Th极化关键基因TBX21和TIM-1与甲/乙型肝炎及自身免疫性肝炎的遗传关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:我国肝病临床资源丰富。与西方国家以脂肪肝、酒精性肝炎、丙型肝炎、药物性肝炎和自身免疫性肝病为主的慢性肝病谱不同,慢性乙型肝炎病毒(hepatitis B virus, HBV)感染相关慢性肝病(慢性乙型肝炎、肝硬化、原发性肝癌)一直是我国主要的肝病类型。同时,丙型、甲型、戊型肝炎病毒感染也不容忽视,病毒性肝炎成为我国的优势疾病资源。同时,随着诊断方法和重视程度的提高,自身免疫性肝病的就诊率和诊断率不断上升。自身免疫疾病存在显著的种族差异(发病率、临床表现),如中国人群自身免疫性肝病合并其他系统自身免疫疾病者少见,我国自身免疫性肝病的临床特点及遗传易感性尚未得到充分的研究。
     鉴定病毒性肝炎和自身免疫性肝炎的遗传因素是一个重要同时又具有挑战性的问题,目前的认识并不充分。对于病毒性肝炎和自身免疫性肝炎这类常见复杂疾病,基于病例-对照设计的遗传关联研究的广泛使用,通常根据生物学功能选择候选基因进行遗传变异与疾病关联的检测。T辅助细胞(Th)极化在病毒性肝炎和自身免疫性肝炎的病理生理过程中发挥关键的作用。近年的研究表明T-bet(由TBX21基因编码)和TIM-1分子是Th细胞极化的关键分子,在病毒感染及自身免疫疾病发病过程中发挥着极其重要的作用。
     T-bet属于T-box转录因子家族,是调节Th细胞分化的T细胞特异性转录因子,也是CD8+初始T细胞分化为CTL的关键调节因子。T细胞T-bet蛋白水平的下降与机体对一些病毒感染的反应性降低有关,例如HIV感染以及土拨鼠肝炎病毒(woodchuck hepatitis virus, WHV)感染;而T细胞T-bet蛋白水平的升高与炎症反应的结局相关,例如Th1介导的肠炎及肝损伤。人类T-bet蛋白由TBX21基因编码,其常见单核苷酸多态性(single nucleotide polymorphism, SNP)位点位于启动子区。T-1993C位点变异影响TBX21基因的转录活性。
     T细胞表面免疫球蛋白-黏蛋白样结构蛋白1(T cell immunoglobin domain and mucin domain protein 1,TIM-1)是一种膜表面糖蛋白,表达于CD4+T辅助细胞表面,影响CD4+T辅助细胞发生Th1/Th2极化的关键时期。其在活化的Th2细胞表面高表达,作为共刺激分子,诱导Th2活化增殖。与此同时,TIM-1也是目前已知的甲型肝炎病毒进入细胞的唯一受体。人群中TIM-1基因存在多态性,其外显子4编码的粘蛋白结构域存在插入缺失变异。
     目的:TBX21和TIM-1基因遗传变异与病毒性肝炎和自身免疫性肝炎的关系值得探讨。本研究基于医院和社区收集病例对照,采用生物学功能候选基因-遗传关联策略,进行Th细胞极化关键基因TBX21和TIM-1与乙型肝炎病毒(hepatitis B virus, HBV)感染、甲型肝炎病毒(hepatitis A virus, HAV)感染和自身免疫性肝炎的遗传关联研究。
     方法:主要研究工作有:
     1.在本单位以前的样本库基础上,新收集到1758份人群样本,其中包括男性1241人,女性517人,涵盖了正常对照人群、慢性HBV感染者/自限性清除者、甲型肝炎显性感染患者、隐性感染者、HAV标志物全阴性者以及自身免疫性肝炎患者等临床分组,成功提取DNA。完成新收集到的1758份样本相关病史资料查阅和资料的录入,并对我所前期工作中收集到的4700余例病人病史资料进行完善。对上述病史资料进行整理,剔除重复,获得包括完整病史资料、血DNA和血清的样本4181人份,完成了DNA提取及Panel制作。
     2.对dbSNP数据库及文献报道的TBX21基因的8个SNP位点,T-1993C、T-1514C、G-1499A、C99G、T1298C、G6547A、T7725C、T9903C,在我们的代表性样本中进行了测序验证及分型方法探索。
     3.对TIM-1基因外显子4多态性进行了克隆-测序发掘,构建了单倍型,并摸索了157MVTTTP插入缺失多态性的GeneScan分型方法。
     4.选择了TBX21基因T-1993C和TIM-1基因157MVTTTP插入缺失多态位点,对正常对照人群、慢性HBV感染者/自限性清除者、甲型肝炎显性感染患者、隐性感染者、HAV标志物全阴性者以及自身免疫性肝炎患者进行了基因分型及疾病关联分析。
     结果:主要研究结果有:
     1.重庆人群中,TBX21基因外显子区和启动子区的最高频多态位点是T-1993C,国外报道的G-1499A和T9903C位点频率极低(等位频率< 1%)。
     2.重庆人群中,TIM-1基因外显子4有高度多态性,主要单倍型有4种。
     3.以无症状携带者为对照,TBX21基因T-1993C位点与慢性HBV感染疾病进程无显著关联。以隐性感染者为对照,TBX21基因T-1993C位点与HAV感染疾病状态无显著关联。
     4.以慢性HBV感染者为对照,TBX21基因T-1993C位点与HBV自限性清除存在显著的关联(χ2 = 20.4, P = 0.0000063);启动子区单倍型-1993T-1514T显著降低慢性HBV感染的风险(P = 0.000017, OR = 0.46, 95% CI 0.32~0.65)。
     5.以献血员为对照,TBX21基因T-1993C位点与自身免疫性肝炎存在显著关联,-1993T等位与自身免疫性肝炎显著相关(χ2 = 13.7, P = 0.00004)。多因素Logistic回归校正年龄、性别等因素,-1993T/T纯合子发生自身免疫性肝炎的风险度显著升高(P=0.00043,OR=0.26,95%CI=0.12~0.55)。
     6. TIM-1基因157MVTTTP插入缺失多态位点对HBV感染、HAV感染和自身免疫性肝炎的遗传风险度没有显著影响。
     结论:我们基于医院的病例对照研究结果表明,TBX21基因T-1993C位点与HBV自限性清除及自身免疫性肝炎相关联。根据文献报道,疾病关联的T-1993C位点是TBX21基因启动子的潜在调节性SNP位点,其遗传变异影响TBX21基因的转录活性,-1993C等位的转录活性较强。有关TBX21基因T-1993C位点与HBV自限性清除及自身免疫性肝炎的遗传关联及机制,值得进一步深入研究。
Background: Liver diseases are common in China. The major types of liver diseases are hepatitis B virus (HBV) related disorders (such as chronic hepatitis B, liver cirrhosis and hepatocellular carcinoma), it is different from liver disease spectrum in Caucasians, in which lipid/alcoholic hepatitis, drug induced hepatitis, hepatitis C and autoimmune liver diseases are more common. Beside this, hepatitis A/C/E virus infection also need to be attention. Followed with the improvement of diagnostics and emphasis level, the autoimmune liver diseases are highly recognized and treated in recent years. The prevalence and some clinical characteristics of autoimmune diseases are significantly different among different ethnic populations, e.g, combination autoimmune manifestion with other organs are rare in Chinese patients. However, the clinical characteristics and host genetic factors of autoimmune hepatitis have not been fully analysed.
