阵列波导光栅复用器的传输特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为密集波分复用技术的关键器件,阵列波导光栅波分复用与解复用器有着分辨率高、集成度高、通道数大等优点,成为光通信领域的研究热点。
     由瑞利—索末菲标量衍射积分公式出发,推导出平面波导基模衍射远场分布表达式和中央亮条纹强度半最大值处的空间频率所满足的方程。分析了中央亮条纹的全宽度和半最大值全宽度随波导参数和传输距离的关系。这为波导参数的测量提供理论基础,也为分析阵列波导光栅的焦场理论及其特性参数提供准备。
     在现有的文献中,大多仅对复合光波从中心波导输入时的阵列波导光栅焦场性质进行分析,而且计算都很复杂。本文在平面波导场横向分布用高斯近似条件下,利用求两次傅立叶变换的方法推导出计算中心波长的光波从任一波导输入的阵列波导光栅的焦场和插入损耗的简单表达式,这为阵列波导光栅的设计提供简便的设计依据。
     提出用脉冲响应函数法来对焦场进行分析,这种方法简单,物理意义鲜明。指出了AWG系统不是线性空间不变系统,中心波长光波从不同波导输入,输出特性不同,文中做了详尽的比较。最后,我们还利用已求的脉冲响应函数对串扰特性、损耗特性和相位误差对传输特性的影响进行了分析。
Arrayed waveguide grating, the key component of dense wavelength division multiplexing, has the advantage of high resolution, high integration and more channels, etc. It has become the research hotspot in the optical communication field.
    Based on Rayleigh-Sommerfeld diffraction scalar integral formula, the distributing formula of far diffraction field of planar waveguide and the equation of spatial frequency at half maximum intensity of central bright fringe of far diffraction field of planar waveguide in TEo mode are educed. The relation between the width of central bright fringe together with full width at half maximum of central bright fringe and every waveguide parameter is analyzed. The conclusions are useful to measure parameter of planar waveguide and to analyse focal field distribution of arrayed waveguide grating.
    In most existing literature, the focal field property of arrayed waveguide grating is analyzed only when complex lightwave input from central waveguide, and its method is complicated. In this paper, on the condition that the transverse field of planar waveguide is expressed in gauss function, the simple expression of the focal field distribution and insert loss of arrayed waveguide grating is derived by computing two Fourier transform, which affords handy theoretical basis for designing arrayed waveguide grating.
    One new method to analyse focal field of arrayed waveguide grating is brought forward, which is named the impulse response function method. The method is simple and feasible. The system of AWG is not linear shift-invariant system, so the output characteristic of the central wavelength inputting from different waveguide is different. Their different characteristic is compared. Lastly, crosstalk characteristic, loss
    
    
    
    characteristic and phase error of AWG are analyzed.
引文
[1]. Smit M K. New focusing and dispersive-planar component based on an opitical phased array[J]. Electron .Lett., 1988, 24(7):385~386
    [2]. Vellekoop A R, Smit M K. Low-loss planar optical polarization splitter with small dimensions[J], Electron.Lett., 1989, 25(6): 946~947
    [3]. Vellekoop A R, Smit M K. A polarization independent planar wavelength demultiplexer with small dimensions[J]. Proc. Eur. Conf Opt. Integrated Systems, Amsterdam, The Netherlands., 1989, 25(9): D3
    [4]. Vellekoop A R ,Smit M K. Four channel integrated-optic wavelength demultiplexer with weak polarization dependence[J]. Lightwave Technol., 1991, 9(3): 310~314
    [5]. Takahashi H Suzuki S Kato K, et al.. Arrayed waveguide grating for wavelengeh division multi/demultiplexer with nanometer resolution[J]. Electron.Lett. 1990, 2(1):87~88
    [6]. Takahashi H ,Nishi I, Hibino Y, 10 GHz spacing optical frequency division multiplexer based on arrayed waveguide grating[J]. Opt.Lett.,1992, 17(7): 380~382
    [7]. Dragone C. An N×N optical multiplexer using planar arrangement of two star couplers[J], IEEE Phonto.Technol.Lett.. 1991, 3(1):812~815.
    [8]. Dragone C, Edwards C A, Kistler R C. Interrated optics N×N multiplexer on silicon, IEEE Phonto. Technol.Lett.. 1991, 3(10)896-899
    [9]. 黄章勇.《新型光无源器件》[M],北京邮电大学出版社 2003:35~133
    [10]. Kamei S, Iskesbj M, Kitagawa C,et al.. 64-Channel Very Low Crosstalk Arrayed-Waveguide Grating Multi/Demultiplexer Module Using a Cascade Connection Technique [C], Prcc ,OFC 2001 . 2002:68-69
    [11]. Mamoto J Y. A Novel AWG Demultiplexer Composed of Slabs wit Islands [C], Proc, OFC'2002. 2002:662-664
    [12]. Kanko A, Kamei S, Inone Y, et al.. Athermal Silica-Based Arrayed Waveguide Grating(AWG) Multi/Demultiplexers with New Low Loss
    
