烟草青枯病抗性遗传分析及QTL定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草青枯病是一种由青枯菌(Ralstonia solanacearum)引起的细菌性病害,是典型的维管束病害,显著的病状是枯萎,一旦发病即可造成全株死亡,严重影响烟草的产量和质量,是一种毁灭性病害。本论文在对安徽省宣州区的寒亭、文昌、黄渡、杨林,以及芜湖县三元镇的青枯病病菌分离鉴定的基础上,研究了安徽省烟草青枯病病菌对烟草的致病力及与相关生物学性状的关系,开展了抗青枯病基因RRS1的烟草同源性筛选研究,利用15个亲本配置的双列杂交组合进行了烟草青枯病抗性种质的主微位点组效应和配合力分析,利用BSA集团分离分析方法对2个烟草F2随机群体(TI448A×Enshu和TI448A×岩烟97)进行了烟草青枯病抗性的QTL定位分析。主要研究结果如下:
     1、烟草青枯病病原菌的分离检测及致病力分化研究
     采用组织分离法获得青枯病菌株8个。对其中5个进行了较详细研究,分别为:RS1、RS2、RS06、RS07、RS08。从菌株的致病性来看,RS23、RS07、RS71的致病性较强,对烟株叶片进行注射接种,叶片均有不同程度发病,但发病程度没有灌根法严重;供试菌株用注射和灌根对烟株均有致病性。同时针对烟草青枯菌生化型测定分析研究结果显示,分离的菌株除RS3不能利用卫茅醇外,其余都能利用三糖三醇;同时也均能利用硝酸盐,发生还原反应。根据青枯雷尔氏菌生化型划分标准,确定了从皖南烟区分离的菌株为生化型Ⅲ型。分析表明,不同菌株利用糖、醇的能力存在部分差异, RS23利用纤维二糖、卫茅醇的能力均较弱,RS22对卫茅醇利用能力也弱,但对其它糖、醇能完全利用,也能使硝酸盐还原,因此也属于生化型Ⅲ;RS3不能利用卫茅醇,但能利用其它双糖、双醇和还原硝酸盐,这个菌株划为生化型Ⅲ-1。
     2、青枯病抗性基因RRS1的烟草同源性研究
     研究针对烟草青枯病的田间单棵发病统计,病情等级,大田发病面积,进行重复性,多层次,多样本的人工统计,在拟南芥青枯病抗性基因RRS1的同源性检测试验中共筛选出3个烟草种质(G28,K346,LMAFC34)含有RRS1特异性扩增序列,针对筛选出3个烟草种质(G28、K346、LMAFC34)含有RRS1特异性扩增序列片段进行多重复的特异扩增纯化,增强结果的可靠性和完整性。由于RRS1基因含有有4个内含子,所以在引物设计上需要进一步加密,保证准确的特异性扩增,研究可以选用另外一种分子标记进行辅助和验证检测,能提高试验结果的准确性。
     3、烟草青枯病抗性的主微位点组遗传分析
     主-微位点组联合分析研究了青枯病病率和病指在始病期后第5天、第15天和第25天的效应值,主位点组效应均达到显著,而微位点组效应未达到显著。其中J1=13056和J1=13055相邻的2个主位点组在第一次和第二次的联合分析中均检测到,且效应值较大;J1=14080和J1=14079相邻的2个主位点组在第一次和第二次的联合分析中同样被检测到,且效应值较大。15个亲本青枯病病率第5天、第15天和第25天的微位点组加性效应中云烟85、DB101和RG11的效应值均最大,该检测结果和这3个品种的田间抗病指标表现一致,与之相对应的广义遗传率均在20%以上,在品种的青枯病抗性改良中可以重点考虑如何利用云烟85、DB101和RG11品种的遗传抗性。遗传纯合显性位点(++)表现为青枯病病指增加(感病),而纯合隐性位点(––)使青枯病病指减少(抗病),且加性效应值均较大,显性效应值均较小,表明青枯病抗性的遗传规律主要是以加性遗传为主,进而为改良亲本的青枯病抗性能力以创新种质资源提供新策略。
     4、烟草青枯病抗性的配合力分析
     研究了烟草青枯病抗性各个调查时期各项指标的一般配合力都达到显著差异水平,而特殊配合力表现不一致,其中2010年7月26日调查数据发病率及病情指数都达显著差异,研究列出了该次调查病情指数的特殊配合力分析结果,并提出了几个效应强的组合。该实验结果并不表明整个试验抗性群体的特殊配合力能够这样应用,只能说明如果在一般配合力组合间决选时差异不大或难以确定时,可以选择参考一些特殊配合力分析结果,例如方差分析显著的调查时期或指标,故该研究主要考虑一般配合力,一般情况下可按烟草青枯病抗性强强组合应用于育种,烟草青枯病抗性配合力的差异可能涉及到加性效应、非加性效应以及遗传率等抗性遗传方面的研究分析。
     5、烟草青枯病抗性QTL定位研究
     研究利用TI448A×Enshu群体及TI448A×岩烟97群体在第3染色体及第5染色体上定位到4个烟草青枯病抗性QTLs (qBWR-3a, qBWR-3b, qBWR-5a和qBWR-5b),在LOD极大似然值大于或等于3的筛选条件下,分别解释青枯病抗性表型变异9.00%,19.70%,17.30%和17.40%。初步推断出测定烟草青枯病抗性的特异引物,以及利用该特异引物测定烟草青枯病抗性的的方法;所述特异性引物为两对,其核苷酸序列如下: PT20275:5′GTTCTATTTGATCGCCCC3′;5′AACAGCACCAACAGCATT3′; PT30229:5′GTTGCTCGTGTGCCTGACTA3′;5′AATGTGGAAACAGGA。利用上述特异性引物对待检测的烟草种质的DNA进行PCR扩增,采用PT20275引物能特异性的扩增出380bp大小的特异带,采用PT30229引物能特异性的扩增出200bp大小的特异带,即可判定其为抗性。本研究首次将青枯病抗性基因初步定位于第三染色体19.45cM区域,在国内外前人的研究中均未有报道,且本研究中3个群体(TI448A×岩烟97、TI448A×Enshu及长脖黄×G28)均验证了此连锁标记,为精细定位工作奠定了基础。
The tobacco bacterial wilt is a kind of fatal bacterial disease caused by Ralstoniasolanacearum. It is a typical vascular disease of which obvious symptom is to fade. Oncethis disease happens, the whole plant die. And the yield and quality affectedseriously. This thesis studied the relationship between the pathogenicity of tobaccoRalstonia solanacearum and the related biological characters based on the isolation andidentification of the germ at towns Hanting; Wenchang; Huangdu;Yanglin, Xuanchengdistrict and at town Sanyuan, county Wuhu in province Anhui. The study of screening onRRS1gene of bacterial wilt resistance in Tobacco for homolog was conducted.15diallelcross combination as parent disposition was used to analyze the effects of main and minorloci groups and combining ability of the resistance germplasm of tobacco bacterial wilt.QTL Analysis of the resistance of tobacco bacterial wilt from two F2random populations(TI448A×Enshu and TI448A×Yanyan97) was conducted by the method of BSA groupseparation analysis. The results showed as follows:
     1. Study on the separation-detection of Pathogen of tobacco bacterial wilt andpathogenicity differentiation
     Tissue isolation was used so eight strains with tobacco bacterial wilt was obtained.And five of them have been analyzed in details, they are RS1; RS2; RS06; RS07and RS08.The pathogenicity of RS23; RS07and RS71was found to be stronger. While both of thetwo ways are pathogenic, injection to leaves will lead to tobacco bacterial wilt at differentdegree; however they are less serious than root-drenching method. At the same time theresults of the determination and analysis of the biochemical variant of tobacco ralstoniasolanacearum indicate that apart from RS3among the isolated strains which cannot usedulcitol, the others can absorb trisaccharide and triol. And nitrates take part in theirreduction reaction. The division standard of the biochemical variant of ralstoniasolanacearum ensure that the strain separated from south Anhui is type Ⅲ. The analysisshows that the ability of different strains to utilize sugar and alcohol are differential. RS23to cellobiose and dulcitol are weak. RS22to dulcitol is weak. But they can use other sugarand alcohol entirely and also the nitrates, so they must be type Ⅲ. As RS3can utilizedisaccharide and alcohol but dulcitol, RS3belong to type Ⅲ-1.
