肥城桃和草莓果实发育成熟软化生理机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一.本研究以肥城桃(Prunus persica[L.]Batsch)中的两个成熟软化特性不同的品系为试材,这两个品系一个是典型的红里桃,即与果核相连的果肉呈红色,成熟后期变软快,采后不耐藏;另一个是典型的白里桃,即与果核相连的果肉无颜色,成熟后期变软慢,采后较耐藏。于2000和2001两年度对上述两品系果实生长发育和贮藏过程中的生理生化变化进行了研究,结果如下:
     1.肥城桃果实重量的增长具有双‘S’曲线特性。其重量的60%以上是在商业采收期前一个月即7月31日至8月30日间获得的。蔗糖、果糖和葡萄糖是肥城桃果实中的主要糖类,也含有相当量的山梨糖醇。桃果实发育过程中蔗糖含量不断增加,蛋白质含量不断下降,成熟后期蛋白质增加。果实果肉含水量在80-88%之间。7月4日肥城桃结束硬核期,开始进入第Ⅲ阶段快速生长期。发育过程中果实硬度不断下降,成熟后期红里桃果实硬度下降明显地大于白里桃果实。果实开始快速生长后硬度下降最快。4℃下贮藏过程中,果实硬度不断下降,但在贮藏一周时,果肉硬度稍有增加。
     2.果实生长过程中细胞壁含量及成分不断变化。随着果实发育成熟,细胞壁占果实果肉重量的百分比在不断下降。可溶性果胶从8月1日至8月16日明显增加,这时果肉硬度下降最快。红里桃离子结合果胶不断下降,但白里桃的保持不变。果胶变化与果实硬度下降密不可分。细胞壁中纤维素含量的减少,也是造成果实软化的因素之一。乙烯利、脱落酸和赤霉素有促进果实细胞壁降解的作用,6-BA和萘乙酸有抑制细胞壁成分降解的作用,但不同的生长调节剂对不同的细胞壁成分作用不同。
     3.肥城桃果实贮藏期间的呼吸由三个途径组成,TCA途径是主要途径,HMP途径随贮藏期延长而减弱。8月30日采收并在4℃下贮藏的肥城桃果实,两周后出现呼吸高峰。呼吸高峰期与果实冷害或絮败的发生期相吻合。
     4.肥城桃果实成熟软化与细胞壁水解酶活性有关,红里桃的成熟软化与纤维素酶活性升高有关,而白里桃在发育成熟后期纤维素酶活性不升高。白里桃和红里桃纤维素酶活性变化的不同,说明了纤维素酶在肥城桃果实软化中的重要作用。红里桃后期硬度下降快,是因为纤维素酶一直起作用。而白里桃硬度下降慢,是因为纤维素酶活性降低了。
     外用植物生长调节剂对果胶酶活性影响很小。肥城桃果实中没有检测到内切PG活性,成熟后期外切PG活性上升,低温对PG活性影响很大。PG与发育成熟后期果实软化有关。
     5.肥城桃果实中α-半乳糖苷酶活性很高,而且是一种与壁结合的酶,与果实硬度下降密切相关;采收后的果实中检测到较高的β-半乳糖苷酶活性,它与采后果实软化有关。
    
     薛炳烨:肥城桃和草毒果实发育成熟软化生理机理的研究
     肥城桃在发育过程中没有检测到葡萄糖昔酶和甘露糖昔酶活性,但果实采收后
    有葡萄糖昔酶活性。
     6.过氧化物酶与硬核期桃果实的生理变化有关。因为硬核期的肥城桃果实中有
    很高的过氧化物酶活性,硬核期结束后,过氧化物酶活性下降。
    二.2000年至2002年对大田和温室栽培的具有不同成熟软化特性的7个草毒
    (Farlti Xb;1。assa Duch.)品种发育成熟过程中生理生化变化进行了研究,主要
    结果如下:
     1.所有测定的草萄品种的纤维素酶活性都随着发育成熟而升高。几乎所有品种
    各个时期采收的草萄在4℃下放置48小时后纤维素酶活性都明显升高。蔡乙酸对草
    萄果实中纤维素酶活性的调控因品种和发育时期而不同。纤维素酶活性与草萤果实
    的耐贮运性密切相关,且呈负相关。
     2.草荡果实发育成熟过程中,果胶酶活性不断增加。在4℃下存放48小时后,
    果胶酶活性普遍下降,茶乙酸对果胶酶活性无影响。草荡果实中没有检测到内切PG
    活性,外切PG与成熟软化无关,PG不受素乙酸的影响。
     3.p.半乳糖昔酶活性变化与草萤果实的成熟密切相关,Q-半乳糖昔酶也与成
    熟有关,但不如p.半乳糖昔酶关系密切。
     4.早美光中的p-葡萄糖昔酶随果实成熟不断提高,与果实成熟关系密切。葡
    萄糖苦酶是与丰香草毒果实早期发育相关的一种酶。红丰草萄果实中的葡萄糖昔酶
    活性与成熟没有关系。
     5.a-甘露糖昔酶与草萄果实软化有关,而且其与细胞壁离子结合部分的酶活
    性较高。在草萄果实上未检测到p-甘露糖昔酶活性。
     6.草墓果实内的蛋白质含量随着成熟而下降,成熟后期下降很快。果实中蔗糖
    含量较低。葡萄糖在白熟期最高,红熟期下降,过熟时又急剧上升。果糖和葡萄糖
    具有相同的变化趋势。草萄中有较高的甘露糖醇,但山梨糖醇很低。
     7.草萄果实发育成熟过程中细胞壁变化与成熟软化密切相关。可溶性果胶不断
    增加,离子结合果胶和纤维素减少,共价果胶不变,半纤维素在红熟期前不断增加,
    过熟期下降。白熟期前细胞壁含量快速下降,白熟期到红熟期保持不变,过熟期又
    下降。
     8.运用RT-PCR技术从红熟期丰香草萄果实总RNA中克隆到纤维素酶基因
    753hp的CDNA片段,通过同源性分析认为得到的CDNA片段是与草蒋果实成熟软
    化密切相关的纤维素酶基因的。DNA克隆。
1. The experiments were carried out for two years with two cultivars of 'Feicheng' peach (Prunus persica[L.] Batsch) , which have different softening characteristics during maturation and postharvest storage. Of the two cultivars, one was 'Hongli' with red flesh clinged to the pit which softened faster after harvest; the other was 'Baili' with white flesh clinged to the pit which softened slower than 'Hongli" after harvest and could be stored longer. The main results were as follow.