     It is an important and challenging issue for identification of host genetic factors involved in viral hepatitis and autoimmune hepatitis, which has not been fully understand. For such common complex diseases, genetic association studies are widely used, based on case control design. Genetic associations are detected between biological functional candidate genes and diseases. T helper (Th) cells polarization play a key role in the pathogenetic process of viral infection and autoimmune hepatitis.
     T-bet is a member of the T-box family of transcription factors, which is responsible for the induction of Th1 cells and the repression of Th2 cells from naive T lymphocytes. Reduced T-bet concentrations have been linked with diminished responses to some viral infections, including human immunodeficiency virus (HIV) infection and woodchuck hepatitis virus (WHV) infection, and higher levels have been linked with inflammatory outcomes such as Th1-mediated colitis and liver injury in animal models. The human TBX21 gene encoding T-bet, some common single nucleotide polymorphisms (SNPs) are located in the promoter region. T-1993C is a functional site which may influence the transcriptional activity of TBX21 promoter.
     T-cell immunoglobulin domain and mucin domain protein 1 (TIM-1) is a glycoprotein, which is expressed on the surface of CD4+ Th cells. It plays an important role on the Th1/Th2 polarization. TIM-1 is highly expressed on the surface of Th2 cells as a co-stimulation molecule and induces the activation and proliferation of Th2 cells. TIM-1 is also the only cellular receptor for hepatitis A virus (HAV). TIM-1 is polymorphic in population, there is a 18-bp insertion variation in exon 4 (mucin domain).
     Objective: Because the expression of TBX21 and TIM-1 are important for Th1/Th2 immune response, it is interesting to examine whether polymorphisms of TBX21 and TIM-1 genes are associated with HAV/HBV infection and autoimmune hepatitis. In this study, we collected cases and controls samples based on hospital or community, then conducted genetic association studies between TBX21/TIM-1 genes and HAV infection, HBV infection and autoimmune hepatitis.
     Methods: We completed the following works:
     1. We newly collected 1758 cases and controls (1241 males and 517 females), including normal healthy controls, patients with chronic HBV infection or spontaneously clearance, patients with hepatitis A infection, cases with asymptomatic HAV infection, cases negative for HAV markers and patients with autoimmune hepatitis. Clinical and epidemiological information were collected, genomic DNA was extracted. Along with previous samples, we made DNA panels.
     2. Eight known SNPs of TBX21, the T-1993C, T-1514C, G-1499A, C99G, T1298C, G6547A, T7725C and T9903C, were validated in our representative samples, appropriate genotyping methods were developed.
     3. The polymorphisms in exon 4 of TIM-1 were discovered by TA-clone and sequencing, haplotypes were constructed, and the GeneScan genotyping method for 157MVTTTP insertion/deletion was established.
     4. TBX21 T-1993C and TIM-1 157MVTTTP insertion/deletion polymorphisms were selected for genotyping in normal healthy controls, patients with chronic HBV infection or spontaneously clearance, patients with hepatitis A infection, cases with asymptomatic HAV infection, cases negative for HAV markers and patients with autoimmune hepatitis. Genetic association analysis were conducted.
     Results: Based on studies mentioned above, we demonstrated the following main results:
     1. T-1993C is the most common polymorphism in the exons and promoter region of TBX21. Previously reported G-1499A and T9903C SNP had very low frequencies (< 1%) in Chongqing population.
     2. The exon 4 of TIM-1 is highly polymorphic in Chongqing population. There were four major haplotypes in Chongqing population.