     2. Study on RRS1gene of bacterial wilt resistance in tobacco for homolog
     According to the repeated, multi-level and diversiform statistics on the infected singleplant which infected tobacco bacterial wilt, disease intensity and the pathogenetic area. The specific amplified sequence RRS1have been detected in three tobacco germplasm (G28;K326and LMAFC34) in the experiment of “detection on RRS1gene of bacterial wiltresistance from Arabidopsis for homolog”. The amplification and purification of theexpected sequence in the three germplasm proved to be credible and integrated. The primerdesign must be more seriously encrypted to make the test reliable as there are four intronsin gene RRS1. The study can be assisted and verified detection with another molecularmarker, and it can also enhance the accuracy of the experiment.
     3. Genetic analysis on main and minor loci groups of bacterial wilt resistance intobacco
     The united main and minor loci groups analysis studied disease rate and disease indexand the effect value on day5,15,25after disease starting period, it indicates that the effectof main loci groups is significant while the minor is not. Two main loci group J1=13056,J1=13055among them have been detected in the first and second united analysis. So haveJ1=14080, J1=14079and the adjacent two main loci group. The effect value is high two.The additive effect of minor loci groups of Yunyan85, DB101and RG11are the highestamong the fifteen parent-bacterial wilt disease index of day5,15and25. The fieldperformance accord with the test result and at the same time the broad heritability is higherthan20%. The genetic resistance of Yunyan85, DB101and RG11can be considered toutilize in variety improvement of bacterial wilt resistance. The dominant homozygous genelocus(++) of resistance index of bacterial wilt manifested as index increasing but therecessive gene is decreasing. And the additive value of recessive gene is higher while thedominant one is low. It shows that the inheritance of bacterial wilt resistance is mainlyadditive genetic and can afford new strategy for modifying parent’s ability of bacterial wiltresistance.
     4. The analysis about general combining ability of bacterial wilt resistance intobacco
     The study on bacterial wilt resistance in tobacco showed that general combiningability of every index in every investigation period reached significant level. However thespecific combining ability proved variable. In the survey data about the disease rate andindex, the data of26th, July,2010showed significant. The analyzed result of specificcombining ability was listed out and some combination with strong effect value pointed out.This experiment did not mean that specific combining ability of the whole resistance groupcan be all used like this, but can choose some analyzed result of some specific combiningability as a reference when the difference of general combining ability among combinations is not big or not sure, for example the significant investigation or index inanalysis of variance. So the study is most on general combining ability. Generally the ruleof strong to strong combination can be applied into breeding in bacterial wilt resistance intobacco. And the difference of the combining ability of the resistance may involve additiveeffect, non-additive effect, heritability and other genetic heredity in resistance research.
     5. QTL mapping research in bacterial wilt resistance in tobacco
     Utilizing the groups Ti448A×Enshu and groups TI448A×Yanyan97four QTLS ofbacterial wilt resistance in tobacco were found on chromosome three and five. With thatand at the selection condition of maximum likelihood method of LOD higher than orequals3, the phenotypic variation of bacterial wilt resistance which are at9.00%,19.70%,17.30%and17.40%were clear. Specific primer of bacterial wilt resistance in tobaccowas preliminarily detected and the way to detecting bacterial wilt resistance in tobaccowith the specific primer is clear. The character is that: the sequence of the pair of specificprimer is: PT20275:5′GTTCTATTTGATCGCCCC3′;5′AACAGCACCAACAGCATT3′;PT30229:5′GTTGCTCGTGTGCCTGACTA3′;5′AATGTGGAAACAGGA. With the upspecific primer to amplify the DNA of tobacco germplasm by PCR, when the primer isPT20275a specific of380bp while PT30229will get a specific of200bp, and this canprove to be resistant. It firstly located the bacterial wilt resistance in tobacco at19.45cmarea on chromosome three. This study never reported before both at home and abroad. Andthe three groups TI448A×Yanyan97, TI448A×Enshu and Changbohuang×G28all provethe linkage marker designed in detail and they lay the foundation of the encryption work.
