基于复杂网络的Internet脆弱性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的40年,计算机网络尤其是Internet已经从一种研究兴趣的产物转变为一种社会的基础设施。Internet已然是推动科学技术革新和社会进步的强大引擎。但同时,社会对互联网的依赖与互联网本身的可靠需求越来越不相称。网络脆弱性的存在阻碍了互联网成为一个真正可信赖的、可靠和可预期的关键基础设施。
     本文的工作以复杂网络相关理论和方法为指导。复杂网络研究应用广泛,在社会、政治、经济等诸多领域具有理论意义,尤其在计算机网络领域取得了很大的成就,以此为基础形成的网络科学(Network Science)在网络计算理论、人类主题实验中的行为分析、网络科学与网络设计、网络设计与网络工程、网络设计与社会价值等研究方面具有先进性。网络脆弱性也是其中的研究热点之一。本文的工作主要围绕以网络传播动力学特征分析为主要方法的网络结构脆弱性研究展开。主要包括:
     (1)传统复杂网络研究偏重于对网络结构进行静态分析,确定网络的脆弱组件(结点或边)。比如很多经典研究认为网络中度或介数(Betweenness Centrality)高的结点最应该被保护和控制。那么,这些静态指标是否真的能够准确反映结点的重要性或脆弱性呢?事实上,事物的发展是普遍联系和相互转化的。网络结点的脆弱性并不一定静态而孤立地存在,其一部分由自身的静态拓扑属性所决定,而另一部分则可能隐含于其他的结点之内。为此,我们提出了一种网络结构中的脆弱性社团发现方法,同时提出了一种更准确评估网络结点在危害传播作用上的脆弱性新指标——超介数,以更为准确揭示网络结点在危害传播中的作用和地位,更准确评估网络结点的关键性和脆弱性。
     (2)网络脆弱性挖掘的目的是研究网络免疫策略。网络免疫策略的成效依赖于网络脆弱性挖掘的结果。由于网络危害爆发在时间和空间上具有不确定性,不存在免疫效用对所有情况都最优的免疫纯策略。找出网络的最脆弱结点加以免疫,是在资源受限条件下尽力阻碍网络危害爆发的有效途径。同时,对于危害在网络中传播而言,“推动传播”和“阻碍传播”的因素往往是同时存在和相互伴生的。因此,一个均衡的网络免疫策略不能单纯依靠静态的、单方面的网络结构分析而获得,而应该考虑网络中“推动传播(攻击)”和“阻碍传播(免疫)”二者对抗博弈。本文提出了一种二人常和非合作的网络均衡免疫对策模型。
     (3)一个完整的免疫资源部署流程可以分为信息收集、扫描探测、漏洞修复和自我推进四个阶段,其中搜索探测脆弱主机是免疫推进的关键环节。本文提出了一种基于扫描方式的网络免疫推进技术,能够在不知道网络结构的条件下,根据网络脆弱性分布具有自组织临界性的特点,动态调整扫描偏好,高效命中脆弱主机实施免疫修复。经过模型推导及仿真分析,该方法能够很好地抑制危害传播,提高网络的安全性。
     (4)网络的相继故障(Cascading failures)是指网络在遭受攻击或出现内部故障时,由于其内部结构和动力学的关联性而导致其他网络结点相继出现服务失效或故障的现象。相继故障是网络脆弱性的一个重要表现。在这一领域中,人们通常采用“负荷-容量”模型(Load-Capacity model)对网络相继故障建模。本文主要探讨了以下几个问题:①网络结点的容量-负荷关系在经济、技术条件下存在着怎样的制约关系,如何对其建模;②在有限资源条件下,如何实施网络容量分配,以最为有效地防范相继故障,使网络具有较高的鲁棒性。本文的研究结果有助于有限资源下的网络结构优化部署,抑制网络拥塞,避免网络相继故障。
     (5)通过对大样本数据的实证研究发现,网络行为活跃性存在着幂律涌现和社团效应,具有自组织临界特点;针对这种活跃性,本文研究了不同流量负荷对网络相继故障的影响。在网络安全的应急响应时,应该更关注那些原本不活跃的结点间流量的变化。同时,我们设计了一种具有流量自组织临界特点的低速率分布式DoS攻击的可能性,说明网络流量行为的活跃性存在能够为网络攻击所利用,也是网络脆弱性研究需要关注的。
     (6)网络仿真是基于复杂网络理论的Internet脆弱性主要研究手段之一。经典的网络仿真工具在网络结构分析、复杂网络动力学方面不太关注;而在传统复杂网络研究中,人们通常使用的数学、图形工具又缺乏对互联网行为的有效支持。本文工作将二者结合,实现了一个用于复杂网络脆弱性研究的大型网络软件仿真平台。如何支持用户定制的算法模型也是我们工作的出发点之一。本文实现了面向复杂的网络脆弱性分析所需要的分布并行仿真技术,给出了相关设计方法。
     本论文整体上采用了理论与实践相结合的研究方法。主要解决了网络脆弱性研究中的一些基础理论问题。研究成果可为我国信息安全建设做出贡献。
Over the past forty years, computer networks, especially the Internet, have evolved from research curiosity to fundamental infrastructure in human society. The Internet has been a powerful engine for technological innovation and social evolution. However, societal reliance on the Internet is increasingly disproportionate to the ability of the internet to deliver high dependability and security. The network vulnerability prevents the Internet from advancing to become a truly dependable, reliable and predictable infrastructure.