     3. Compared with asymptomatic HBV carriers, TBX21 T-1993C was not associated with disease progression of chronic HBV infection. Compared with cases with asymptomatic HAV infection, TBX21 T-1993C was not associated with HAV infection.
     4. Compared with patients of chronic HBV infection, TBX21 T-1993C was significantly associated with spontaneously clearance of HBV (χ2 = 20.4, P = 0.0000063). Similarly, haplotype -1993T-1514T was associated with decreased susceptibility to the persistence of HBV infection (P = 0.000017, OR = 0.46, 95% CI 0.32-0.65).
     5. Compared with blood donors, TBX21 -1993T allele was significantly associated with autoimmune hepatitis (χ2 = 13.7, P = 0.00004). By logistic regression controlling confounding factors such as age and sex, -1993T/T homozygotes had a significantly increased risk for autoimmune hepatitis (P=0.00043, OR=0.26, 95%CI = 0.12-0.55).
     6. TIM-1 157MVTTTP insertion/deletion polymorphism had no significant influence on the genetic risks for HAV infection, HBV infection or autoimmune hepatitis.
     Conclusion: In conclusion, based on case control collection, polymorphic loci screening and genotyping method establishment, we selected TBX21 T-1993C and TIM-1 157MVTTTP insertion/deletion polymorphisms for genotyping in our large case control samples. We detected the genetic associations between TBX21/TIM-1 genes and HAV infection, HBV infection and autoimmune hepatitis. Our case control association study indicated that TBX21 T-1993C was associated with HBV clearance and autoimmune hepatitis. Previous luciferase reporter assays and electrophoretic mobility shift assays suggest T-1993C polymorphism affects the transcriptional activity of TBX21 and the -1993C allele may contribute to an increase in T-bet expression. Nevertheless, more steps are required before the importance of the TBX21 gene in HBV infection and autoimmune hepatitis can be fully ascertained. First, data from other ethnic populations are needed to confirm our initial observation. Second, the promoter polymorphisms in the TBX21 gene and its functional molecular mechanisms for this association with diseases should be identified.
引文
1. Collins FS, Partinos A, Jordan E, et al. New goals for the US Human Genome Project:1998-2003[J]. Science 1998;282(5389):682-689.
    2. Marshall E. NIH plans peer-review overhaul[J]. Science 1997;276(5314):888-889.
    3. Marshall E.‘Playing chicken' overgene markers[J]. Science 1997;278(5346):2046- 2048.
    4. Collins FS,Guyer MS, Charkrabarti A. Variations on atheme:cataloging human DNA sequence variation[J]. Science 1997;278(5343):1580-1581.
    5. Deng G, Zhou G, Zhai Y, et al. Association of estrogen receptor alpha polymorphisms with susceptibility to chronic hepatitis B virus infection[J]. Hepatology 2004;40 (2):284-286.
    6. Bellamy R, Ruwende C, Corrah T, et al. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene[J]. J Infect Dis 1999;179:721-724.
    7. Thomas HC, Foster GR, Sumiya M, et al. Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection[J]. Lancet 1996; 348:1417-1419.
    8. SOCao Y, Sugi K, Tomiyama H, et al. Identification of hepatitis B virus-specific CTL epitopes presented by HLA-A*2402, the most common HLA class I allele in East Asia[J]. J Hepatol 2001;34:922-929.
    9. Wang C, Tang J, Song W, et al. HLA and cytokine gene polymorphisms are independently associated with responses to hepatitis B vaccination[J]. Hepatology 2004;39: 978-988.
    10. Tsui LV, Guidotti LG, Ishikawa T, et al.Posttranscriptional clearance of hepatitis B virus RNA by cytotoxic T Lymphocyte-activated hepatocytes[J]. Proc Natl Acad Sci USA 1994;91:3764-3768.
    11.曾争.与乙型肝炎病毒感染相关的易感或拮抗基因的研究进展及研究体会[J].中华医学杂志2005;17:1163-1165.
    12. McNicholl JM, Downer MV, Udhayakumar V, et al. Host-pathogen interactions in emerging and re-emerging infectious diseases: a genomic perspective of tuberculosis, malaria, human immunodeficiency virus infection, hepatitis B, and cholera[J]. Annu Rev Public Health 2000;21:15-46.
    13.李梦东,王宇明主编.实用传染病学第3版[M].人民卫生出版社,370-374.
    14. Shankarkumar U, Amarapurkar DN, Kankonkar S. Human leukocyte antigen allele associations in type- 1 autoimmune hepatitis patients fromwestern India[J]. J Gastroenterol, 2005, 20(2): 193- 197.
    15. Manly KF. Reliability of statistical associations between genes and disease[J]. Immunogenetics 2005;57:549-58.
    16. Lander ES. The new genomics: globel views of biology[J]. Science 1996;274:536-539.
    17. Nebet DW. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist[J]. Clin Genet 1999;56:247-258.
    18. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, Chisari FV. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection[J]. J Virol 2003; 77: 68-76.
    19. Diamantis I, Boumpas DT. Autoimmune hepatitis: evolving concepts [J]. Autoimmune Rev,2004, 3(3): 207- 214.
    20. Manns MP, Vogel A. Autoimmune hepatitis, from mechanisms to therapy[J]. Hepatology, 2006, 43: 132- 144.
    21. Hohler T, Reuss E, Adams P, Bartsch B, Weigmann B, Worns M, et al. A genetic basis for IFN-γproduction and T-bet expression in humans[J]. J Immunol 2005; 175: 5457-62.