    groove Design[J].Electron Lett.,2000, 36(4):318-319
    [13]. Okamoto K, Planar waveguide technology[C],2000 Digest of the LEOS Summer Topical Meetings, Published:2000:Ⅳ41-Ⅳ42
    [14]. 周勤存,戴道锌.用Stigmatic Point法设计高性能80通道阵列波导光栅的器件[J].光子学报 2003,32(2):199-203
    [15]. 雷红兵,欧海燕.阵列波导光栅解复用器输入/输出波导结构串扰的数值分析[J].光子学报,1999,28(7):630~633
    [16]. Tsuda H, Takenouchi H, Okamoto K. Performance Analysis of a dispersion Compensator using arrayed-waveguide gratings[J]. JOURNAL OF LIGHTWAVE TECHNOLOGY. 2000, 18(8):1139~1147
    [17]. 李正斌 博士学位论文,基于AWG小复用系统中几个关键问题的研究 2000
    [18]. 邱怡申,李雪梅,吕团孙等,阵列波导光栅复用/解复用器焦场的分析及光栅孔径对器件串扰影响的数值分析[J].中国激光,2002,29(9):801~804
    [19]. Amersfoort M K. Passband broadening of integrate arrayed waveguide filter using multimode interference couplers[J] ,Electron.Lett., 1996, 32(1):449~451
    [20]. Okamotoa K, Sugita A, Flat spectral response arrayed waveguide grating multiplexer with parabolic waveguide horns[J]. Electron. Lett.,vol. 1996,32(1): 1661~1662
    [21]. Dragon C, Efficient techniques for widening the passband of a wavelength router[J].IEEE J.Lightwave Technol., 1998, 16(1): 1895~1906
    [22]. Y.P.Ho. Flat channel passband wavelength multiplexering and demultiplexering devices bu multiple rowrand circles[J]. IEEE Phot, Iech. Lett., 1997, 9(1):342~344
    [23]. Dai Daoxin, Liu Shuzhe. Optimal design of an MMI coupler for broadening the spectral response of an AWG demultiplexer. Journal of Lightwave Technology[J]. 2002, 20(11): 1957~1961
    [24]. Gini E, Melchior H. Palarization independent InP grating spectrograph
    