     Our works related to complex networks theory and methodology as the guide. The complex networks, because of their remarkable theoretical significance, are widely used in the social, political, economic and many other fields. Especially in the field of computer networks, complex networks researches have made great achievements. Based on complex networks, a new interdisciplinary science named "Network Science" is emerging. Obviously, it is advanced for researches on the theory of networked computation; the behavior, computation and networks in human subject experimentation; the network design and the network engineering. Network vulnerability analysis is also a hot topic in Network Science.
     This thesis mainly concerns on the vulnerability in network structure, by means of analysis on dynamics characteristics of the network spread. The details are as follows:
     (1) The traditional research place more emphasis on static network structure to identify its vulnerable components (nodes or edges). For instance, many of them considered that the nodes with high degrees or betweenness should be paid more attention to protecting and controlling. Whether can these static characteristics really quantify network vulnerability accurately? In fact, the vulnerability of network nodes may not exist isolatedly or statically. It is associated with each other, assortatively or disassortatively. Therefore, an algorithm for vulnerability relevancy clustering is proposed to show that the vulnerability community effect is obviously existent in complex networks. On this basis, next, a new indicator called network "hyper-betweenness" is given for evaluating the vulnerability of network nodes. Network hyper-betweenness can reflect the importance of network nodes in hazard spread better.
     (2) Network vulnerability mining aims to develop immunization strategy. The effect of network immunization strategy relies on the result of network vulnerability mining. In order to prevent the hazard spread in a network more efficiently, we should deploy the limited security prevention resources to the most vulnerable nodes. There is not an absolutely effective strategy because the hazard in a network occurs ineluctably but we can't predict where network hazard spreads from. In fact, "beneficial to spread" and "impeditive to spread", as a typical pair of contradictory in hazard spread, often exist at the same time. Therefore, a equilibrium network immunization strategy should be studied in an oppositional and gamble environment. A two-player, non-cooperative, constant-sum game model is designed to obtain an equilibrium network immunization strategy.
     (3) A complete process of immunity resource deployment can be divided into four stages: information gathering, scanning, bug fixing and self-propulsion. Where, search for vulnerable hosts is essential to network immunity. A network immunity technology on the basis of dynamic preference scan is presented. The strategy can select vulnerable hosts efficiently to fix them on the basis that the distribution of network vulnerabilities is self-organized and network structure is unreachable. The analysis of modeling and simulation shows that the network immunity method proposed in this thesis can restrain hazard spread efficiently and improve network security.
     (4) Cascading failures occur in computer networks (such as the Internet) in which network traffic is severely impaired or halted to or between larger sections of the network, caused by failing or disconnected hardware or software. "Load-Capacity" models are usually used for solving network traffic problems and exploring the mechanisms of cascading failures. This thesis discusses the following questions:①How to model the relationship between capacity and load of network nodes under the restriction of economic and technological conditions?②How to allocate the limited redundant resources to a network with a specific structure in order to improve the network robustness. We propose an evolutionary algorithm to search an optimized capacity allocation strategy, which could help the network achieving optimal robustness with the same resources.
     (5) It finds that the power-law exists in the distribution of network behaviors'activity according to our empirical study with large sample data. It is obvious that there is community effect in network communications. Based on this behavior's activity, this thesis studies the impact of different traffic load modes on network cascading failures. Results show that the influence on the network survivability brought by the traffic change of those original inactive nodes is much greater than that brought by those active ones. Besides, we design a distributed low-rate DoS attack model by making use of genetic algorithms. It shows that the network behavior's activity can be utilized by network attacks. It also needs to be concerned in network vulnerability researches.