引文
1. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi, Y. Transfer of two Burkholderia and anAlcaligenes species to Ralstonia gen. Microbiology and Immunology,1995,39:897-904.
    2. Yabuuchi EY, Kosako H, Oyaizu I. Proposal of Burkholderia gen.nov; and transfer of seven speciesof the genus Pseudomonas homology group II to the new genus, with the type species Burkholderiacepacia. Microbiology and Immunology,1992,36:1251-1275.
    3. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y. Transfer of two Burkholderia and anAlcaligenes species to Ralstonia gen. Microbiology and Immunology,1995,39:897-904.
    4. Wicker E, Grassart L, Coranson-Beaudu R, Mian D, Guilbaud C, Fegan M. Ralstonia solanacearumstrains from Martinique (French West Indies) exhibiting a new pathogenic potential. Applied andEnvironmental Microbiology,2007,71:6790-6801.
    5. Buddenhagen I, Sequeira L, Kelman A. Designation of races in Pseudomonas solanacearum.Phytopathology,1962,52:726.
    6.何礼远,康耀卫.植物青枯菌(Pseudomonas solanacearum)致病机理.自然科学进展,1995,5:159-168.
    7. Hayward AC. Characteristics of Pseudomonas solanacearum. Journal of Applied Bacteriology,1964,27:265-277.
    8. Hayward AC. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum.Annual Review of Phytopathology,1991,29:67-87.
    9. Hayward AC. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria. In: A.C. Hayward, G. L. Hartman (Eds.), Bacterial wilt: the disease and its causative agent, Pseudomonassolanacearum. United Kingdom: CAB International,1994,123-135.
    10. Hayward AC. The hosts of Pseudomonas solanacearum. In: AC. Hayward&GL. Hartman(Eds.), Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. Wallingford,UK: CAB International,1994,9-24.
    11. Hayward AC. Ralstonia solanacearum. In: J. Lederberg (Eds.), Encyclopedia of microbiology. SanDiego: Academic Press,2000,32-42.
    12. He LY, Sequeira L, Kelman A. Characteristics of strains of Pseudomonas solanacearum. PlantDisease,1983,67:1357-1361.
    13. He LY. Bacterial Wilt in the People’s Republic of China. In: G. J. Perley (Eds.), Bacterial WiltDisease in Asia and the South Pacific. Proceedings of an international workshop held at PCARRD,Los Banos, Philippine,1985,40-48.
    14. Prior P, Fegan M. Recent development in the phylogeny and classification of Ralstoniasolanacearum. Acta Horticulturae,2005a,695:127-136.
    15. Prior P, Fegan M. Diversity and molecular detection of Ralstonia solanacearum race2strains bymultiplex PCR. In: C. Allen, P. Prior,&A. C. Hayward (Eds.), Bacterial wilt disease and theRalstonia solanacearum species complex. Madison, WI: APS Press,2005b,405-414.
    16.潘哲超.植物青枯菌遗传多样性及致病力分化研究:[博士学位论文].北京:中国农业科学院,2010.
    17.孙学永,周应兵,杨华应等.烟草种质抗青枯病鉴定及其抗性分类.中国烟草学报,2011,19(3):22-28.
    18. Genin S, Boucher C. Lessons learned the genome analysis of Ralstonia solanacearum. AnnualReview of Phytopathology,2004,42:107-134.
    19. Genin S, Brito B, Denny TP, Boucher C. Control of the Ralstonia solanacearum Type III secretionsystem (Hrp) genes by the global virulence regulator PhcA. FEBS Letters.2005,579:2077-2081.
    20.刘琼光,曾伟达,郑向华,陈泽鹏.广东省4种花卉青枯病的病原鉴定.华中农业大学学报,2009,28:277-280.
    21.廖咏梅,农彦贤,周志权.首次报道一点红青枯病由茄青枯菌引起.广西植物,2008,24:531-533.
    22.王涛,林纬,黄永禄,袁高庆,黎起秦.罗汉果青枯病病原菌株的鉴定.植物病理学报,2009,39:318-320.
    23.廖伯寿.植物细菌性青枯病抗性的分子标记研究与育种潜力.中国烟草学报,2001,23(3):66-68.
    24.崔富华等.巴蜀地区花生青枯病的分布及防治对策研究.花生学报,2003,32(增刊):379-385.
    25.李文溶.花生青枯菌致病性研究.花生学报,1987,4:1-4.
    26.陈晓敏等.福建花生青枯病菌致病型及生物型的测定.福建农业大学学报,2000,29(4):470-473.
    27.李文溶.花生青枯病遗传研究.中国油料,1986,3:1-7.
    28. Mukanunad Maehmudetal. ACIAR Pr0C No,1990,3(1):5.
    29.刘波,朱育著,葛慈斌.青枯病生防菌ANTI-809A8菌株生物学特性的研究.福建农业学报,2003,18(4):239-242.
    30.王娜瑄.茄子青枯病和黄萎病的识别与防治.长江蔬菜,2005,4.
    31. Smith EF. A bacterial disease of tomato,peper,eggplant and Irish potato (Bacillussolanacearum nov sp.). United States Department of Agriculture, Division Physiology andPathology Bulletin,1896,12:1-28.
    32.蔬菜病理,华中农学院和东北农学院主编,1978.
    33. RaoM VB, SohiH S, VjiaiO R. Reaction of aome varieties of brinja lto Pseudomonas solnaaceruarm.Veg sei,1976,3(1):61.
    34. SitarmaaihaK, SinghR S, ViswkaarmaS N. Brinjale cultivars resistant to pseudomonas wilt. IndinaphytoPlant,1981,34(1):113.
    35. SheelaK B. Resistance to bacterial wilt in a set of eggplant beerding lines. Indina J.agric.sci,1984,54(6):457-460.
    36. Sadashiva AT, Madhavi Reddy K, DeshPande AA. Yield Peorfmrnace of eggPlant lines resistant tobacterial wilt. Cpasiucm&EggPlant Newsletter,1994,13:104-106.