    1) The fruit weight growth curve of Feicheng peach exhibited the characteristic of double sigmoidal growth pattern. Sixty percent of total weight gained within one month prior to commercial harvest. Water content in flesh ranged from 80-88%. The main sugars were sucrose, glucose and frucose. Sorbitol also existed in considerable amount. The protein content decreased during fruit development, but increased in the last stage before harvest. With the ending of pit hardening around July 4, the fruit enlarged rapidly until the fruit was firm ripe. The firmness decreased gradually till harvest and the firmness of 'Hongli' peach decreased much more than 'Baili' did. During the phase of rapid expanding the firmness of fruits decreased dramatically. Fruit firmness decreased gradually during storage under 4癈, but the firmness increased a little bit after one week of storage.
    2) The proportion and components of cell wall in fruit changed during fruit development and storage. In the process of fruit ripening, the proportion of cell wall to fruit weight decreased. Soluble pectins increased remarkably from August 1 to Augustl6, leading to fruit firmness decrease. The ionically bound pectin remained stable in 'Baili' peach, but it decreased in 'Hongli' peach. Changes of pectins directly related to fruit firmness. Decreasing of cellulose content in cell wall also played an important role in the reduction of firmness. Of the PGRs (plant growth regulators) used, ethephon, ABA and GA3 stimulated the degradation of cell wall, and 6-BA and NAA inhibited this process.
    3) The respiration of peach comprises three pathways of TCA, BMP and HMP. TCA was the primary one and HMP reduced gradually to a very low level during storage. Fruit respiration climacteric occurred after two weeks of storage with fruits harvested at August 30. This peak of respiration coincided with the occurrence of chilly injury or wooliness.
    4) Both PME and EGases played important role in peach fruit softening. The results from the two cultivars implicated that EGases were essential in initiation of fruit softening. The PGRs have little effect on PME. ABA stimulated the activity of EGases. However the
    
    
    
    increment of EGases was not related to fruit softening. Endo-PG had not been detected in 'Feicheng' peach. Exo-PG took part in the process of later stage of ripening.
    5) Activities of a -galactosidase were very high in 'Feicheng' peach and a - galactosi-dase was a kind of enzymes which ionically bound with cell wall. It was correlated with the decreasing of fruit firmness. P -galactosidase existed in the harvested fruits and was related to the softening of fruits during storage at low temperature. For glucosidases the situation were similar to P -galactosidase. No activity of mannosidase has been detected in 'Feicheng' peach. The peroxidases was related to pit hardening in 'Feicheng' peach which showed a high activity during pit hardening and then decreased.
    2. The results from several varieties of strawberry (FragariaX ananassa Duch) grown in field or greenhouse were as follow.
    1) The activities of EGases increased as the strawberry fruits developed from stage of small green to stage of overripe. After two day's storage at 4℃, the activities of EGases increased remarkably in all 7 varieties. The action patterns of NAA on EGases activities were different with fruits from various developmental stages. EGases activities were negatively correlated to the storability of strawberry fruits.