    for fiber optical links[C]. Proc. 7~(th) Cong Integr.,Opt.(ECIO'95), Delft, Netherlands, Apr. 3-61995:279~282
    [25]. Takahashi H, Hibino Y, Nishi I, Polarization-insensitive arrayed waveguide grating wavelength multiplexer on silicon[J]. Opt.Lett., 1992 17(4):499~501
    [26]. Verbeek B H. large bandwidth polarization independent and compact 8 channel PHASAR demultiplexer/filter[J]. OFC/IOOC94 Tech.Dig., Postdeadline papers, San Jose, CA, 1994, 25(20):63~66
    [27]. Takahashi K, Hibino Y. Polarization-insensitive arrayed wavegui- de wavelength demultiplexer with birefringence compensating film[J], IEEE Photon. Technol.lett., 1993, 5(1):707~709
    [28]. Zimgibl M, Joyner C H, Chou P C, polarization compensated waveguide grating router on InP[J]. Electron. Lett., 1995,31(1):1662~1664
    [29]. Soole J B. Polarization-independent InP arrayed wave- guide filter using square cross-section waveguides[J]. Electron.Lett., 1996,32(4): 323~324
    [30]. Spiekman L Amersfoort H M. Design and realization of polarization independent Phased Array Wavelength demultiplexers using different array orders for TE and TM[J]. IEEE J.Lightwave. Techno., 1996, 14(6):991~995
    [31]. Zirgibl M. Polarization independent 8×8 waveguide grating multiplexers on InP[J]. Electron.Lett.,1993, 29(2):201~202
    [32]. Miton O, Kasaya K Miyazawa H. Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling[J]. IEEE Quantum Electron., 1994, 30(1):1787~1793
    [33]. Mizuno T, Kitoh T, Ishii M et al.. Compact and low-loss arrayed waveguide grating module with tolerance-relaxed spot-size converter[J], IEEE Photonics technology letters, 2003,15(3): 239~241
    [34]. Smit M K, Dam C V, Phasar-based WDM-devices: principles, design and applications[J].IEEE J of sel.Top.in quantum Elecronics,
    
    1996,2(2):236~250
    [35]. Teshima M, Sato K J. Performance of multiwavelength simultane- ous monitoring circuit employing array-waveguide grating[J], J.Lightwave Technol.,1996,14(10):2277~2285
    [36]. Kasabara R, Yanagisawa M, Sugita Aet al.. A compact optical wavelength selecter composed of arrayed-waveguide gratings and an optical gate arrayed integrated on a single PLC platform[J]. IEEE Photon. Technol.Lett.,2000,12(1) :34~36
    [37]. Saida T, Raneka A, Goh T et al.. Anthermal silicabased optical add/drop multiplexer consisting of arrayed-waveguide grating and double gate thermo-optical switches[J]. Electron.Lett.,2000,36(6):528~529
    [38]. Takada K, Yomada H, Okamoto K. Optical spectrum analyzer using cascaded AWG's with different channel spacing[J]. IEEE Photon. Techno Lett.,1999,11(7):863~864
    [39]. 黄章勇,阵列波导光栅及其应用,飞通光电子技术[M],2002(2)61~70
    [40]. 郭福源,林斌,陈钰清.平面波导基模的衍射特性[J].激光与红外,2002,32(5):323~326
    [41]. 郭福源,林斌,陈钰清,曹向群,上官成木生.介质平面波导TE_0模衍射场的光束参数[J].光学学报,2003,23(9):702~706
    [42]. 谢建平,明海,近代光学基础[M].合肥:中国科技大学出版社,1989,87~93
    [43]. G Levy-Yurista, A AFriesem, E Pawlowski, et al. Hybrid semiconductor polymer resonant grating waveguide structures [J]. Optical Materials. 2001,17(1): 149-154
    [44]. Swint R B, Huber A E, Yeoh T S, et al.. 900-m w high brightness buried ridge lasers by selective area epitaxy [J]. IEEE Photonics Technology Letters, 2002, 14(4): 441~443
    [45]. Qu Yi, Bo Baoxue, Gao Xin, et al.. 940 nm low beam divergence tapered window laser arrays [J]. Optics & Laser Technology, 2002, 34(34): 675-677
    
    
    [46]. 吴重庆,光波导理论[M].北京:清华大学出版社 1999,16~23.107~110.
    [47]. 周炳琨,高以智,陈倜嵘等.激光原理(第4版)[M].北京:国防工业出版社,1995,57-60
    [48]. 顾德门,傅立叶光学导论[M],北京:科学出版社,1976,18-110
    [49]. 朱大庆,陆冬生,许斟鄂.相位误差对阵列波导光栅传输特性的影响[J],中国激光,2002,29(7)
    [50]. Goh T, Suzuki S, Sugita A. Estimation of waveguide phase error in silica-based waveguide[J]. J.Lightwave Tecgnol.,1997, 15(11): 2107~2113
    [51]. 上官成木生,郭福源,卢勇,平面波导TE_0模的远场衍射特性分析,光电子·激光,2004,No.1
    [52]. 郭福源,光波导理论及其在波分复用器中应用的研究,浙江大学博士学位论文,2003
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.