    37. Nung cheChen, Huei meiLi, Bacetrial wilt resistance sources in eggplant. CaPsieum&EggPlantNewsletter,1997,16:111-114.
    38. Tanksley SD, Ganal MW, Prinee JP. High dendity molecular linkage maps of the tomato and Potatogenomes. Genet,1992,132:1141-1160.
    39. Miblounre D. Isolation characterization and mapping of simple sequsence repeat loci in Potato.Mol.Gne,1998,259:233-245.
    40. Gebhardt C, Ritter E, Barone A. RFLP maps of Potato and their alignment with the homegologoustomato genome. T.A.G,1991,85:49-57.
    41. French ER, Lindo LD. Resistance to Pseudomonas solanacearum Potato: specificity andtemperature sensitivity. PhytoPathology,1982,72:1408-1412.
    42. EIPhinstone JG. Inheritance of resistance to bacterial diseases.In: Bradshaw J E, Mackay G R eds.Willingford: CAB INTERNATIONAL, Potato Genetics,1994,429-446.
    43. Rowe PR, Sequeira L. Inheritance of resistance to Pseudomonas solanacearum in Solanum Phureja.PhytoPathology,1970,60:1499-1501.
    44. Rowe PR, Sequeira L, Gonzalez LC. Additional genes for resistance to Pseudomonas solanacearumin Solanum Phureja. PhytoPathology,1972,62:1093-1094.
    45. Sequerira L. Development of resistance to bacterial wilt derived from Solanum Phureja. In:Developments in control of Potato bacterial wilt diseases. CIP, Lima, Peru, RePort of PlanningConference,1979.
    46. Tung PX, Rasco ET, Zaag PV, Schmiediche P. Resistance to Pseudomonas solanacearum in thePotato:Ⅰeffects of sources of resistance and adaptation. Euphytica,1990a,45:203-210.
    47. Tung PX, Rasco ET, Zaag PV, Schmiediche P. Resistance to Pseudomonas solanacearum in thePotato:Ⅱ. Aspects of host-Pathogen-environment interaction. Euphytica,1990b,45:211-215.
    48. Danesh D, Young ND. Rep, Tomato Genet,1994,44:12-13.
    49. Yui M, Monma S, Hirai M, Nishimura S,Ukai Y, Enomoto S. Random amplified polymorphicDNA(RAPD) markers for the selection of tomatoes resistant to bacterial wilt.Bulletin of theNational Research Institute of Vegetables. Ornamental Plants and Tea,1999,14:189-198.
    50. Mangin B, Thoquet P, Olivier J, Grimsley NH. Temporal and multiple quantitative trait locianalyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics,1999,151:1165-1172.
    51.朱贤朝,王彦亭,王智发.中国烟草病害.北京:中国农业出版社,2002,152-162.
    52.孔凡玉.烟草青枯病的综合防治.烟草科技,2003,4:42-48.
    53. He LY, Sequeira L, Kelman A. Characteristics of strains of Pseudomonas solanacearum. PlantDisease,1983,67:1357-1361.
    54. French ER, Sequeira. Strains of Pseudomonas solanacearum from Central and South America: acomparative study. Phytopathology,1970,70:506-512.
    55. Ciampi L, Sequeira L. Influence of temperature on virulence of race3strains of Pseudomonassolanacearum. American Potato Journal,1980,57:307-317.
    56. Swanepoel AE. The effect of temperature on the development of wilting and on progeny tuberinfection of potatoes inoculated with South-African strains of biovar-2and biovar-3ofPseudomonas solanacearum. Potato Research,1990,33:287-290.
    57. Thurston HD. Bacterial wilt of potatoes in Columbia. American Potato Journal,1963,40:381-390.
    58. Janse JD, Beld HE, Elphinstone J, Simpkins S, Tjou-Tam-Sin NAA, Vaerenbergh JV. Introductionto Europe of Ralstonia solanacearum biovar2, race3in Pelargonium zonale cuttings. Journal ofPlant Pathology,2004,86:147-155.
    59. Kim, S. H., Olson, T. N., Schaad, N. W.&Moorman, G. W.(2003). Ralstonia solanacearum Race3,biovar2, the causal agent of brown rot of potato, identified in geranium inPennsylvania, Delaware, and Connecticut. Plant Disease,87,450.
    60. Tusiime G, Adipala E, Opio F, Bhagsari AS. Weeds as latent hosts of Ralstonia solanacearum inhighland Uganda: Implications to development of an integrated control package for bacterial wilt.In: P Prior, C Allen, J G. Elphinstone (Eds.), Bacterial Wilt Disease: Molecular and EcologicalAspects. Berlin: Springer-Verlag,1998,413-419.
    61. Strider DL, Jones RK, Haygood RA. Southern wilt of geranium caused by Pseudomonassolanacearum. Plant Disease,1981,65:52-53.
    62. Williamson L, Nakaho K, Hudelson B, Allen C. Ralstonia solanacearum race3, biovar2strainsisolated from geranium are pathogenic on potato. Plant Disease,2002,86:987-991.
    63.吕志强,王汉荣,周勤,王连平,方丽,茹水江等.浙江省蚕区桑树“凋萎”症状病因诊断.蚕业科学,2007,33:528-533.
    64.徐丽慧, Praphat Kawicha,谢关林.桑青枯病致病性测定新方法.蚕桑通报,2007,38:19.
    65.徐丽慧,徐福寿,李芳, Praphat Kawicha,谢关林.桑细菌性青枯病病原及其生化型鉴定.植物保护学报,2007,34:141-146.
    66. Gabriel DW, Allen C, Schell M, Denny TP, Greenberg JT, Duan YP. Identification of Open ReadingFrames Unique to a Select Agent: Ralstonia solanacearum Race3Biovar2. MolecularPlant-Microbe Interactions,2006,19:69-79.
    67. Allenza, PLee YN, Lessie TG. Enzymes related to fructose utilization in Pseudomonas cepacia.Journal of Bacteriology,1982,150:1348-1356.
    68. Guidot A, Elbaz M, Carrère S, Siri MI, Pianzzola MJ, Prior P. Specific genes from the potato brownrot strains of Ralstonia solanacearum and their potential use for strain detection. Phytopathology,2009,99:1105-1112.