    2) The activities of PME increased during the development of st
引文
1.陈昆松,张上隆,吕均良等,1993,‘玉露’桃不同采收成熟度的贮运性及其生理基础研究,浙江农业学报,5(4):237-239。
    2.陈昆松,叶庆富,吕军良等,1994,‘玉露’桃的采后生理及贮运技术的研究,浙江农业大学学报,20:183-187。
    3.陈昆松,李方,张上隆,1999,猕猴桃果实成熟过程中木葡聚糖内糖基转移酶mRNA水平的变化,植物学报,41(11):1231-1234。
    4.陈昆松,张上隆,2000,β-半乳糖苷酶基因在猕猴桃果实成熟过程的表达,植物生理学报,26(2):117-122。
    5.陈昆松,徐昌杰,楼健,张上隆,1999,脂氧合酶与猕猴桃果实后熟软化的关系,植物生理学报,25(2):138-144。
    6.杜卫东,丁小平,姜伟,1994,肥城桃综合保鲜技术的研究,中国果品研究,4:13-17。
    7.方建雄,华雪增,刘愚,1991,贮藏温度和气体状况对苹果果胶、多聚半乳糖醛酸酶变化的影响,植物生理学报,17(1):99-104。
    8.冯忻,周宏伟,2000,两种抑制剂对肥城桃多酚氧化酶抑制类型的研究,山东农业大学学报,31(2):177-179。
    9.伏建民,张培正,王延等,1994,肥城桃防腐保鲜技术研究,食品科学,12:50-56。
    10.葛会波,张广华,李青云等,2001,草莓贮藏保鲜研究,4:7-10。
    11.关军锋,管雪强,高华君等,1997,成熟度和采后处理对草莓果实品质、超氧歧化酶活性和蛋白质含量的影响,果树科学,1:24-27。
    13.关军锋,2001,钙与植物衰老,见:沈成国等编著:植物衰老生理与分子生物学,中国农业出版社。
    14.韩涛,李丽萍,葛兴,1996,热激处理对冷藏桃果实的生理效应,植物生理学通讯,32(3):184-186。
    15.韩涛,李丽萍,葛兴,2000,外源水杨酸对桃果实采后生理的影响,园艺学报,27(5):367-368。
    16.韩雅珊,1996,食品化学实验指导,中国农业大学出版社。
    17.李全梓,李兴国,郑国生,张宪省,1998,早熟桃果实和种子发育过程中乙烯产生及ACC含量和ACC氧化酶活性的变化,植物生理学通讯,34(1):25-27。
    18.李雄彪,1991,植物细胞壁酶的分子结构与生理功能,植物生理学通讯,27(4):246-252。
    19.李永孝主编,1989,农业应用生物统计,山东科学技术出版社。
    20.梁小娥,王三宝,赵迎丽,石建新,赵猛,1998,枣采后果肉软化的生化和细胞超微结构变化,园艺学报,25(4):333-337。
    21.梁玉珐,敖良德,王明鑫,易文吉,1982,多聚半乳糖醛酸酶(PG)在苹果成熟过程中的作用,植物学报,24(2):143-146。
    22.刘光栋,杨力,宋国菡等,2000,镁、钙肥对肥城桃品质影响及平衡施肥的研究,山东农业大学学报,31(2):173-176。
    
    
    23.卢圣栋主编,1993,现代分子生物学实验技术,高等教育出版社。
    24.骆蒙,方天祺,张治中,李天然,1996,甜瓜成熟期间多聚半乳糖醛酸酶与乙烯的变化和果实软化的关系(简报),植物生理学通讯,32(5):338-341。
    25.罗新书、黄镇、惠毓坤等,1979,肥城桃群体类型分析及其演化形成和资源整理问题的商榷,山东果树,1:6-27。
    26.罗云波,1994,脂氧合酶与番茄采后成熟的关系,园艺学报,21(4):357-360。
    27.罗云波,生吉萍,李钰,夏红进,1999,番茄脂肪氧合酶与乙烯释放量的关系,园艺学报,26(1):28-32。
    28.罗云波,刘先舜,1994,乙烯诱导下草莓果实采后RNA代谢与蛋白质合成活性的变化,植物生理学报,20(3):235-239。
    29.吕贵华,梁厚果,吕忠恕,1990,草莓果实成熟期间RNA代谢的变化,植物生理学报,16(3):311-314。
    30.马庆虎,王莉梅,宋艳茹,朱至清,1999,肥城桃中多聚半乳糖醛酸酶基因的分离及其表达研究,植物学报,41(3):263-267。
    31.茅林春,应铁进,张上隆,1999b,桃果实絮败与果胶质变化和细胞壁结构的关系,植物生理学报,25(2):121-126。
    32.茅林春,张上隆,1999a,采后桃果实中多胺和乙烯对低温胁迫的反应,园艺学报,26(6):360-363。
    33.茅林春,张上隆,2001,果胶酶和纤维素酶在桃果实和成熟絮败中的作用,园艺学报,28:107-111。
    34.茅林春,2000,桃果实成熟和絮败的生理学研究,浙江大学博士学位论文。
    35.史益敏,1999,几种糖苷酶活性的测定,见:《现代植物生理学实验指南》,130-131,中国科学院上海植物生理研究所,上海市植物生理学会主编,科学出版社。
    36.王贵禧,韩雅珊,于梁,1994,猕猴桃总淀粉酶活性与果实软化的关系,园艺学报,21(4):329-333。
    37.王贵禧,韩雅珊,于梁,1995,猕猴桃软化过程中阶段性专—酶活性变化的研究,植物学报,37(3):198-203。
    38.汪沂,田世平,徐勇等,2000,硅窗袋处理对肥城桃果实的呼吸速率及乙烯释放速率的影响,园艺学报,27(5):331-334。
    39.吴敏,陈昆松,张上隆,1999,桃果实采后成熟过程中脂氧合酶活性变化,园艺学报,26(4):227-231。
    40.吴有梅,顾采琴,邰根福,刘愚,1992,ABA和乙烯在草莓采后成熟衰老中的作用,植物生理学报,18(2):167-172。
    41.薛炳烨,束怀瑞,2002,多聚半乳糖醛酸酶(PG)在果实成熟软化中的作用,山东农业大学学报,2:--。
    42.杨德兴,戴京晶,庞向宇,邢红华,王兰菊,1993,猕猴桃衰老过程中PG、果胶质和细胞壁超微结构的变化,园艺学报,20(4):341-345。
    
    
    43.颜季琼,张孝琪,龙程,1999,高等植物细胞壁的结构和功能的分子生物学基础,93-112。
    44.杨剑平,韩涛,李丽萍等,1996,热处理对桃贮藏期膜脂过氧化作用的影响,园艺学报,23:89-90。
    45.杨文衡,陈景新,1986,果树生长与结实,上海科学技术出版社。
    46.叶志彪,D。Grierson,1993,鳄梨冷藏过程中体外转译和基因表达的研究,植物学报,35(增刊):50-55。
    47.叶志彪,李汉霞,周国林,1994,番茄多聚半乳糖醛酸酶反义cDNA克隆的遗传转化与转基因植株再生,园艺学报,21(3):305-306。
    48.赵旌旌,王隆华,1999,植物细胞壁蛋白的提取和测定,见:《现代植物生理学实验指南》,258-259,中国科学院上海植物生理研究所,上海市植物生理学会主编,科学出版社。