     (6) Network simulation is one of the main means in network vulnerability research. Some classical network simulation tools, such as GTNetS, OPNET, NS-2, SSFNet, NETSim and so on, have made great achievements. But they seem to be lacking in concern on network structure and dynamics. Moreover, those widely used mathematical and graphical tools such as pajeck in traditional complex networks researches can not support Internet behaviors well. Therefore, this thesis implements an integrative simulation platform for network vulnerability research, taking advantages of both above two type tools. Besides, how to support customized algorithms and models in the platform is also our main motivation. Finally, the parallel simulation technology for complex network is implemented in our platform.
     This thesis conforms to the research method that from theory to practice. The contents in this thesis resolve some basic academic problems for network vulnerability researches. The conclusions and results may contribute to information security in our country.
引文
[1]. INTERNET WORLD STATISTICS.The Internet big Picture:World Internet Users and Population Stats[EB/OL][2010-6-30]:http://www.internetworldstats.com/stats.htm,2010
    [2]. CNNIC.第26次中国互联网络发展状况统计报告[EB/OL][2010-7-15].http://research.cnnic.cn/html/1279173730d2350.html,2010
    [3]. CNCERT/CC.2009年中国互联网网络安全报告[EB/OL][2010-4-9].http://www.cert.org.cn/articles/docs/common/2010040924914.shtml,2010
    [4]. 张宏莉,方滨兴,胡铭曾等.Internet测量与分析综述[J].软件学报,2003,14(1):110-116
    [5]. 姜誉,方滨兴,胡铭曾等.大型ISP网络拓扑多点测量及其特征分析实例[J].软件学报,2005,16(5):846-856
    [6]. Venter H S,Eloff J H P.Vulnerability Forecasting:a Conceptual Model[J].Computers and Security,2004,23:489-497
    [7]. Skaggs B,Blackburn B,Manes G,et al.Network Vulnerability Analysis [A].Proceedings of IEEE 45th Midwest Symposium on Circuits and Systems[C], Tulsa, Oklahoma, US,2002,3:493-495
    [8]. 洪宏,张玉清.网络安全扫描技术研究[J].计算机工程,2004,30(10):54-56
    [9]. Erhard W,Gutzmann M M,Libati H M.Network Traffic Analysis and Security Monitoring with Unimon[A].Proceedings of the IEEE Conference on High Performance Switching and Routing[C],Heidelberg,Germany,2000:439-446
    [10]. Bodeau D J,Chase F N,Kass S G.ANSSR:A Tool for Risk Analysis of Networked Systems [A].Proceedings of the 13th National Computer Security Conference[C], Washington, US,1990:687-696
    [11]. NeVO.Passive Vulnerability Sensor [EB/OL][2010-5-3]. http://www.tenableseurity.com/ products/nevo.shtml,2005
    [12]. Nessus.Remote Security Scanner[EB/OL][2010-5-3].http://www.nessus.org,2005
    [13]. Xscan.Xscan[EB/OL][2010-5-4].http.//www.xfocus.net,2005
    [14]. Satan.SATAN[EB/OL][2010-5-4].http://www.porcupine.nedsatan,2002
    [15]. IIS Internet Security Systems.System Scanner[EB/OL][2010-5-4].http://www.iss.net,2005
    [16]. Retina.Retina[EB/OL] [2010-5-4].http://www.eeye.com/html/products/Retina,2007