    22. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH A novel transcription factor, T-bet, directs Th1 lineage commitment[J]. Cell 2000; 100: 655-69.
    23. Kobayashi A, Greenblatt RM, Anastos K, Minkoff H, Massad LS, Young M, et al. Functional attributes of mucosal immunity in cervical intraepithelial neoplasia and effects of HIV infection[J]. Cancer Res 2004; 64: 6766-74.
    24. Wang Y, Menne S, Jacob JR, Tennant BC, Gerin JL, Cote PJ. Role of type 1 versus type 2 immune responses in liver during the onset of chronic woodchuck hepatitis virus infection[J]. Hepatology 2003; 37: 771-80.
    25. Cao B, Yang H, Ding H, Qi S, Gao L, Cui H, Dai Y, Xu C. Association analysis of hepatitis virus B infection with haplotypes of the TBX21 gene promoter region in the Chinese population[J]. Clin Chem Lab Med 2007; 45: 333-8.
    26. Akahoshi M, Obara K, Hirota T, Matsuda A, Hasegawa K, Takahashi N, et al. Functional promoter polymorphism in the TBX21 gene associated with aspirin-inducedasthma[J]. Hum Genet 2005; 117: 16-26.
    27. McIntire JJ, et al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family[J]. Nat Immunol 2001; 2:1109.
    28. Umetsu SE, Lee WL, McIntire JJ, et al. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance[J]. Nat Immunol 2005; 6(5): 447-454.
    29. Binne′LL, Scott ML, Rennert PD. Human TIM-1 Associates with the TCR Complex and Up-Regulates T Cell Activation Signals[J].J Immunol. 2007 Apr 1;178(7):4342-4350.
    30. Nakajima T, Wooding S, Satta Y, et al. Evidence for natural selection in the HAVCR1 gene: high degree of amino-acid variability in the mucin domain of human HAVCR1 protein[J]. Genes Immunity 2005; 6: 398-406.
    31. Silberstein E, Xing L, Beek W van de, et al. Alteration of HAV particles by a soluble form of the hepatitis A virus cellular receptor 1 containing the immunoglobulin- and mucin-like regions[J]. J Virol 2003; 77(16): 8765-8774.
    32. Chu CJ, Lok AS. Clinical significance of hepatitis B virus genotypes[J]. Hepatology 2002;35:1274-1276.
    33.庄辉.乙型肝炎.见:耿贯一,主编.流行病学[M].第2版.北京:人民卫生出版社.1996:721-738.
    34.第十次全国病毒性肝炎会议.西安,2000.9.11-15.
    35. Miller SA, Dykes DD, Folesky HF, et al. A simple salting out procedure for extracting DNA from human nucleated cells[J]. Nucleic Acids Res 1988;16:1215.
    36. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies[J]. J Natl Cancer Inst 2004;96:434-42.
    37. Adams MJ Jr, Khoury MJ, James LM. The use of attributable fraction in the design and interpretation of epidemiologic studies[J]. J Clin Epidemiol 1989; 42: 659-62.
    38. Ylikoski E, Kinos R, Sirkkanen N, Pyk?l?inen M, Savolainen J, Laitinen LA, Kere J, Laitinen T, Lahesmaa R. Association study of 15 novel single-nucleotide polymorphisms of the T-bet locus among Finnish asthma families[J]. Clin Exp Allergy 2004; 34: 1049-55.
    39. Ye S, Dhillon S, Ke X, et al. An efficient procedure for genotyping single nucleotide polymorphisms[J]. Nucleic Acids Res 2001; 29(17): e88.
    40. H?hler T, Kruger A, Gerken G, Schneider PM, Meyer zum Büschenefelde KH, Rittner C. A tumor necrosis factor-alpha (TNF-alpha) promoter polymorphism is associated with chronic hepatitis B infection[J]. Clin Exp Immunol 1998; 111: 579-82.
    41. Thomas HC, Foster GR, Sumiya M, McIntosh D, Jack DL, Turner MW, et al. Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection[J]. Lancet 1996; 348: 1417-9.
    42. Bellamy R, Ruwende C, Corrah T, McAdam KP, Thursz M, Whittle HC,et al. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene[J]. J Infect Dis 1999; 179: 721-4.
    43. Deng G, Zhou G, Zhai Y, Li S, Li X, Li Y, et al. Association of estrogen receptor alpha polymorphisms with susceptibility to chronic hepatitis B virus infection[J]. Hepatology 2004; 40: 318-26.
    44. Zhang X, Hong X, Deng G, Bai X. Single nucleotide polymorphisms and functional analysis of class II transactivator (CIITA) promoter IV in persistent HBV infection[J]. J Clin Virol 2007; 40: 197-201.
    45. Thursz MR, Kwiatkowski D, Allsopp CE, Greenwood BM, Thomas HC, Hill AV. Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia[J]. N Engl J Med 1995; 332: 1065-9.
    46. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data[J]. Am J Hum Genet 2001;68:978-89.
    47.郑徽,卢永,王富珍,崔富强.中国2004~2006年甲型病毒性肝炎疫情分析[J].中国计划免疫,2007,13(4),336-341.
    48.赵宁,李智伟.成人甲型病毒性肝炎临床特点分析[J].中国实用内科杂志,2007,27(19),1537-1538.
    49. Lesnicar G. A prospective study of viral hepatitis A and the question of chronicity[J].Hepatogastroenterology. 1988 Apr;35(2):69-72.