    69. Fegan M, Prior P. How complex is the “Ralstonia solanacearum species complex”. In: C. Allen, P.Prior,&A. C. Hayward (Eds.), Bacterial wilt disease and the Ralstonia solanacearum speciescomplex. St Paul MN, USA: APS Press,2005,449-462.
    70. Fegan M, Prior P. Diverse members of the Ralstonia solanacearum species complex cause bacterialwilts of banana. Australasian Plant Pathology,2006,35:93-101.
    71. Occhialini A, Cunnac S, Reymond N, Genin S, Boucher C. Genome-wide analysis of geneexpression in Ralstonia solanacearum reveals that the hrpB gene acts as a regulatory switchcontrolling multiple virulence pathways. Molecular Plant-Microbe Interaction,2005,18:938-949.
    72. Guidot A, Elbaz M, Carrère S, Siri MI, Pianzzola MJ, Prior P. Specific genes from the potato brownrot strains of Ralstonia solanacearum and their potential use for strain detection. Phytopathology,2009,99:1105-1112.
    73. Miyazaki J, Ba-Thein W, Kumao T, Azaka H, Hayashi H. Identification of a type III secretionsystem in uropathogenic Escherichia coli. FEMS Microbiology Letters,2002,212:221-228.
    74. Harakava R, Gabriel DW. Genetic differences between two strains of Xylella fastidiosa revealed bysuppression subtractive hybridization. Applied and Environmental Microbiology,2003,69:1315-1319.
    75. Zhang Q, Melcher U, Zhou L, Najar FZ, Roe BA, Fletcher J. Genomic comparison of plantpathogenic and nonpathogenic Serratia marcescens strains by suppressive subtractive hybridization.Applied and Environmental Microbiology,2005,71:7716-7723.
    76. Triplett LR, Zhao Y, Sundin GW. Genetic differences between blight-causing Erwinia species withdiffering host specificities, identified by suppression subtractive hybridization. Applied andEnvironmental Microbiology,2006,72:7359-7364.
    77. Fegan M, Prior P. Diverse members of the Ralstonia solanacearum species complex cause bacterialwilts of banana. Australasian Plant Pathology,2006,35:93-101
    78. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B. Suppression subtractivehybridization: a method for generating differentially regulated or tissue-specific cDNA probes andlibraries. Proceedings of the National Academy of Sciences of the United States of America,1996,93:6025-6030.
    79. Williamson L, Nakaho K, Hudelson B, Allen C. Ralstonia solanacearum race3, biovar2strainsisolated from geranium are pathogenic on potato. Plant Disease,2002,86:987-991.
    80.朱贤朝,王彦亭,王智发.中国烟草病害.北京:中国农业出版社,2002.
    81.顾钢,纪成灿,方树民等.烟草主栽品种对青枯病抗性反应.云南农业大学学报,2002,17(2):130-133.
    82.顾钢,张仁椒,林尤剑等.烟草青枯病的防治.福建农业大学学报,1997,26(增):83-86.
    83.何礼远,华静月,张长岭等.我国细菌性青枯病发生及防治.植物保护,1983,9(3):8-11.
    84.陈瑞泰,王智发,王念慈等.烟草病虫防治烟草栽培技术丛书.济南:山东科学技术出版社,1989.
    85.杨有才,周清明,朱列书.烟草品种青枯病抗病性及抗性遗传研究,湖南农业大学学报,2005,31(4):381-383.
    86.方树明,陈剑芳,顾刚,纪成灿.烟草品种抗青枯病鉴定中的相关因素,植物保护学报.2001,28(2):123-128.
    87.方树民,纪成灿,顾钢.烟草青枯病菌生理分化的研究.中国烟草学报,1998,4(1):38-43.
    88.卢燕回,钟启德,韦大跃等.烟草青枯病生物防治研究进展.广西农业科学,2007,38(4):418-422.
    89.肖永生,黎定军,袁俊鹏,黄汉军.对烟草青枯病苗期抗性鉴定接种方法的探讨.中国烟草科学,2000,3:39-40.
    90.纪成灿,方树民,顾钢,林海,吴正举,陈剑芳.烟草品种抗青枯病鉴定中的相关因素分析.中国烟草科学,2000,2:15-19.
    91. Clayton EE, Smith TE. Resisance of tobacco to bacterial wilt(Bacteriumsolanaceearum).Jour.Agr.Res,1942,65(12):547-554.
    92. Clayton EE. A wildfire resistant tobacco. Jour.Hered,1948,38:35-40.
    93. Mastsuda T and Y Ohashi. Inheritance of resistance to bacterial wilt resistant varieties in tobacco.Jap. Tour. Breeding. English summary,1973,23:175-180.
    94.巫升鑫,方树民,潘建菁等.烟草种质资源抗青枯病筛选鉴定.中国烟草学报,2004,10(1):22-24,40.
    95.匡传富,罗宽.烟草品种对青枯病抗病性及抗性机制的研究.湖南农业大学学报(自然科学版).2002,5:17-19.
    96.陈永明,陈泽鹏,王军,彭文松.南雄市烟草花叶病流行规律及综合防治研究.2005年全国学术年会农业分会场论文专集.2005.
    97.潘建菁,巫升金,谢小丹等.烟草种质资源及烤烟杂交组合对青枯病的抗性评价.种子,2004,23(7):13-16.
    98.杨友才,周清明,尹晗琪.烟草AFLP分析体系的建立与优化.中国烟草学报.2005,3:34-36.
    99.杨友才,周清明,朱列书.烟草青枯病抗性基因的遗传分析及RAPD标记.中国烟草学报,2006,12(2):38-42.
    100.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001.
    101.盖钧镒,章元明,王建康.植物数量性状遗传体系.北京:中国科学出版社,2003.
    102.莫惠栋.质量-数量性状的遗传分析.作物学报,1993,3:193-200.
    103.徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社,1994.
    104.章元明,盖钧镒,张孟臣.利用P1P2F1和F2或F2:3世代联合的数量性状分离分析.西南农业大学学报,2000,22(1):629.
    105.佟道儒.烟草育种学.北京:中国农业出版社,1997,446-453.