    [17]. NSS.Network Security Systems [EB/OL] [2010-5-4]. http://www.networksecuritysys. com/products.html,2003
    [18]. Henning R R,Fox K L.The Network Vulnerability Tool(NVT):a system vulnerability visualization architecture[A].Proceedings of the 22nd National Information Systems Security Conference[C], Washington,1999,1:97-111
    [19].邢栩嘉,林闯,蒋屹新.计算机系统脆弱性评估研究[J].计算机学报,2004,27(1):1-11
    [20].张永铮,方滨兴,迟悦等.网络风险评估中网络结点关联性的研究[J].计算机学报,2007,30(2):234-240
    [21].贾炜,连一峰,冯登国等.基于贝叶斯网络近似推理的网络脆弱性评估方法[J].通信学报,2008,29(10):191-198
    [22].毛捍东,陈锋,张维明.网络脆弱性建模方法研究[J].计算机工程与应用,2007,43(15):1-5
    [23]. Zerkle D,Levitt K.NetKuang:a Multi-host Configuration Vulnerability Checker[A]. Proceedings of the 6th conference on USENIX Security Symposium[C], San Jose, CaIifornia,USA,1996,6:20
    [24]. Cheung S,Crawford R,Dilger M,et al.The Design of GrIDS:A Graph-Based Intrusion Detection System[A].Technical Report CSE-99-2,UC Davis Computer Science De-partment,1999
    [25]. Swiler L P,Phillips C,Ellis D.Computer Attack Graph Generation Tool[A].Proceedings of DARPA Information Survivability Conference and Exposidon[C], California, 2001:1307-1321
    [26]. Noel S,Jajodia S.Managing Attack Graph Complexity through Visual Hierarchical Aggregation[A].Proceedings of the 2004 ACM workshop on Visualization and data mining for computer secuity[C],New York, USA,2004:109-118
    [27].王永杰,鲜明,刘进等.基于攻击图模型的网络安全评估研究[J].通信学报,2007,28(3):29-34
    [28]. Li W,Vaughn R.Building Compact Exploitation Graphs for a Cluster Computing Envionment[A].Proceedings of the 6th IEEE Information Assurance Workshop[C],New York,USA,2005:50-57
    [29]. Barabasi A L,Albert R.Emergence of Scaling in Random Networks[J].Science, 1999,286(5439):509-512
    [30]. Watts D J,Strogatz S H.Collective Dynamics of Small-world Networks[J].Nature,1998,393(6684):440-442
    [31]. Barabasi A L,Albert R.Statistical Mechanics of Complex-Networks.Reviews of Modern Physics,2002,74:47-97
    [32]. Doyle J C, David A,Li L,et al.The "Robust Yet Fragile" Nature of the Internet[J]. Proceedings of the National Academy of Sciences,2005,102(41):14497-14502
    [33]. Newman M E J.The Structure and Function of Complex Networks[J]. Society for Industry and Applied Mathematics,2003,45(2),167-256
    [34]. Newman M E J. Mixing Patterns in Networks[J]. Phys. Rev. E,2003,67:026126
    [35]. Newman M E J. Assortative Mixing in Networks[J], Phys. Rev. Lett.,2002,89(20):208701
    [36].李德毅.复杂网络与网络安全[A],香山会议报告,2005
    [37]. Chuan-Yang Yin, Bing-Hong Wang et al. Efficient Routing on Scale-free Networks Based on Local Information,.Physics Letters A,351:220-224,2006
    [38].张国强,张国清.Internet网络的关联性研究[J].软件学报,2006,17(3):490-497
    [39].徐野,赵海.Internet的IP基密度分析[J].通信学报,2005,26(11):125-131,2005
    [40]周华任,马亚平,马元正等.网络科学发展综述[J].计算机工程与应用,2009,45(24):7-10
    [41].汪秉宏,王文旭,周涛.交通流驱动的含权网络[J].物理学报.2006,35(4):304-310
    [42]. Wang W X, Hu B, Zhou T,et al. A Mutual Selection Model for Weighted Networks[J], Phys. Rev. E,2005,72,046140.