    50. Mechnik L, Bergman N, Attali M, et al.Acute hepatitis E virus infection presenting as a prolonged cholestatic jaundice[J].J Clin Gastroenterol. 2001 Nov-Dec;33(5):421-2.
    51. Inoue K, Yoshiba M, Yotsuyanagi H, et al.Chronic hepatitis A with persistent viral replication.J Med Virol[J]. 1996 Dec;50(4):322-4.
    52.陈向荣.甲型病毒性肝炎少见的临床表现[J].肝脏,1999,4(2).123.
    53.何姗,庞超,胡南.慢性乙型肝炎重叠感染HAV、HEV临床对比分析[J].河北医学,2006,12(7),645-647.
    54. Ciocca M, Moreira-Silva SF, Alegría S, et al.Hepatitis A as an etiologic agent of acute liver failure in Latin America.Pediatr Infect Dis J[J]. 2007 Aug;26(8):711-5.
    55.周霞秋,斯崇文,王兆荃,张定凤,朱理珉,巫善明,邬祥惠,林秀玉,徐道振.重型肝炎多中心药物治疗(附166例临床分析)[J].中华传染病杂志,1998,16(1).45-46.
    56. International Autoimmune Hepatitis Group scoring system[J]·Jhepatol,1999, 31 (5): 929-938.
    57.邱德凯,马雄主编.自身免疫性肝病基础与临床[M].上海:上海科技出版社,2006: 103- 114.
    58. Ichiki Y, Aoki CA Bowlus CL, et al. T cell immunity in autoimmune hepatitis[J].Autoimmun Rev, 2005, 4(5): 315- 321.
    59. Yoshizawa K, Ota M, Katsuyama Y, et al. Genetic analysis of the HLA region of Japanese patients with type 1 autoimmune hepatitis[J]. J Hepatol,2005, 42(4): 578- 584.
    60. Qiu DK, Ma X. Relationship between human leukocyte antigen -DRB1 and autoimmune hepatitis type I in Chinese patients [J]. J Gastroenterol Hepatol, 2003, 18(1): 63- 67.
    61. Djilali- Saiah I, Renous R, Caiollat- Zucman S, et al. Linkage disequilibrium between HLAclass II region and autoimmune hepatitis in pediatric patients[J]. J Hepatol,2004, 40(6): 904- 909.
    62. Diamantis I, Boumpas DT. Autoimmune hepatitis: evolving concepts [J]. Autoimmune Rev,2004, 3(3): 207- 214.
    63. Bittencount PL, Palacios SA, Cancado EL, et al. Cytotoxic T lymphocyte antigen- 4 gene polymorphisms do not confer susceptibility to autoimmune hepatitis types 1 and 2 in Brazil[J].AmJ Gastroenterol, 2003, 98(7): 1616- 1620.
    64. Tanaka H, Tujioka H, Ueda H,et al.Autoimmune hepatitis triggered by acute hepatitis A.World J Gastroenterol[J]. 2005 Oct 14;11(38):6069-71. Review.
    65. Manns MP, Vogel A. Autoimmune hepatitis, from mechanisms to therapy[J]. Hepatology, 2006, 43: 132- 144.
    1. Hill AV. Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet 2006; 40: 469-486
    2. Thursz M. Genetic susceptibility in chronic viral hepatitis. Antiviral Res 2001; 52: 113-116
    3.黄少珊,许汉忠,李小红.汕头市1990-2003年甲型肝炎流行特征分析与免疫策略探讨.疾病监测2005;20:8-10
    4. McMahon BJ, Alward WL, Hall DB, et al. Acute hepatitis B virus infection: relation of age to the age to the clinical expression of disease and subsequent development of the carrier state. J Infect Dis 1985; 151: 599-603
    5. Fattovich G, Bortolotti F, Donato F. Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors. J Hepatol 2008; 48: 335-352
    6. TongMyron J, Weiner JM, Ashcavai MW, et al. A comparative study of hepatitis B viral markers in the family members of Asian and non-Asian patients with hepatitis B surface antigen-positive hepatocellular carcinoma and with chronic hepatitis B infection. J Infect Dis 1979; 140: 506-512
    7.单晶,王璐,李卓,等.维生素D受体基因多态性与HBsAg携带者家庭聚集性关系.中国医学科学院学报2006;28:148-153
    8. Lin TM, Chen CJ, Wu MM, et al. Hepatitis B virus markers in Chinese twins. Anticancer Res 1989; 9: 737-741
    9.徐宝艳,王宇明,邓国宏,等.乙型肝炎病毒感染孪生子宿主遗传因素与临床表型关系的初步研究.中华医学杂志2004;84:189-193
    10. Polson J, Lee WM. AASLD position paper: the management of acute liver failure. Hepatology 2005; 41: 1179-1197
    11. Segal S, Hill AV. Genetic susceptibility to infectious disease. Trends Microbiol 2003;11(9):445-448
    12. McNicholl JM, Downer MV, Udhayakumar V, et al. Host-pathogen interactions in emerging and re-emerging infectious diseases: a genomic perspective of tuberculosis, malaria, human immunodeficiency virus infention, hepatitis B, and cholera. Annu Rev Public Health 2000; 25:2115-2146
    13. Abel L, Dessein AJ. Genetic epidemiology of infectious diseases in humans: design of population-based studies. Emerg Infect Dis 1998; 4 (4 ): 593-603
    14. Hill AVS. The genomics and genetics of human infectious disease susceptibility. Annu Rev Genomics Hum Genet 2001; 2: 373-400
    15. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 2003;33 Suppl:228-237
    16.蒋业贵,HLA复合体与感染病的关系.王宇明,顾长海主编.感染病学新进展.第一版.北京:人民卫生出版社, 2001:216-233
    17. Zavaglia C, Bortolon C, Ferrioli G, et al. HLA typing in chronic B, D and C hepatitis. J Hepatol 1996; 24: 658-665
    18. Thursz MR, Kwiatkowski D, Allsopp CE, et al. Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia. N Engl J Med 1995; 332: 1065-1069
    19. Chen DF, Kliem V, Endres W, et al. Relationship between human leukocyte antigen determinants and courses of hepatitis B virus infection in Caucasian patients with end-stage renal disease. Scan J Gastroenterol 1996; 31: 1211-1215
    20. Hohler T, Gerken G, Notghi A, et al. HLA-DRB1*1301 and *1302 protect against chronic hepatitis B. J Hepatol 1997; 26: 503-507