    49.赵尊行,孙衍华,黄化成,1995,山东苹果中可溶性糖、有机酸的研究,山东农业大学学报,26(30):355-360。
    50.周宏伟,吴耕西,1992,长把梨贮藏中多聚半乳糖醛酸酶与果胶甲酯酶的作用,山东农业大学学报,23(1):67-70。
    51.周培根,罗祖友,戚晓玉,吴邦良,1991,桃成熟期间果实软化与果胶及有关酶的关系,南京农业大学学报,14(2):33-37。
    52. Abeles, FB,&Takeda, F.,1989, Increased cellulase activity during blackberry fruit ripening,HortScience,24(5):851.
    53. Abeles, F., Takeda, F.,1990, Cellulase activity and ethylene in ripening strawberry and apple fruits, Scientific Horticulturae,42:269-275.
    54. Ahmed AE, Labavitch JM, 1980, Cell Wall metabolism in ripening pear. I. Cell wall changes in ripening Bartlett pears, Plant Physiology, 65:1009-1013.
    55. Ali,Z.M.,Brady, C.J.,1982, Purification and charaterization of the polygalacturonases of tomato fruits. Austraulia J. Plant Physiology,9:155-169.
    56. Andrew PK, Li SL, 1994, Partial purification and characterization of β-D- galactosidase from sweet cherry, a nonclimacteric fruit, J. Agric. Food Chem. 42:2177-2182.
    57. Archbold DD, and Dennis FG Jr., 1984, Quantification of free ABA and free and conjugated IAA in strawberry achene and receptacle tissue during fruit development, J. Amer. Soc. Hort. Sci., 109(3):330—335.
    58. Archbold DD, 1988, Abscisic acid facilitates sucrose import by strawberry fruit explants and cortex disks in vitro, HortScience, 23(5):880—881.
    59. Arrowsmith DA, de Silva J, 1995, Characterisation of two tomato fruit-expressed cDNAs encoding xyloglucan endotransglycosylase. Plant Molecular Biology,28:391-403.
    60. Arties F, Cano A, Pemandez-Trujillo JP, 1996, Pectolytic enzyme activity during intermittent warming storage of peaches, J. Food Sci., 61:311-313,321.
    
    
    61. Awad,M &Young,RE,1979,Postharvest variation in cellulase, polygalacturonase,and pectinmethylesterase in avocado(Persea americana Mill,cv.Fuerte)fruits in relation to respiration and ethylene production, Plant Physiology,64:306-308.
    62. Babbitt,JK;Powers,MJ;Patterson,ME, 1973, Effects of growth-regulators on cellulase, polygalacturonase, respiration, colour, and texture of ripening tomatoes, J. Amer. Soc. Hort.Sci.,98(1) :77-81.
    63. Bailey JS,French HP, 1949, The inheritance of certain fruit and foliage characters in peach. Mass Agric Exp Stn Bull.,452:2-31.
    64. Barnes MF, Patchett BJ.1976, Cell wall degrading enzymes and the softening of senescent strawberry fruit, J. Food Sci.,41:1392-1395.
    65. Bartley IM, 1974, β-galactosidase activity in ripening apples, Phytochemistry, 13:2107-2111.
    66. Ben-Arie R, Sonego L, 1980, Pectolytic enzyme activity involved in woolly breakdown of stored peaches, Phytochemistry, 19:2553-2555.
    67. Beruter J,1983, Effect of abscisic acid on sorbitol uptake in growing apple fruit, J. Expt. Bot.,34:737-743.
    68. Besford RT. Hobson GE, 1972, Pectic enzymes associated with the softening of tomato fruit, Phytochemistry, 11: 2201-2203.
    69. Bewley JD, Banik M, Bourgault R, Feurtado JA, Toorop P and Hilhorst HWM, 2000, Endo-beta-mannanase activity increases in the skin and outer pericarp of tomato fruits during ripening, Journal of Experimental Botany, Vol. 51, No. 344: 529-538.
    70. Bieleski RL, Redgwell RJ,1985, Sorbitol versu s sucrose as photosynthesis and translocation products in developing apricot leaves, Aust. J. Plant Physiology, 12:625-668.
    71. Bird CR, Smith CJS, Ray J A et al., 1988,The tomato polygalacturonase gene and ripening-specific expression in transgenic plants, Plant Mol. Biol. 11:651-662.
    72. Bonghi,C.,Ferrarese,L.,ea al,1998,Endo-b-1,4-glucanases are involved in peach fruit growth and ripening.and regulated by ethylene,Physiologia Plantarum, 102:346-352.