    [43]. Deng Yueming, Wang Guojun. A Time-Related Multi-Level Trust Model Based on Subjective Logic Theory in Small-world Networks[A]. Proceedings of the 9th International Conference for Young Computer Scientists[C],Zhang jiajie,China,2008,1902-1907
    [44].方锦清,汪小帆,郑志刚等.一门崭新的交叉科学:网络科学(上)[J].物理学进展,2007,27(3):239-343
    [45].方锦清,汪小帆,郑志刚等.一门崭新的交叉科学:网络科学(下)[J].物理学进展,2007,27(4):61-448
    [46]. Network science and engineering (NetSE) research agenda. A Report of the Network Science and Engineering Council[A],Release Version 1.1,2009
    [47].胡海波,王林.幂律分布研究简史[J].物理,2005,34(12):889-896
    [48]. Siganos G,Faloutsos M,Faloutsos P, et al.Power Laws and the AS-level Internet Topology[J]. IEEE/ACM Transactions on Networking.2003,11(4):514-524
    [49].宋卫国,王健,郑红阳.火灾系统的自组织临界性分析[M].北京:中国林业出版社,2006
    [50]. Pastor-satorras R, Vazquez A, Vespignani. Large-scale Topological and Dynamical Properties of the Internet[J]. Phys. Rev. E,2002,65:066130
    [51]. Waxman B M. Routing of multipoint connections[J]. IEEE Select.Areas Commun.,1988,6(9):1617-1622
    [52]. Newman M E J,Watts D J.Renormalization Group Analysis of the Small-World Network Model[J].Physics Letters A,1999,263:341-346
    [53]. Zhou S,Mondragon R J.Accurately Modeling the Internet Topology[J]. Phys. Rev. E,2004,70:066108
    [54]. Grassberger P. On the Critical Behavior of the General Epidemic Process and Dynamical Percolation[J]. Math Biosci,1983,63:157-172
    [55]. Newman M E J. Spread of Epidemic Disease on Networks[J]. Phys. Rev. E,2002, 66:016128
    [56]. Newman M E J, Watts D J. Scaling and Percolation in the Small-world Network Model[J]. Phys. Rev. E,1999,60:7332-7342
    [57]. Kuperman M, Abramson G. Small World Effect in an Epidemiological Model[J]. Phys Rev Lett,2001,86:2909-2912
    [58]. Anderson R M, May R M. Infectious Diseases of Humans[M]. Oxford:Oxford University Press,1992
    [59]. Pastor-Satorras R, Vespignani A. Epidemic Spreading in Scale-free Networks[J]. Phys Rev Lett,2001,86:3200-3203
    [60]. Albert R,Jeong H,Barabasi A L.Attack and Error Tolerance in Complex Networks[J].Nature,2000,406:387-482
    [61]. Paolo C, Vito L, Massimo M,et al. Error and Attack Tolerance of Complex Networks[J]. Physica A.2004,340:388-394
    [62]. Valente A, Sarkar A. Two-peak and Three Peak Optimal Complex Networks[J] Phys.Rev.Lett.2004,91:118702
    [63]. Karyotis V, Papavassiliou S, Grammatikou M. On the Risk-based Operation of Mobile Attacks in Wireless Ad hoc Networks[A]. Proceedings of. IEEE International Conference on Communications[C], Scotland,2007,1130-1135
    [64]. Holme P, Kim B J. Attack Vulenrability of Cosmplex Networks[J]. Phys.Rev.E, 2002,65:056109
    [65]. Svendsen N K, Wolthusen S D. Analysis and Statistical Properties of Critical Infrastructure Interdependency Multiflow Models[A]. Proceedings of the Eighth Annual IEEE SMC Information Assurance Workshop[C], New York,2007,247-254.
    [66]. Zhang Guohua, Wang Ce, Zhang Jianhua, et al. Vulnerability Assessment of Bulk Power Grid Based on Complex Network Theory[J]. Electric Utility Deregulation and Restructuring and Power Technologies,2008:1554-1558.
    [67]. Bing Yang, Mei Yang, J. Wang, et al. Minimum Cost Paths Subject to Minimum Vulnerability for Reliable Communications[A]. Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks[C], Las Vegas,2005,334-339
    [68]. Estrada E, Higharn D J, Hatano N. Communicability Betweenness in Complex Networks[J]. Physica A,2009,388:764-774
    [69]. Alberto O, Leticia A.Differential Betweenness in Complex Networks Clustering[J]. Lecture Notes in Computer Science,2008,5197:227-234
    [70]. Jiang. K, Ediger D, Bader D A. Generalizing k-Betweenness Centrality Using Short Paths and a Parallel Multithreaded Implementation[A]. Proceedings of the 38th International Conference on Parallel Processing[C], Vienna, Austria,2009,542-549
    [71].王跃武,荆继武,向继等.基于拓扑结构的蠕虫防御策略仿真分析[J].计算机学报,2007,30(10):1777-1786
    [72].宋玉蓉,蒋国平.结点抗攻击存在差异的无尺度网络恶意软件传播研究[J].物理学报,2010,59(2):705-712