    21. Thio CL, Carrington M, Marti D, et al. ClassⅡof HLA alleles and hepatitis B virus persistence African Americans. J Infect Dis 1999; 179: 1004-1006
    22. Diepolder HM, Jung MC, Keller E, et al. A vigorous virus-specific CD4+ T cell response may contribute to the association of HLA-DR13 with viral clearance in hepatitis B. Clin Exp Immunol 1998; 113: 244-251
    23. McKiernan SM, Hagan R, Curry M, et al. Distinct MHC class I and II alleles are associated with hepatitis C viral clearance, originating from a single source. Hepatology 2004; 40: 108-114
    24. Knight JC, Kwiatkowski D. Inherited variability of tumor necrosis factor production and susceptibility to infectious disease. Pro Assoc Am Physicians 1999; 111: 290-298
    25. Hajeer AH, Hutchinson IV. TNF-alpha gene polymorphism: clinical and biological implications. Micro Res Tech 2000; 50: 216-228
    26. Higuchi T, Seki N, Kamizono S, et al. Polymorphism of the 5'-flanking region of the human tumor necrosis factor (TNF)-alpha gene in Japanese. Tissue Antigens 1998; 51: 605-612
    27. Hohler T, Kruger A, Gerken G, et al. A tumor necrosis factor-alpha (TNF-alpha) promoter polymorphism is associated with chronic hepatitis B infection. Clin Exp Immunol 1998; 111: 579-582
    28. Hohler T, Kruger A, Gerken G, et al. Tumor necrosis factor-alpha promoter polymorphism at position-238 is associated with chronic hepatitis B infection. J Med Virol 1998; 54: 173-177
    29. Miyazoe S, Hamasaki K, Nakata K, et al. Influence of interleukin-10 gene promoter polymorphisms on disease progression in patients chronically infected with hepatitis B virus. Am J Gastroenterol 2002; 97: 2086-2092
    30. Ben-Ari Z, Mor E, Papo O, et al. Cytokine gene polymorphisms in patients infected with hepatitis B virus. Am J Gastroenterol 2003; 98:144-150
    31. Hoffmann SC, Stanley EM, Cox ED, et al. Ethnicity greatly influence cytokine gene polymorphism distribution. Am J Transplant 2002; 2: 560-567
    32. Arora R, Saha A, Malhotra D, et al. Promoter and intron-1 region polymorphisms in the IFNG gene in patients with hepatitis E. Int J Immunogenetics 2005; 32: 207-212
    33. Redpath S, Ghazal P, Gascoigne N.R. Hijacking and exploitation of IL-10 by intracellular pathogens. Trends Microbial 2001; 9: 86-92
    34. Edwards-Smith CJ, Jonsson JR, Purdie DM, et al. Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alpha. Hepatology 1999; 30: 526-530
    35. Shin HD, Park BL, Kim LH, et al. Interleukin 10 haplotype associated with increased risk of hepatocellular carcinoma. Hum Mol Genetics 2003; 12: 901-906
    36. Knapp S, Hennig BJ, Frodsham AJ, et al. Interleukin-10 promoter polymorphims and the outcome of hepatitis C virus infection. Immunogenetics 2003; 55: 362-369
    37. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000; 18: 217-242
    38. Narumi S, Tominaga Y, Tamaru M, Shimai S, Okumura H, Nishioji K, Itoh Y, Okanoue T. Expression of IFN-inducible protein-10 in chronic hepatitis, J Immunol 1997; 158:5536-5544
    39. Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR5 chemokine receptor gene. Nature 1996; 382: 722-725
    40. Woitas RP, Ahlenstiel G, Iwan A, et al. Frequency of the HIV-protective CC chemokine receptor 5-Delta32/Delta32 genotype is increased in hepatitis C. Gastroenterology 2002; 122: 1721-1728
    41. Promrat K, McDermott DH, Gonzalez CM, et al. Associations of chemokine system polymorphisms with clinical outcomes and treatment responses of chronic hepatitis C. Gastroenterology 2003; 124: 352-360
    42. Deng G, Zhou G, Zhang R, et al. Regulatory polymorphisms in the promoter of CXCL10 gene and disease progression in male hepatitis B virus carriers. Gastroenterology 2008; 134: 716-726
    43. Hellier S, Frodsham AJ, Hennig BJ, et al. Association of genetic variants of the chemokine receptor CCR5 and its ligands, RANTES and MCP-2, with outcome of HCV infection. Hepatology 2003; 38: 1468-1476
    44. Frodsham AJ, Zhang L, Dumpis U, et al. Class II cytokine receptor gene cluster is a major locus for hepatitis B persistence. Proc Natl Acad Sci USA 2006; 103: 9148-9153
    45. Hennig BJ, Frodsham AJ, Hellier S, et al. Influence of IL-10RA and IL-22 polymorphisms on outcome of hepatitis C virus infection. Liver Int 2007; 27: 1134-1143
    46. Pereira FA, Pinheiro SNN, Rodart IF, et al. Association of TGF-beta1 codon 25 (G915C) polymorphism with hepatitis C virus infection. J Med Virol 2008; 80: 58-64
    47. Kuhlman M, Joiner K, Ezekowitz RA. The human mannose binding protein functions as an opsonin. J Exp Med 1989; 169: 1733-1745
    48. Lipscombe RJ, Sumiya M, Hill AV, et al. High frequency in African and non-African populations of independent mutations in the mannose binding protein gene. Hum Mol Genet 1992; 1: 709-715
    49. Thomas HC, Foster GR, Sumiya M, et al. Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection. Lancet 1996; 348: 1417-1419