    73. Bouranis DL and Niavis CA, 1992, Cell wall metabolism in growing and ripening stone fruits, Plant Cell Physiology, 33(7) :999-1008.
    74. Bradford MM, 1976, A rapid and sensitive mothod for the quantitation of microgram quantities of protein utilizing the priciple of protein-dye binding, Anal. Biochem., 1976: 248-254.
    75. Brecht JK.Kader AA,1982,Ripening and reduced ethylene production by nectarine fruits following exposure to ethylene, HortScience, 17:224-225.
    76. Brecht JK,Kader AA,1984,Regulation of ethylene production by ripening nectarine fruit as influenced by ethylene and low temperature, J. Amer. Soc. Hort. Sci., 123: 668-674.
    77. Brett CT, Waldron KW,1996,Cell wall architecture and skeletal role of cell wall. In
    
    Physiology and biochemistry of plant cell walls. Chapman & Hall, London, pp 44-74.
    78. Brummell DA, Lashbrook CC, Bennett AB, 1994, Plant endo-β-1,4-D-glucanases: structure,properties and physiological function. Am. Chem. Soc. Symp. Ser, 566:100-129.
    79. Buescher RW, Furmanski RJ, 1978, Role of pectinesterase and polygalacturonase in the formation of woolliness in peaches, J. Food Sci., 54:264-266.
    80. Burns JK, 1990, a-and β-galactosidase activities in juice vesicles of stored Valencia oranges, Phytochemistry, Vol. 29, No. 8: 2425-2429.
    81. Byrne DH, Nikolic AN, and Burns EE, 1991, Variability in sugars, acids, firmness, and color characteristics of 12 peach genotypes, J. Amer. Soc. Hort. Sci., 116(6) : 1004-1006.
    82. Callahan,A., Morgens,P. &Walton,E.,1989, Isolation and in vitro translation of RNAs from developing peach fruit, HortScience,24(2) :356-358.
    83. Callahan,AM,Morgens PH,ea al,1992,Comparison of Pch313(pTOM13 homolog) RNA accumulation during fruit softening and wounding of two phenotypically different peach cultivars,Plant Physiology, 100:482-488.
    84. Callahan,A.M.,Morgens,PH,&Cohen RA, 1993,Isolation and initial characterization of cDNAs for mRNAs regulated during peach fruit development, J.Amer.Soc. Hort.Sci.,118(4) :531-537.
    85. del Campillo E and Bennett AB, 1996, Pedicel breakstrength and cellulase gene expression during tomato flower abscission, Plant Physiology, 111: 813-820.
    86. Carpita NC, Gilbeaut DM,1993,Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth, Plant J.,3:1-30.
    87. Carrington,CMS;Greve,LC;Labavitch, JM,1993, Cell wall metabolism in ripening fruit,Plant Physiology, 103:429-434.
    88 . Cass,LG;Kirven,KA;Christoffersen,RE,1990,Isolation and characterization of a cellulase gene family member expressed during avocado fruit ripening,Mol. Gen.Genet.,223:76-86.
    89. Catala,C;Rose,JKC;Bennett,AB,1997,Auxin regulation and spatial localization of an endo-1,4-β-D-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls,The Plant Journal, 12(2) :417-426.
    90. Chan,H.T.,Tam,S.Y.T.,1982,Partial seperation and charaterization of papaya endo-and exo-polygalacturonase,J.Food Sci.,47:1478-1483.
    91. Chapman GW Jr. and Horvat RJ, 1990, Changes in nonvolatile acids, sugars, pectin, and sugar compostion of pectin during peach (Cv. Monroe ) Maturation, J. Agric. Food Chem. 38:383-387.
    92. Civello PM, Powell ALT, Sabehat A, and Bennett AB, 1999, An expansin gene
    
    expressed in ripening strawberry fruit, Plant Physiology, Vol. 121, 1273-1279.
    93. Conway WS, Sams CE, Kelman A, 1994, Enhancing the natural resistance of plant tissues to postharvest disease through calcium application, HortScience, 29: 751-754.
    94. Coombe BG, 1976, The development of fleshy fruits, Ann. Rev. Plant Physiolo. 27:207-228.
    95. Crooks,P.R. and D.Grierson,1983,Ultrastructure of tomato fruit ripening and the role of polygalacturonase isoenzymes in cell wall degradation,Plant Physiology, 72: 248-254.
    96. Cutillas-Iturralde A. Zarra I. Lorences EP.1993, Metabolism of cell wall polysac-charide frompersimmon fruit. Pectin solubilization occures in apparent absence of polygalacturonase activity, Physiologia PIantarum,89:369-375.
    97. DellaPenna D, Lashbrook CC, Toenjes K, Giovannoni JJ, Fischer RL, Bennett AB,1990, Polygalacturonase isoenzymes and pectin depolymerization in transgenic rin tomato fruit, Plant Physiology, 94:1882-1886.
    98. De Veau I.Gross KC,Huber DJ,Watada AE, 1993,Degradation and solubilisation of pectin by β-Galactosidases purified from avocado mesocarp, Physiologia Plantarum, 87:279-285.
    99. DeVilliers OT, Meynhardt JT, DeBruyn JA,1974, The metabolism of sorbitol and sugars in Santa Rosa plums, Agroplantae, 1974,6:51-54.