    106.孙光军,林代福,刘呈义等.烟草根结线虫病与黑胫病、青枯病的发生关系及品种抗性研究初报.烟草科技,1999,(5):48.
    107.卢洪兴,曾军,邱志丹等.烟草青枯病发生与药剂防治研究.福建省农科院学报,1996,11(3):41-45.
    108.罗宽,王庄.利用拮抗的Pseu和无致病力防治青枯病的研究.植物病理学报,1983,13(l):51-55.
    109.谢道昕,范云六,何礼远.植物青枯菌细菌素的纯化及其性质的研究.微生物学报,1989,9(4):284-292.
    110.徐辉,熊霞.烟草青枯病防治技术研究进展.湖南农业科学,2009,4:91-93,94.
    111.徐莺,白永延,卫志明等. ShiveA基因在转基因烟草中的表达及其对烟草青枯菌(PseumonoasSolancearum pv tobaci)的抗性.实验生物学报,1999,32(1):73-76.
    112.汪中一.枯草杆菌对青枯菌的拮抗作用.福建农业科技,1990.
    113.任欣正.番茄青枯病的生物防治.南京农业大学学报,1993,16(l):45-49.
    114.董春,董成刚,赵青峰等.利用拮抗细菌防治烟草青枯病初步研究.广西农业科学,1996,5:28-30.
    115.张竹青,罗宽,高必达等.七株抗青枯病菌生防菌的初步鉴定.湖南农业大学学报,2002,28(6):512-513.
    116.袁立和.江西省番茄青枯病抑病土壤研究初报.植物保护学报,1995,22(l):93-94.
    117.王金文.烟草青枯病药剂防治试验.中国烟草,1989,4:12-13.
    118.陆思瑚.烟草青枯病防治试验简报.广西农业科学,1991,2:87-88.
    119.孔凡玉,卢平,许永峰等.20%青枯灵可湿性粉剂防治烟草青枯病药效试验初报.中国烟草科学,2004,1:36-37.
    120.陈永惠,黄福新.烟草青枯病药剂防治试验.广西植保,1996,4:23-25.
    121.卢洪兴,曾军,邱志丹等.烟草青枯病发生与防治研究.烟草科技,1995,5:42-45.
    122. Lin TY, Kao YY, Lin S, Lin RF, Chen CM, Huang CH, Wang CK, Lin YZ, Chen CC. A geneticlinkage map of Nicotiana plumbaginifolia/Nicotiana longiflora based on RFLP and RAPDmarkers.Theor Appl Genet,2001,103:905-911.
    123. Zietkiewicz EA, Rafalski, Labuda D. Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification. Genomics,1994,20:176-183.
    124. Xiao BG, Yang BC. Assessment of genetic diversity among tobacco germplasms by ISSR markers.Sci Agric Sin,2007,40(10):2153-2161.
    125. Ren N, Timko MP. AFLP analysis of genetic polymorphism and evolutionary relationships amongcultivated and wild Nicotiana species. Genome,2001,44:559-571.
    126. Luca Rossi,赵百东.烟草品种识别方法扩增片段长度多态性(AFLP).中国烟草学报,1999,4:5.
    127. Lin Z, Zhang X, Nie Y, He D, Wu M. Construction of a genetic linkage map for cotton based onSRAP. Chinese Science Bulletin,2003,48(19):2063-2067.
    128. Li G, Quiros CF, Sequence-related amplified polymorphism (SRAP), a new marker system basedon a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor ApplGenet,2001,103:455-461.
    129. THOMOS CM, VOSP, ZABIAUM. Identifieation of amplified restriction fragment Polymorvhism(AFLP) markers tightly linked to the tonjatoCf-9gene for resistance to Cladosporiumfulvum. ThePlant Journal,1995,8(5):785-794.
    130. Haanstra J, Wye C, Verbakel H, Meijer-Dekens F, Van den Berg P, Odinot P, Van Heusden AW,Tanksley S, Lindhout P, Pelemen J. An integrated high-density RFLP-AFLP map of tomato basedon two Lycopersicum esculentum L. pennellii F2populations. Theor Appl Genet,1999,99:254-271.
    131. Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo usingSRAP and AFLP markers. Theor Appl Genet,2003,107:27-~282.
    132.张晓芬,王晓武,娄平等.利用大白菜DH群体构建AFLP遗传连锁图谱.园艺学报,2005,32(3):443-448.
    133.杨友才,周清明,朱列书.烟草青枯病抗性基因的遗传分析及RAPD标记.中国烟草学报,2006,12(2):38-42.
    134.杨本超,肖炳光,陈学军等.基于ISSR标记的烤烟种质遗传多样性研究.遗传,2005,27(5):753-7581.
    135.王志德,牟建民,戴培刚等.部分烟草核心种质RAPD分析.中国烟草学报,2003,9(4):20-25.
    136.祁建民,王涛,陈顺辉等.部分烟草种质遗传多样性与亲缘关系的ISSR标记分析.作物学报,2006,32(3):373-378.
    137.马红勃,祁建民,李延坤等.烟草SRAP和ISSR分子遗传连锁图谱构建.作物学报,2008,34(11):1958-1963.
    138.朱列书,赵松义等.烟草生物技术研究及在育种上的应用.作物研究,2004,5(2):100-108.
    139.郭线茹,蒋金炜等.转基因抗虫烟草研究进展.昆虫知识,2005,42(4):358-363.
    140.辛业芸.水稻产量性状QTL定位研究进展.湖南农大学报,2008,33(4):1007-1032.
    141. Bindler G, Van der Hoeven R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P. Amicrosatellite marker based linkage map of tobacco.Theo. Appl. Genet,2007,114:341-349.
    142. Han DJ, Cao L, Chen YF. Molecular basic of interaction between disease resistance gene andavirulence gene. Acta Gene Sin,2005,32(12):1319-1326.
    143.刘春林.分子标记辅助选择与植物品种选育.作物研究,1996,10(1):47-49.
    144.吴晓雷,贺超英,陈受宜等.用SSR分子标记研究大豆属种间亲缘关系.遗传学报,2001,28(4):359-366.
    145.张德水,陈受宜. DNA分子标记、基因作图及其在植物遗传育种上的应用.生物技术通报,1998,5:15-22.