    50. Yuen MF, Lau CS, Lau YL, et al. Mannose binding lectin gene mutations are associatedwith progression of liver disease in chronic hepatitis B infection. Hepatology 1999; 29: 1248-1251
    51. Hohler T, Wunschel M, Gerken G, et al. No association between mannose binding lectin alleles and susceptibility to chronic hepatitis B virus infection in German patients. Exp Clin Immunogenet 1998; 15: 130-133
    52. Lacey DL, Erdmann JM, Tan HL. 1,25-Dihydroxyvitamin D3 increases type 1 interleukin-1 receptor expression in a murine T cell line. J Cell Biochem 1993; 52: 159-170
    53. Bellamy R, Ruwende C, Corrah T, et al. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene. J Infect Dis 1999; 179: 721-724
    54. Deng G, Zhou G, Zhai Y, et al. Association of estrogen receptorαpolymorphisms with susceptibility to chronic hepatitis B virus infection. Hepatology 2004; 40: 318-326
    55. Zhang X, Hong X, Deng G, Bai X. Single nucleotide polymorphisms and functional analysis of class II transactivator (CIITA) promoter IV in persistent HBV infection. J Clin Virol 2007; 40: 197-201
    56. Yee LJ, Knapp S, Burgner D, et al. Inducible nitric oxide synthase gene (NOS2A) haplotypes and the outcome of hepatitis C virus infection. Genes Immun 2004; 5: 183-187
    57. Hennig BJ, Hellier S, Frodsham AJ, et al. Association of low-density lipoprotein receptor polymorphisms and outcome of hepatitis C infection. Genes Immun 2002; 3: 359-367
    58. H?hler T, Reuss E, Evers N, et al. Differential genetic determination of immune responsiveness to hepatitis B surface antigen and to hepatitis A virus: a vaccination study in twins. Lancet 2002; 360: 991-995
    59. H?hler T, Reuss E, Freitag CM, et al. A functional polymorphism in the IL-10 promoter influences the response after vaccination with HBsAg and hepatitis A. Hepatology 2005; 42: 72-76
    60. Samuel CE. Antiviral actions of interferon. Clin Microbiol Rev 2001; 14: 778-809
    61. Yee LJ, Perez KA, Tang J, et al. CTLA4 polymorphisms and hepatitis C virus infection. J Infect Dis 2003; 187: 1264-1271
    62. King JK, Yeh SH, Lin MW, et al. Genetic polymorphisms in interferon pathway and response to interferon treatment in hepatitis B patients: a pilot study. Hepatology 2002; 36: 1416-1423
    63. Knapp S, Yee LJ, Frodsham AJ, et al. Polymorphisms in interferon-induced genes and the outcome of hepatitis C virus infection: roles of MxA, OAS-1 and PKR. Genes Immun 2003; 4: 411-419
    64. Ferri C, Giuggioli D, Cazzato M, et al. HCV-related cryoglobulinemic vasculitis: an update on its etiopathogenesis and therapeutic strategies. Clin Exp Rheumatol 2003; 21(6-S32): S78-84
    65. Kuchroo VK, Umetsu DT, DeKruyff RH, et al. The TIM gene family: emerging roles in immunity and disease. Nat Rev Immunol 2003; 3: 454-462
    66. McIntire JJ, Umetsu SE, Macaubas C, et al. Hepatitis A virus link to atopic disease. Nature 2003; 425: 576
    67. Hume D. Any enquiry concerning human understanding. In: The Harvard Classics. Volume 37, Part 3. New York: P. F. Collier & Son, 2001: 1909-1914. Bartleby.com.2001. www.bartleby.com/37/3
    68. Khoury MJ. Commentary: Epidemiology and the continuum from genetic research to genetic testing. Am J Epidemiol 2002; 156: 297-299
    69. Thursz M. Pros and cons of genetic association studies in hepatitis B. Hepatology 2004; 40: 284-286
    70. Ioannidis JPA, Trikalinos TA, Ntzani EE, et al. Genetic associations in large versus small studies: an empirical assessment. Lancet 2003; 361: 567-571
    71. Maraganore DM, Andrade M, Lesnick TG, et al. High-resolution whole-genome association study of Parkinson Disease. Am J Hum Genet 2005; 77: 685-693
    72. Schaid DJ, Jacobsen SJ. Biased tests of association: comparison of allele frequencies when departing from the Hardy-Weinberg proportion. Am J Epidemiol 1999; 149: 706-711
    73. Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 1992; 48: 361-372
    74. Hoggart C, Parra E, Shriver M, et al. Control of confounding of genetic associations in stratified populations. Am J Hum Genet 2003; 72: 1492-1504
    75. Ardlie K, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002; 3: 299-309
    76. The ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA Elements) Project. Science 2004; 306: 636-640
    77. The International HapMap Consortium. The International HapMap Project. Nature 2003; 426: 789-796
    78. Dahlman I, Eaves IA, Kosoy R, et al. Parameters for reliable results in genetic association studies in common disease. Nat Genet 2002; 30: 149-150
    79. Satten G, Flanders W, Yang Q. Accounting for unmeasured population substructure in case-control studies of genetic association using a novel latent-class model. Am J Hum Genet 2001; 68: 466-477
    80. Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999; 55: 997-1004