    100. Dick AJ and Lavavitch, 1989. Cell wall metabolism in ripening fruit, IV. characterization of the pectic-polysaccharides solubilized during softening of " Bartlett" pear fruit, 1394-1400.
    101. Dick AJ,Opuku-Gyamfua A, DeMarco AC.1990, Glycosidases of apple fruit: a multi-functional β-galacosidase. Physiologia Plantarum, 80:250-256.
    102. Downs,C.G.,Brady,C.J.,1990,Two forms of exopolygalacturonase increase as peach fruits ripen,Plant Cell Environment, 13:523-530.
    103. During H and Alleweldt G, 1984, The possible role of abscisic acid in sugar accumulation of grape berry, Ber. Dtsch. Bot. Ges.,97:101-113.
    104. Ferrarese L, Trainotti L, Moretto P, de Laureto PP, Rascio N, Casadoro G, 1995, Differential ethylene-inducible expression of cellulase in pepper plants, Plant Molecular Biology, 29:735-747.
    105. Fishman,ML;Levaj,B;Gillespie,D,1993,Changes in the physico-chemical properties of peach fruit pectin during on-tree ripening and storage. J.Amer. Soc. Hort. Sci., 118(3) :343-349.
    106. Fischer,R.L.,Bennett,A.B., 1991,Role of cell wall hydrolases in fruit ripening,Annu. Rev. Plant Physiol.Plant Mol.Biol.,42:675-703.
    107. Flurkey WH.Jen JJ,1978,Peroxidase and polyphenol oxidase activities in developing peaches, J. Food Sci.,43:1826-1831.
    
    
    108. Forney CF and Breen PJ,1986, Sugar content and uptake in strawberry fruit, J. Amer. Soc.Hort.Sci. ,111:241-247.
    109. Giovannoni,JJ;DelIaPenna,D.,1989,Expression of chimeric polygalacturonase gene in transgenic rin(ripening inhibitor)tomato fruit results in polyuronide degradation but not fruit softening,The Plant Cell,1:53-63.
    110. Given NK, Venis MA, and Grierson D, 1988a, Hormonal regulation of ripening in the strawberry , a non-climacteric fruit, Planta, 174:402-406.
    111. Given NK, Venis MA, Grierson D, 1988b, Phenylalanine ammonia-lyase activity and anthocyanin synthesis in ripening strawberry fruit, J. Plant Physiology, 133:25-30.
    112. Gonzalez-Bosch C,Brummell,DA,Bennett AB,1996,Differential expression of two endo-β-1,4-glucanase genes in pericarp and locules of wild-type and mutant tomato fruit,Plant Physiology,111:1313-1319.
    113. Grierson D, 1985, Gene expression in ripening tomato fruit, CRC Crit. Rev. Plant Sci.,3:113-132.
    114. Gross KC and Wallner S, 1979, Degradation of Cell wall ploysaccharides during tomato fruit ripening, Plant Physiology, 63:117-120.
    115. Gross KC, 1982, A rapid and sensitive spectrophotometric method for assaying polygalacturonase using 2-cyanoacetamide, HortScicence, 17(6) :933-934.
    116. Gross KC,1984, Fractionation and partial characterization of cell walls from normal and non-ripening mutant tomato fruit, Physiologia Plantarum, 62:25-32.
    117. Gross KC,Watada AE, Kang MS et al., 1986, Biochemical changes associated with the ripening of hot pepper, Physiologia Plantarum, 66:31-36.
    118. Harpster, MH; Lee,KY; Dunsmuir.P, 1997,Isolation and characterization of gene encoding endo-b-1,4-glucanase from pepper(Capsicum annuum L.),Plant Molecular Biology,33:47-59.
    119. Hatfield,R.,Nevins,D.J.,1986,Characterization of the hydrolytic activity of avocado cellulase,Plant Cell Physiology,27:541-542.
    120. Hegde.S; Maness,NO,1996,Sugar composition of pectin and hemicellulose extracts of peach fruit during softening over two harvest seasons, J.Amer.Soc. Hort.Sci., 121 (6) : 1162-1167.
    121. Hegde,S.,Maness,NO,1998,Changes in apparent molecular mass of pectin and hemicellulose extracts during peach softening, J.Amer.Soc.Hort.Sci.,123(3) :445-456.
    122. Hinton,D.M.,Pressey,R.,1974,Cellulase activity in peaches during ripening, J. Food Sci.,39:783-785.
    123. Hobson,G.E.,1964,Polygalacturonase in normal and abnormal tomato fruit, Bioch-emistry J.,92:324-332.
    124. Hobson,GE,1965,The firmness of tomato fruit in relation to polygalacturonase activity, J.Hort.Sci.,40:66-72.
    125. Hobson,G.E.,1968,Cellulase activity during the maturation and ripening of tomato
    
    fruit,J.Food Sci.,33:588-592.
    126. Hong SJ.Lee SK, Kim J-K,1996,Changes in cell wall carbohydrates and glycanase activity, and their relationship to the ripening of tomato fruits, Journal of the Korean Society of Horticultural science, 37:380-385.
    127. Huber DJ,1983, Polyuronide degradation and hemicellulose modifications in ripening tomato fruit, J. Amer. Soc. Hortic. Sci., 108:405-409.
    128. Huber DJ, 1984, Strawberry fruit softening: the potential roles of polyuronides and hemicelluloses, J . Food Sci., 49:1310-1315.