    146.王永飞,马三梅.刘翠萍等.分子标记在植物遗传育种中的应用原理及现状.西北农林科技大学学报(自然科学版),2001,29(增刊):106-113.
    147. Tanksley SD, McCouch SR. Seed bank and molecular maps: Unlocking genetic potential from thewild. Science,1997,277:1063-1066.
    148.陈冰嬬.水稻BC2F2及其衍生BC2F2:3群体遗传组成和目标性状选择导入系群体QTL定位精度与效率比较研究:[硕士学位论文].北京:中国农业科学院,2008.
    149. Soller, Beckman. Marker based mapping of quantitative trait loci using replicated progenies.Theoretical and applied genetics.1990,2:205-208.
    150. Li ZK, Fu BY, Gao YM. Genome-wide introgression lines and their use in genetic and moleculardissection of complex phenotypes in rice (Oryza sativa L.). Plant Molecular Biology,2005,59:33-52.
    151. Bostein DR, White RL, Skolnick M. Construction of a genetic linkage map in man using restrictionfragment length polymorphism. A J Hum Genet,1980,2:314-331.
    152. Steele KA, AH Price, HE Shashidhar. Marker-assisted selection to introgress rice QTLs controllingroot traits into an Indian upland rice variety. Theoretical and applied genetics,2005,112:208-221.
    153. Ali J, Xu JL, Ismail AM. Hidden diversity for abiotic and biotic stress tolerances in the primarygene pool of rice revealed by a large backcross breeding program. Field Crops Research,2006,97:66-76.
    154. Lafitte HR, Vijayakumar CH, Gao YM. Improvement of rice drought tolerance through backcrossbreeding: evaluation of donors and results from drought nurseries. Field Crops Research,2006,97:77-86.
    155. Stuber CW, Lincoln SE, Wolff DW. Identification of genetic factors contributing to heterosis in ahybrid from two elite maize inbred lines using molecular markers. Genetics,1992,132:823-839.
    156. Laurie DA, Pratchett N, Bezant JH. RFLP mapping of five major genes and eight quantitative traitloci controlling flowering time in a winter x spring barley (Hordeum vulgare L.) cross.1995,38:575-585.
    157. Jung M, Weldekidan T, Schaff D. Generation-means analysis and quantitative trait locus mappingof anthracnose stalk rot genes in maize. Theoretical and applied genetics,1994,89:413-418.
    158. Moncada P, Martinez C P, Borrero J. Quantitative trait loci for yield and yield components in anOryza sativa X Oryza rufipogon BC2F2population evaluated in an upland environment.Theoretical and applied genetics,2001,102(1):41-42.
    159. Gao LF, Jing RL, Huo NX. One hundred and one new microsatellite loci derivedfrom ESTs(EST-SSRs) in bread wheat. Theoretical and applied genetics,2004,108:1392-1400.
    160. Konishi S, Izawa T, Lin SY. An SNP Caused Loss of Seed Shattering During Rice DomesticationSasaki-T, Yano M. Science,2006,312(5778):1392-139.
    161.高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179.
    162. Keightley P, Bulfield G. Detection of quantitative trait loci from frequency changes of markeralleles under selection. Genetical Research,1993,62:195-203.
    163. Andaya VC, Tai TH. Fine mapping of the qCTS12locus, a major QTL for seedling cold tolerancein rice. Theoretical and applied genetics,2006,113:467-475.
    164. Huang N, Parco A, Mew T. RFLP mapping of isozymes, RAPD, and QTL for grain shape, brownplanthopper resistance in a doubled-haploid rice population. Molecular Breeding,1997,3:105-113
    165. Yu SB, Li JX, Xu CG. Importance of epistasis as the genetic basis of heterosis in an elite ricehybrid. Proc. Natl. Acad, Sci,USA,1997,94:9226-9231.
    166. Fan CC, Xing YZ, Mao HL. GS3, a major QTL for grain length and weight and minor QTL forgrain width and thickness in rice, encodes a putative transmembrane protein. Theoretical andapplied genetics,2006,112:1164-1171.
    167. Yagi T, Nagata K, Fukuta Y. QTL mapping of spikelet number in rice (Oryza sativa L1). BreedingScience,2001,51(1):53-56.
    168. Li ZK, Pinson SRM, Park WD. Epistasis for three grain yield components in rice (Oryza sativaL1). Genetics,1997,145(2):453-465.
    169. Liao CY, Wu P, Hu B. Effects of genetic bac kground and environment on QTLs and epistasis forrice (Oryza sativa L1) panicle number. Theor Appl Genet,2001,103(1):1041-1142.
    170. Koyama ML, Levesley A, Koebner RMD. Quantitative trait loci for component physiological traitsdetermining salt tolerance in rice. Plant Physilo,2001,125:406-422.
    171. Qian Q, Yansgihara S, Teng S. Isolation, expression characteristics and chromosomal locations ofthree cDNA fragments uner salt stress in rice. Acta Bot Sin,2003,45(9):1090-1095.
    172. Takehisa H, Shimodate T, Fukuta Y. Identification of quantitative trait loci for plant growth of ricein paddy field folded with salt water. Field Crops Res,2004,89:85-95.
    173. Lang NT, Masood S, Yanagihara S. Mapping QTLs for salt tolerance in rice.In: khush G S, Brar DS, Hardy B eds. Advances in Rice Genetics.Supplement to Rice Genetics IV. Proceedings of theFourth International Rice Genetics Symposium, Los Banos, Philippines: IRRI,2003,294-298.
    174.姜慧芳,任小平等.花生青枯病抗性分子标记的初步研究.花生学报,2003,32(增刊):319-323.
    175.李海涛,邹庆道,吕书文等.茄子抗青枯病基因RAPD标记的初步研究.辽宁农业科学,2002(5):1-4.
    176. Zhang Qifa, Sheng BZ, Dai XK, Mei MH, Saghai Marioof MA, Li ZB. Using bulked extremes andrecessive class to map genes for photoperiod-susceptible genetic male sterility in rice. Proc NatlAcad Sci,1994,91:8675-8679.