    81. Bacanu SA, Devlin B, Roeder K. Association studies for quantitative traits in structured populations. Genet Epidemiol 2002; 22: 78-93
    82. Chiano M, Clayton D. Genotype relative risks under ordered restriction. Genet Epidemiol 1998; 15: 135-146
    83. Fisher R. The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edin 1918; 52: 399-433
    84. Wright S. The relative importance of heredity and environment in determining the piebald pattern of guinea-pigs. Proc Natl Acad Sci USA 1920; 6: 320-322
    85. Clayton D, Hills M. Statistical models in epidemiology. Oxford: Oxford University Press, 1993
    86. Bateson W. Mendel’s principles of heredity. Cambridge: Cambridge University Press, 1909
    87. Phillips P. The language of gene interaction. Genetics 1998; 149: 1167-1171
    88. Moore J. The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 2003; 56: 73-82
    89. Culverhouse R, Suarez B, Lin J, et al. A perspective on epistasis: limits of models displaying no main effects. Am J Hum Genet 2001; 70: 461-471
    90. Marchini J, Donnelly P, Cardon L. Genome-wide strategies for detecting multiple locithat influence complex diseases. Nat Genet 2005; 37: 413-417
    91. Jeffreys AJ, May C. Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat Genet 2004; 36: 151-156
    92. Carlson CS, Eberle MA, Rieder MJ, et al. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat Genet. 2003; 33(4):518-521
    93. Stephens JC, Schneider JA, Tanguay DA, et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 2001; 293: 489-493
    94. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993;52:506-516
    95. Spielman RS, Ewens WJ. A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am J Hum Genet 1998;62:450-458
    96. Sham P, Bader J, Craig I, et al. DNA pooling: a tool for large-scale association studies. Nat Rev Genet 2002; 3: 862-871
    97. Lowe C, Cooper J, Chapman J, et al. Cost-effective analysis of candidate genes using htSNPs: a staged approach. Genes Immun 2004; 5: 301-305
    98. Satagopan J, Elston R. Optimal two-stage genotyping in population-based association studies. Genet Epidemiol 2003; 25: 149-157
    99. Cordell H, Barratt B, Clayton D. Case/pseudo-control analysis in genetic association studies: a unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions and parent-of-origin effects. Genet Epidemiol 2004; 26: 167-185
    100. Falk C, Rubinstein P. Haplotype relative risks: an easy and reliable way to construct a proper control sample for risk calculation. Ann Hum Genet 1987; 51: 227-233
    101. Weinberg C. Studying parents and grandparents to assess genetic contributions to early-onset disease. Am J Hum Genet 2003; 72: 438-447
    102. Wall JD, Pritchard JK. Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet 2003;4:587-597
    103. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001;68:978-989
    104. Saunders C, Bishop D, Barrett J, et al. Power and sample size calculations for studies of gene-gene and gene-environment interactions. Genet Epidemiol 2002; 23: 302-303
    105. Wacholder S, Chanock S, Garcia-Closas M, et al. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 2004; 96: 434-442
    106. Thomas D, Clayton D. Betting odds and genetic associations. J Natl Cancer Inst 2004; 96: 421-423
    107. Efron B, Tibshirani R. Empirical Bayes methods and false discovery rates for microarrays. Genet Epidemiol 2002; 23: 70-86
    108. Storey J, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440-9445
    109. Ioannidis JP, Trikalinos TA. Early extreme contradictory estimates may appear in published research: the Proteus phenomenon in molecular genetics research and randomized trials. J Clin Epidemiol 2005; 58: 543-549
    110. Trikalinos TA, Ntzani EE, Contopoulos-loannidis DG, et al. Establishment of genetic associations for compex diseases is independent of early study findings. Eur J Hum Genet 2004; 12: 762-769
    111. Campbell MJ, Julious SA, Altman DG. Estimating sample sizes for binary, ordered categorical, and continuous outcomes in two group comparisons. BMJ 1995; 311: 1145-1148
    112. Griffiths PD. Interactions between viral and human genes. Rev Med Virol 2002; 12: 197-199
    113. Zeng Z, Guan L, An P, et al. A population-based study to investigate host genetic factors associated with hepatitis B infection and pathogenesis in the Chinese population. BMC Infect Dis 2008; 8: 1-9
    114. Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33(2): 177-182
    115. Attia J, Thakkinstian A, D’Este C. Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol 2003; 56: 297-303
    116. Potti A, Mukherjee S, Petersen R, et al. A genomic strategy to refine prognosis inearly-stage non-small-cell lung cancer. N Engl J Med 2006; 355: 570-580
    117. Ioannidis JP, Trikalinos TA, Khoury MJ. Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases. Am J Epidemiol 2006; 164: 609-614
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.