    129. Huber DJ,1992. The inactivation of pectin depolymerase associated with isolated tomato fruit cell wall-implications for the analysis of pectin solubility and molecular weight, Physiologia Plantarum,86:25-32.
    130. Huber DJ, O'Donoghue EM, 1993, Polyuronides in avocado and tomato fruits exhibit markedly different patterns of molecular weight downshifts during ripening, Plant Physiology, 102:473-480.
    131. Hubbard NL, Pharr DM, Huber SC, 1991, Sucrose phosphate synthase and other sucrose metabolizing enzymes in fruits of various species, Physiologia Plantarum, 82: 191-196.
    132. van Huystee RB,1987,Some molecular aspects of plant peroxidase biosynthetic studies,p205-219. In:W.R.Briggs(ed.),Annual review of plant physiology,38.
    133. Ishida M, Inaba A, Sobajima Y, 1985, Translocation of labelled compounds from leaves into shoot and fruit with their conversion in peach trees, Sci. Rep. Kyoto Prefect. Univ.,37: 163-171.
    134. Iwata T,Omato I, Ogata K, 1969, Relationship between the ripening of harvested fruits and the respiratory pattern.III.Changes of ethylene concentration in fruits and responses to applied ethylene with relation to the respiratory pattern. J. Jpn. Soc. Hotic Sci. 38:64-72.
    135. Jerie PH & Chalmers DJ,1976, Ethylene as a growth hormone in peach fruit, Australia J. Plant Physiology, 3:429-434.
    136. Jingtair S, Kadder AA,1980,Postharvest deterioration of strawberries as influenced by ethylene, HortScience, 15:422.
    137. John O-A, and Yamaki S, 1994, Sugar content, compartmentation, and efflux in strawberry tissue, J. Amer. Soc. Hort. Sci., 119(5) : 1024-1028.
    138. KimYB, Kubo Y, Inaba A, etal.,1996, Effect of storage temperature on keeping quality of tomato and strawberry fruits, J.of the Korean Society for Horticultural Science,37(4) :526-532.
    139 . Knee M, 1973, Polysaccharide changes in cell walls of ripening apples, Phytochemistry, 12: 1543-1549.
    140. Knee M, 1974, Changes in structural polysaccharides of apples ripening during storage, In Colloques International No. 238 Factors et Regulation de la Maturation
    
    des Fruits Centre de la Recherche Scientifique, Paris
    141. Knee M, Sargent JA, and Osbome DJ, 1977, Cell wall metabolism in developing strawberry fruits, J. of Experimental Botany, Vol. 28, No.103:377-396.
    142. Koehler SM, Matters GL, Nath P, Kemmerer EC, Tucker ML, 1996, The gene promoter for a bean abscission cellulase is ethylen-induced in transgenic tomato and shows high sequence conservation with a soybean abscission cellulase, Plant Molecular Biology, 31:595-606.
    143. Lashbrook CC,Gonzalez-Bosch C,Bennett AB,1994,Two divergent endo-β-1, 4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers,Plant Cell, 6:1485-1493.
    144. Lee,E.,Speirs,J.,Gray,J.,Brady,C.J.,1990, Homologies to the tomato endopoly-galacturonase gene in the peach genome. Plant Cell & Environment, 13:513-521.
    145. Lester GE,Dunlap JR, 1985,Physiological changes during development and ripening of "Perlita" muskmelon fruits,Scientific Horticultuae,28:323.
    146. LidsterPD, McRae KB, DickAJ, 1985, Effects of a vacuum infusion of a partially purified β-galactosidase inhibitor on apple quality, HortScience, 20: 80-82.
    147. Lester,D.R.,Speirs,J.,1994,Peach(Prunus persica) endopolygalacturonse cDNA isola-tion and mRNA analysis in melting and nonmelting peach cultivars,Plant Physiology, 105:225-231.
    148. Lester,DR,Sherman,WB,Atwell,BJ,1996,Endopolygalacturonase and the melting flesh(M) locus in peach, J.Amer.Soc. Hon.Sci.,121(2) :231-235.
    149. LincoIn,JE,Cordes,S.,ea al,1987,Regulation of gene expression by ethylene during Lycopersicon esculentum(tomato) fruit development, Proc.Natl.Acad.Sci.,USA, 84:2793-2797.
    150. LooneyNE, 1972, Effects of succinic acid 2, 2-dimethyl hydrazide, 2-chloroehyl phosphonic acid, and ethylene on respiration, ethylene production, andrepening of 'Redhaven' peaches, Can. J. Plant Sci.,52:73-80.
    151. Makinen KK, Soderling E, 1980, A quantitative study of manitol,sorbitol,xylitol and xylose in wild berries and commercial fruits, J. Food Sci.,45:367-371.
    152. Maness NO, Brusewitz GH, McCollum TG, 1992,Internal variation in peach fruit firmness, HortScience, 27:903-905.
    153. Maness NO.Chrz D, Hegde S et al., 1993, Cell wall changes in ripening peach fruit from cultivars differing in softening rate, Acta Hort., 343:200-203.
    154. Manning,K.,1994,Changes in gene expression during strawberry fruit ripening and their regulation by auxin, Planta, 194:62-68.
    155. Manning,K.,1998, Isolation of a set ripening-related genes from strawberry: their identification and possible relationship to fruit quality traits, Planta,205:622-631.