    177. Buddenwagen L. Biological and physiological aspects of bacterial wilt caused byPseudomonas solanacearum. Annual Review of phytopathology,1964,2:203-230.
    178. Bernoux M, Timmers T, Jauneau A. RD19, an Arabidopsis cysteine protease required forRRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2effector. Plant Cell,2008,20(8):2252-64.
    179. Deslandes L, Pileur F, Liaubet L. Genetic characterization of RRS1, a recessive locus inArabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstoniasolanacearum[J]. Mol Plant-Microbe Intera,1998,11(7):659-67.
    180. Deslandes L, Olivier J, Theulieres F. Resistance to Ralstonia solanacearum in Arabidopsis thalianais conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. PNAS,2002,99(4):2404-2409.
    181. Han DJ, Cao L, Chen YF. Molecular basic of interaction between disease resistance gene andavirulence gene. Acta Gene Sin,2005,32(12):1319-1326.
    182. Salanoubat M, Genin S, Artiguenave F. Genome sequence of the plant pathogen Ralstoniasolanacearum. Nature,2002,415(6871):497-502.
    183. Temnykh S, Declerck G, Lukashova A. Computational and Experimental Analysis ofMicrosatellites in Rice (Oryza sativa L.): Frequency, Length Variation, Transposon Associations,and Genetic Marker Potential,2001,11:1441-1452.
    184.郑景生,吕蓓. PCR Technique and its Practical Methods.分子植物育种,2003,1(3):381-394.
    185.孙学永,周应兵,杨华应等.烟草种质抗青枯病鉴定及其抗性分类.中国烟草学报,2011,19(3):22-28.
    186.孙学永,祖朝龙,高正良等.高密度栽培对烟草青枯病抗性鉴定及株型性状的影响.中国烟草学报,2011,17(1):77-82.
    187.季学军,竟丽丽,马称心等.烟草青枯病抗性的研究进展.安徽农业科学,2008,36(10):4158-4159,4161.
    188.刘中华,祁建民,陶爱芬等.烟草种质资源分子标记与配合力遗传效应研究进展.中国烟草学报,2007,13(5):65-70.
    189.殷全玉,杨铁钊,邵惠芳等.烟草对气候斑点病的抗性遗传研究.中国烟草科学,2006,27(1):16-19.
    190.周显升,钱玉梅,陈德鑫等.烟草品种对马铃薯Y病毒抗性遗传分析.中国烟草学报,2007,13(1):31-36.
    191.许美玲,赵立红,张晨东等.烤烟主要性状配合力和相关性研究.植物遗传资源学报,2004,5(3):256-261.
    192.许健,杨德,张锦伟.烤烟亲本配合力的双列杂交分析.烟草科技,2004(1):29-32.
    193.陈顺辉,巫升鑫,倪金应等.烤烟主要数量性状的配合力研究.中国烟草学报,2004,10(3):25-28.
    194.杨跃,王毅,尹天水.烤烟常用亲本农艺性状的配合力分析.云南农业大学学报,2003,18(3):264-269.
    195.张晨东,张燕春,肖炳光.烤烟亲本配合力及杂种优势分析.河南农业大学学报,1999,33(4):389-391.
    196.李国民,田峰,李鸣等.杂交一代亲本主要化学成分和产量性状的配合力研究.吉林大学学报,1998,19(2):24-29.
    197.曾慕衡,马守才,刘景春.烤烟品种间杂种优势及其配合力研究.西北农业大学学报,1994,22(4):75-78.
    198.黄文昌,王毅,蔡长春等.烟草黑胫病抗性遗传分析.中国烟草科学,2009,30(增刊):69-74.
    199. Sprague GF, Tatum LA. General vs. specific combining ability in single cross of corn. J Am SocAgron,1942,37:923–932.
    200. Griffing BA. Concept of general and specific combining ability in relation to diallel crossingsystems. Aust J Bio Sci,1956,9:463–493.
    201. Zhu J. General genetic models and new analysis methods for quantitative traits. J Zhejiang AgricUniv,1994,20(6):551–559(in Chinese with English abstract).
    202. Dudley JW. Evaluation of maize populations as sources of favorable alleles. Crop Sci,1988,28:486–491.
    203. Guan RZ. Applications of Diallel Cross Design to the Improvement of Heterosis of Elite Crossesand the Distinction Loci Groups among Parents. PhD Dissertation of Nanjing AgriculturalUniversity,1997(in Chinese).
    204. Gai JY, Guan RZ, Wang JK. Methods of genetic experiments for the detection of QTL system inplants. World Sci-Tech R&D,1999,21(1):34–40(in Chinese with English abstract).
    205. Guan RZ, Gai JY. Detection of differential QTLs among a group of parents underadditive-dominance model by use of diallel design. J Biomath,2001,16(5):545–552(in Chinesewith English abstract).
    206.曾士迈,张树榛.植物抗病育种的流行学研究.北京:科学出版社,1998,83-95.
    207.邓正平,匡传富,周志成等.湖南烟草青枯病菌生理小种测定.中国烟草科学,2004,30(1):47-49.
    208.顾江涛,许大凤,李英等.安徽皖南烟区青枯病病原菌生化型研究.中国烟草科学,2008,29(3):60-61.
    209. José A, Castillo, Jean T, Greenberg1. Evolutionary Dynamics of Ralstonia solanacearum. Appliedand Environmental Mircrobiology,2007,73(4):1225-1238.
    210.藩哲超.植物青枯菌遗传多样性及致病力分化研究:[博士学位论文].北京:中国农业科学院,2010.
    211. Voorrips RE. MapChart: Software for the graphical presentation of linkage maps and QTLs. TheJournal of Heredity.2002,93:77-78.
    212. Stephen E, Mark J, Eric S. Constructing Genetic Linkage Maps with MAPMAKER/EXP Version
    3.0. A Whitehead Institute for Bio-medical Research Technical Report,1993.
    213. Stephen E, Mark J, Eric S. Mapping Genes Controlling Quantitative Traits UsingMAPMAKER/QTL Version1.1. A Whitehead Institute for Bio-medical Research Technical Report,1993.
    214. Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H. Identification of DNA markers of tobaccolinked to bacterial wilt resistance. Theor Appl Genet,2003,106:765-770.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.