    [73]. Zio E, Claudio M R S. Security Assessment in Complex Networks Exposed to Terrorist Hazard[J]. International Journal of Critical Infrastructure.2008,4(1):80-95
    [74]. Zio E, Claudio M R S, Daniel.E.,et. al. Complex Networks Vulnerability:A Multiple-Objective Optimization Approach. Proceedings of RAMS 2007:Annual Reliability and Maintainability Symposium, Orlando,USA,2007,196-201
    [75]. Michael G H B. The Use of Game Theory to Measure the Vulnerability of Stochastic Networks[J]. IEEE Transactions on Reliability.2003,52(1):63-68
    [76]. Piyanan.S, Kalika.S and Chaodit.A. Vulnerability Analysis in Multicommodity Stochastic Networks by Game Theory[A]. Proceedings of ECTI-CON[C],2008,357-360
    [77]. Girvan M, Newman M E J. Community Structure in Social and Biological Networks[J]. Proc.Natl.Acad.Sci,2001,99:7821-7826
    .[78]. Newman M E J. Fast Algorithm for Detecting Community Structure in Networks[J].Phys.Rev.E.2004,69:0066133
    [79]. Bak, P, Tang C, Wiesenfeld K. Self-Organized. Criticality:An Explanation of 1/f Noise[J]. Physical. Review Letters,1987,29(4):381-384
    [80]. Bak P, Tang C, Wiesenfeld K. Self-organized criticality [J]. Phys.Rev.A,1988,38:364-374
    [81]. Chen Zesheng, Ji Chuanyi. Importance-Scanning Worm Using Vulnerable-Host Distribution[J]. Proceedings of IEEE Globecom[C], St. Louis, MO,2005,1779-1784
    [82]. Jonghyun K, Sridhar R, Sudarshan K D. Measurement and Analysis of Worm Propagation on Internet Network Topology. Proceedings of IEEE International Conference on Computer Communications and Networks,2004,495-500
    [83]. Pastor-Satorras R, Vespingnani A. Epidemic Spreding in Sacle-free Networks[J]. Phys.Rev.Lett.2001,86(4):3200-3203
    [84]. Pastor-Satorras R, Vespingnani A. Immunization of Complex Networks[J]. Phys.Rev.E,2001,65:036134
    [85]. Cohen R, Havlin S,Ben-Avraham D. Efficient Immunization Strategies for Computer Networks an Populations[J]. Phys.Rev.Lett,2003,91:24901
    [86]. Das Bistro Project's anti-code-red default.ida[EB/OL][2010-05-30]. http://www. dasbitro.com/default.ida.
    [87]. Douglas K, Frederic P, Peter S. Symantec security response:W32/Nashi,A[EB/OL]. [2010-05-30].http://www.f-prot.com/viusinfo/descriptions/nachi_A.html
    [88].杨峰,段海新,李星.网络蠕虫扩散中蠕虫和良性蠕虫交互过程建模与分析[J],中国科学E辑,2004,34(8):841-856
    [89]. Wen WeiPing, Qing SiHan, Jiang JianChun, et al. Research and Development of Internet Worms[J]. Journal of Software,2004,15(8):1208-1219
    [90]. Zou C Cliff, Towsley Don; Gong Weibo, et al. Routing Worm:A Fast, Selective Attack Worm Based on IP Address Information[A]. Proceedings of 19th ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation[C],2005,199-206
    [91]. Kephart O J, White S S. Measuring and Modeling Computer Virus Prevalence[A]. Proceedings of IEEE Symposium on Security and Privacy[C], Oakland,1993,2-15
    [92].侯定丕.博弈论导论[M].合肥:中国科学技术大学出版社,2004
    [93]. Chen Zesheng, Ji Chuanyi. A Self-Learning Worm Using Importance Scanning[A]. Proceedings of the ACM. CCS Workshop on Rapid Malcode[C],2005,22-29
    [94]. Chen Zesheng, Ji Chuanyi. Importance-Scanning Worm Using Vulnerable-Host Distribution[A]. Proceedings of IEEE Globecom 2005[C], St. Louis, MO,2005,1779-1784
    [95]. CAIDA. UCSD Network Telescope--Witty Worm Dataset [EB/OL][2010-03-30]. http://www.caida.org/data/passive/witty_worm_dataset.xml
    [96]. Chen Zesheng, Gao Lixin, Kwiat K. Modeling the Spread of Active Worms[A]. Proceedings of INFOCOM2003[C], San Francisco,2003,1890-1900
    [97]. Chen Zesheng, Ji Chuanyi. Optimal Worm-Scanning Method Using Vulnerable-Host Distributions[J]. International Journal of Security and Networks(IJSN), special issue on "Computer and Network Security. ",2006,2(1):71-80
    [98]. Dobson I, Carreras B A, Newman D E. A Probabilistic Loading-Dependent Model of Cascading. Failure and Possible Implications for Blackouts [A].Proceedings of 35th Hawaii International Conference on System Science[C], Hawaii,2002,1-8.
