlinear dynamics of rogue waves and holes in deep-water gravity wave train. Phys. Lett. A,275(5-6), (2000) 386-393.
    [103]A. Calini. CM. Schobcr, Homoclinie chaos increases the likelihood of rogue wave forma-tion, Phys. Lett. A,298(5-6), (2002) 335-349.
    [104]T. Soomere, J. Engelbrecht. Extreme elevations and slopes of interacting solitons in shallow water, Wave Motion,41(2). (2005) 179-192.
    [105]T. Soomere, Rogue waves in shallow water. Eur. phys. J. Spec. Top.,185(1), (2010) 81-96.
    [106]P. Peterson.T. Soomere.J. (?) and E Van (?). (?) interaction as possible model for extreme waves in shallow water, Nonlinear Proc. Geoph..10(6). (2003) 503-510.
    [107]M. Onorato, A. Osborne, M. Serio, S. Bertone, Frcak waves in random oceanic sea states, Phys. Rev. Lett.,86(25), (2001) 5831-5834.
    [108]B. Osofsky, Noncommutative Linear Algebra, In Algebra and its applications:International Conference, Algebra and Its Applications, AMS. New York, (2006).
    [109]I.M. Gelfand, V.S. Retakh, Determinants of matriices over noncommutative rings, Funt. Appl.25(2), (1991) 91-102.
    [110]I.M. Gelfand. V.S. Retakh. A theory of (?)determinants and (?) functions of graphs, Funt. Appl,26(4), (1992) 231-246.
    [111]P. Etingof, I. Gelfand. V. Retakh, Nonabelian integrable systems, quasideterminants. and Marchenko lemma, Math. Res. Lett.5, (1998) 1-12.
    [112]I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, Jean-Yves Thibon, Nonco-mutative symmetric functions. Adv. Math.112(2), (1995) 218-348.
    [113]C. Gilson, J. Nimmo, On a direct approach to quasideterminant solutions of a noncom-mutative KP equqtion, J. Phys. A:Math. Theor.40, (2007) 3839-3850.
    [114]A. Molev, Noncommutative symmetric functions and Laplace operators for classicalLie algebras, Lett. Math. Phys.35(2), (1995) 135-143.
    [115]A. Molev, V. R,etakh, Quasidetcrminants and Casimir elements for the gcneralLie super-algebras, Intern. Math. Res. Notes,13, (2004) 611-619.
    [116]K. Takasaki, Nonabelian KP hierarchy with Moyal algebraic coefficients, J. Geom. Phys., 14(4), (1994) 332-364.
    [117]D.Y. Chen, H.W. Xing, D.J. Zhang, Lie algebraic structures of some (l+2)-dimensional Lax integrable systems, Chaos Soliton Fract.,15(4), (2003) 761-770.
    [118]V.B. Matveev. M.A. Salle. (?) (?) and Solilons Springer-Verlag. Berlin. (1991).
    [119]V.M. Goncharenko, A.P. Veselov, Monodromy of the matrix Schrodinger equations and Darboux transformations. J. Phys. Lett. A,31, (1998) 5315-5326.
    [120]V.B. Matveev, Darboux transformations in differential rings and functional-difference equations, Proc. CRM Workshop Bispectral Problems, (Montreal, March,1997), (Prov-idence, RI:AMS), (1997).
    [121]W. Ocvel, W. Schief, Darboux theorems and the KP hierarchy, in Applications of Analytic and Geometric Methods to Nonlinear Differential Equations. Kluwer Academic Publishers, Dordrecht. (1992) 193-206.
    [122]I.D. Macdonald, Symmetric Functions and Hall Polynomials 2nd edn Oxford University Press, USA, (1995).
    [123]G. Falqui. F. Magri, M. Pedroni, J.P. zubelli. An elementary approach to the polynomial τ-functions of the KP-hierarchy. Teoret. Mat. Fiz..122(1), (2000) 23-26.
    [124]K. Takasaki. Geometry of universal Grassmann manifold form algebraic piont of view, Rev. Math. Phys.,1(1), (1989) 1-46.
    [125]J. Hietarinta, Scattering of solitons and dromions. in Scattering:Scattering and Inverse Scattering in Pure and Applied Science, Edited by R. Pike, P. Sabatier, Academic Press, London, (2002) 1773-1791.
    [126]C. Gilson, J. Nimmo, C. Sooman, Matrix solutions of a noncommutative KP equation and a noncommutative mKP equation, Theor. Math. Phys.,159(3), (2009) 796-805.
    [127]A.S. Fokas, M.J. Ablowitz, On the inverse scattering of the time-dependent Schrodinger equation and the associated Kadomtsev-Petviashivili(i) equation, Stud. Appl. Math.,69, (1983) 211-228.
    [128]S.V. Manakov, V.E. Zakharov, L.A. Bordag, A.R. Its, V.B. Matveev, Two-dimensional olitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A,63, (1977) 205-206.
    [l29]S.V. Manakov. The inverse scattering transform for the time-dependent Selirodinger eqn tion and Kadomtscv-Pctviashvili equation. Phys. D.3. (1981) 420-427.
    [130]M. Ablowitz, J. Satsuma, Solitons and rational solutions of nonlinear evolution equations J. Math. Phys.,19, (1979) 2180-2186.
    [131]J. Satsuma, M. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys,20, (1979) 1496-1503.
    [132]S.P. Burtsev, V.E. Zakharov. A.V. Mikhailov, Inverse scattering method with variable spectral parameter, Theor. Math. Phys.,70, (1987) 227-240.
    [133]T.K. Ning, Soliton-like solutions for a nonisospectral KdV hierarchy. Chaos Soliton Fract., 21. (2004) 395-401.
    [134]D.J. Zhang, D.Y. Chen, Some general formulas in the Sato theory, J. Phys. Soc. Jpn., 72(2), (2003) 448-449.
    [135]M.J. Ablowitz, P.A. Clarkson, Solitons. Nonlinear Evolution Equations and Inverse Scat-tering, Cambridge university Press, Cambridge, (1991).
    [136]K.A. Gorshkov. D.E. Pelinovsky, Y.A. Stepanyants, Normal and anormal scattering, for-mation and decay of bound states of two-dimensional solitons described by the Kadomtsev-Pctviashvili equation, J. Exp. Thcor. Phys.,77, (1993) 237-245.
    [137]M.J. Ablowitz, J. Villarroel, Solutions to the time dependent Schrodinger and the Kadomtsev-Petviashvili equations, Phys. Rev. Lett.78, (1997) 570-574.
    [138]R. Hirota, J. Satsuma, N-soliton solution of the KdV equation with loss and nonuniforMity terms, J. Phys. Soc. Jpn..41, (1976) 2141-2142.
    [139]T.K. Ning, Soliton-like Solutions for Nonisospectral equation hierarchies. Ph. D thesis Shanghai University, (2005).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.