    [99]. Hines P, Sanchez C E, Blumsack S.Comparing Three Models of Attack and Failure Tolerance in Electric Power Networks[J].Arxiv preprint arXiv:1002.2268,2010.
    [100].Motter A E, Lai Y C. Cascade-based Attacks on Complex Networks[J]. Phys. Rev. E, 2002,66:065102
    [101]. Wang B, Kimeom B.J.A High-robustness and Low-cost Model for Cascading Failures[J]. A Letters journal Exploring the Frontiers of Physics,2007,78(48001)
    [102]. Li P, Wang B H,Sun H,et al. A Limited Resource Model of Fault-tolerant Capability Against Cascading Failure of Complex Network[J]. European Physical Journal B,2008, 62(1):101-104
    [103]. Wang J W,Rong L L. Cascade-based Attack Vulnerability on the US Power Grid[J].Safety Science.2009,47:1332-1336
    [104].王建伟,荣莉莉.基于负荷局域择优重新分配原则的复杂网络上的相继故障.物理学报[J].2009,58(6):3714-3721
    [105]. Wang J,Liu Y H,Zhu J Q, et. al. Model for Cascading Failures in Congested Internet[J]. Journal of Zhejiang University-SCIENCE A,2008,9(10):1331-1335
    [106]. Wang J, Liu Y H, Yu J. A New Cascading Failure Model With Delay Time In Congested Complex Networks[J]. JSyst Sci Syst Eng,2009,18(3):369-381
    [107].Marbukh V. Can TCP Metastability Explain Cascading Failures and Justify Flow Admission Control in the Internet?[A].Proceedings of the 15th International Conference on Telecommunications[C],2008
    [108]. Liu X H, Ji Y F.The Effects of Vendor-specific Router Implementation on Convergence[A]. Communications and Networking in China[C].2006.
    [109].Coffman E G Jr, Ge Z H, Misra V,et al. Network Resilience:Exploring Cascading Failures within BGP[A]. Proceedings of the 40th annual Allerton Conference on Communications, Computing and Control[C],Monticello, USA,2002,1-10
    [110].Xia Y X, Fan J,Hill D.Cascading Failure in Watts-Strogatz Small-world Networks[J].Physica A,2010,389:1281-1285.
    [111].Doua B L,Wang X G,Zhang S Y.Robustness of Networks Against Cascading Failures[J]. Physica A,2010,389:2310-2317..
    [112]. Wang J,Liu Y H,Zhu J Q, et. al. Model for Cascading Failures in Congested Internet[J]. Journal of Zhejiang University-SCIENCE A.2008,9(10):1331-1335.
    [113]. Crucitti P, Latora V,Marchiori M,et al.Error and Attack Tolerance of Complex Network.[J]. Physica A.2004,340:388-394.
    [114].Wu J J,Gao Z Y, Sun H J. Effects of the Cascading Failures on Scale-free Traffic Networks[J].Physica A,2007,378:505-511
    [115]. Yin C Y, Wang B H, Wang W X, et al. Traffic Dynamics Based on An Efficient Routing Strategy on Scale Free Networks[J]. Eurphys.J B,2006,49:205
    [116]. Macri P A, Pastore P, Braunstcin L A. Reducing Congestion by Dynamic Relaxation Process on Complex Networks [J]. Phys.A,2007,386:776-779,
    [117]. Wang W X, Wang B H, Yin C Y, et al. Traffic Dynamics Based on Local Routing Protocol on a Scale-free Network [J].Phys.Rev.E,2006,73:026111
    [118]. Yu J L, Zhen D X, Yin C Y. An Effective Local Routing Strategy on the BA Network[A]. Proceedings of First International Conference on Complex networks[C], Shanghai,2009
    [119]. Tang X G, Eric W M W, Wu Z X. Integrating Network Structure and Dynamic Information for Better Routing Strategy on Scale-free Networks[J].Phys.A,2009,388:3547-2554
    [120]. Wang S P, Pei W J. Detecting Unknown Paths on Complex Networks Through Random Walks[J].Phys.A,2009,388:514-522
    [121].李涛,裴文江,王少平.无标度复杂网络复杂传输优化策略[J].物理学报,2009,58(9):5903=5910
    [122]. Kim D H, Motter A E. Fluctuation-driven Capacity Distribution in Complex Networks[J]. New Journal of Physics.2008,10,053022
    [123]. Manning M, Carlson J M, Doyle J. Highly Optimized Tolerance in Dense and Sparse Resource Regimes[J]. Phys. Rev. E,2007,76,056106.
    [124].Estan C, Varghese G. New Directions in Traffic Measurement and Accounting[A]. Proceedings ofACMSIGCOMM[C],2002,8:323-336.
    [125].Nevil B, kcclaffy. Understanding Internet Traffic Streams:Dragonflies and Tortoises[J]. IEEE Communications Magazine,2002,40(10):110-117
    [126]. Yang C X,Jiang S M,Zhao T. Self Organized Criticality of Computer Network Traffic[A]. Proceedings of IEEE Communications, Circuits and Systems[C],2006,1740-1743
    [127].程光,.龚俭,丁伟.大规模互联网活动IP流分布研究.计算机科学[J],2003,30(4):43-46
    [128].A.Kuzmanovic, E.Knightly. Low-rate TCP-targeted Denial of Service Attacks[A]. Proceedings of ACM SIGCOMM[C], Karlsruhe, Germany,2003
    [129].何炎祥,刘陶,曹强等.低速率拒绝服务攻击研究综述[J].计算机科学与探索,2008, 2(1):1-19
    [130]. Chen Y, Hwang K. Collaborative Detection and Filtering of Shrew DDoS Attacks Using Spectral Analysis [J]. Journal of Parallel and Distributed Computing,2006,66(9): 1137-1151
    [131]. Xiapu Luo, Rocky K.C.Chang. On a New Class of Pulsing DoS Attacks and the Defense[A]. Proceedings of Network and Distributed System Security Symp[C], California, USA,2005.
    [132]. Sun H, Lui J C S, Yau D K Y. Distributed Mechanism in Detecting and Defending Against the Low-rate TCP Attack. Computer Networks[J]. The International Journal of Computer and Telecommunications Networking,2006,50(13):2312-2330.
    [133]. Yu kwong k. HAWK:Halting Anomalies with Weighted Choking to Rescue Well-behaved TCP Sessions from Shrew DDoS Attacks[A]. Proceeding of Internet conference on Computer Networks and Mobile Computing[C],China,2005.
    [134]. Xiaopu Luo, Edmond W W. Chan, Rocky K.C. Chang. Vanguard:A New Detection Scheme for a Class of TCP-targeted Denial-of-service Attacks [A]. Proceeding of the 10th IEEE/IFIP Network Operations and Management Symposium[C], Cannada,2006
    [135]. Gabriel M F. Evaluation of a Low-rate DoS Attack Against Iterative Servers [J]. Computer networks.2007:51(4):1013-1030
    [136].Mina Guirguis, Azer Bestavros, Ibrahim. On the Impact of Low-rate Attacks[J]. Communications,2006,2316-2321
    [137].杨振强,王常虹,庄显义.自适应复制、交叉和突变的遗传算法[J].电子科学学刊,2000,22(1):112-117
    [138]. Appenzeller G, Keslassy I, McKeown N. Sizing Router Buffers[A]. Proceedings of ACM SIGCOMM[C],2004
    [139]. George F R. The Georgia Tech Network Simulator[A]. The ACMSIGCOMM workshop on Models, methods and tools for reproducible network research[C],2003:10-20
    [140].谢希仁.计算机网络[M].北京:电子工业出版社,2004:262-267
    [141].Winick J Jamin S. Inet-3.0:Internet topology generator[A]. Technical report CSE-TR-456-02,Department of EECS, University of Michigan,2002
    [142]. YOCUM K, EADE E, DEGESYS J. Toward Scaling Network Emulation Using Topology Partitioning[A]. Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems[C]. Orlando, Florida, 2003,150-164.
    [143]. LIU X, CHIEN A. Traffic-based Load Balance for Scalable Network Emulation[A]. The ACM Conference on High Performance Computing and Networking[C], Phoenix, Arizona,2003,200-213.
    [144J.XU D, AMMAR M. BencHMAP:Benchmark-based, Hardware and Model-aware Partitioning for Parallel and Distributed Network Simulation[A]. Proceedings of the 12th IEEE/ACM International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems[C]. Volendam, Netherlands,2004,78-92
    [145].张耀程,乔海泉,李革等.并行离散事件仿真中的回退和持续机制研究[J].系统仿真学报,2007,19(1):67-71
    [146].王学慧,李革,刘保宏等.分布式集群并行仿真平台中时间同步技术研究[J].计算机仿真,2006,23(10):119-124
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.