    156. McCollum TG, Huber DJ and Cantliffe DJ, 1989, Modification of polyuronides and hemicelluloses during muskmelon fruit softening, Physiologia Plantarum, 76:
    
    303-308.
    157. McQueen-Mason,S.;Durachko,DM;Cosgrove,DJ,1992,Two endogenous proteins that induce cell wall extension in plants,The Plant Cell,4:1425-1433.
    158. McQueen-Mason,SJ;Cosgrove,DJ, 1995,Expansin mode of action on cell walls,Plant Physiology,107:87-100.
    159. McQueen-Mason SJ,Fry SC,Durachko DM, Cosgrove DJ,1993, The relationship between xyloglucan endo-transglycosylase and in vitro cell wall extension in cucumber hypocotyls, Planta, 190:327-331.
    160. McQueen-Mason SJ, Cosgrove DJ, 1994, Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension, Proc.Natl. Acad. Sci. USA,91:6574-6578.
    161. Mecollum TG,Huber DJ,Cantliffee DJ,1989,Modification of polyuronides and hemicelluloses during muskmelon fruit softening, Physiology Plantarium, 76:303.
    162. Medina-Escobar,N.;Cardenas,J.,1997, Cloning, molecular characterization and expression pattern of a strawberry ripening-specific cDNA with sequence homology to pectate lyase from higher plants, Plant Molecular Biology,34:867-877.
    163. Meredith FI, Robertson JA, Horvat RJ,1989, Changes in physical and chemical parameters associated with quality and postharvest ripening of 'Harvester' peaches, J. Agr. Food Chem. 37:1210-1214.
    164. Miller,AN et al, 1988,Whole-fruit ethylene evolution and ACC content of peach pericarp and seeds during development, J.Amer.Soc.Hort.Sci., 113(1) : 119-124.
    165. Neal GE,1965,Changes occuring in the cell walls of strawberries during ripening, J. Sci. Fd Agric., Vol 16:604-611.
    166. Nogata Y, Ohta H, and Voragen AGJ, 1993, Polygalacturonase in Strawberry Fruit, Phytochemistry, Vol. 34(3) :617-620.
    167. Nakamura S, Mori H, Sakai F, Hayashi T,1995, Cloning and sequencing of a cDNA for poplar endo-1,4-β-glucanase, Plant Cell Physiology, 36:1229-1235.
    168. Pharr,DM.,Dickinson,DB, 1973,Partial characterization of Cx-cellulase and cellobiase from ripening tomato fruit,Plant Physiology,52:577-583.
    169. Postlmayr HL,Luh BS & Leonard SJ,1966, Characterization of pectic changes in freestone and clingstone peaches during ripening and processing, Food Tech. 10:618-625.
    170. Pressey R, Hinton DM & Avants JK, 1971,Development of polygalacturonase activity and solubilization of pectin in peaches during ripening, J. Food Sci., 36:1070-1073.
    171. Pressey R, Avants JK, 1972, Multiple forms of pectinesterase in tomatoes, Phytochemistry, 11:3139-3142,
    172. Pressey R.,Avants,JK,1973,Seperation and characterization of endopolygalacturon-ase and exopolygalacturonasee from peaches,Plant Physiology, 52: 252-256.
    
    
    173. Pressey R.,Avants,JK.,1976, Pear polygalacturonase, Phytochemistry, 15:1349-1351.
    174. Pressey R, 1983, β-Galactosidases in ripening tomatoes, Plant Physiology, 71: 132-135.
    175. Pressey R.,1987, Exopolygalacturonase in tomato fruit, Phytochemistry, 26(7) : 1867-1870.
    176. Pressey R, 1989, Endo-β-mannanase in tomato fruit, Phytochemistry, 28: 3277-3280.
    177. Ranwala AP, Suematsu C, and Masuda H, 1992, The role of β-Galactosidases in the modification of cell wall components during muskmelon fruit ripening, Plant Physiology, 100: 1318-1325.
    178. Redgwell RJ, Melton LD, Brasch DJ,1990, Cell wall changes in kiwifruit following postharvest ethylene treatment, Phytochemistry, 29:399-407.
    179. Redgwell RJ, Melton LD and Brasch DJ, 1991, Cell wall polysaccharides of kiwifruit: Effect of ripening on the structural features of cell wall materials, Carbohydrate Res., 209:191-202.
    180. Redgwell RJ, Melton LD and Brasch DJ, 1992, Cell wall dissolution in ripening kiwifruit (Actinidia deliciosa): Solubilization of the pectic polymers, Plant Physiology, 98:71-81.
    181. Redgwell RJ.Fry SC,1993, Xyloglucan endotransglycosylase activity increases during kiwifruit(Actinidia deliciosa) ripening, Plant Physiology, 103:1399-1406.
    182. Reyes FGR, Wrolstad ER, and Cornwell CJ, 1982, Comparison of enzymatic, gas-liquid chromatographic, and high performance liquid chromatographic methods for determining sugars and organic acids in strawberries at three growth stages of maturity, J. Assn. Offic. Anal. Chem.,65:126-131.
    183. Ross GS, Wegrzyn T, MacRae EA et al, 1994, Apple p-galactosidase: activity against cell wall polysaccharides and characterization of a related cDNA clone, Plant Physiology, 106:521-528.
    184. Rose JKC, Lee HH, and Bennett AB, 1997, Expression of a divergent expansin gene is fruit-specific and ripening-regulated, Proc. Natl. Acad. Sci. USA, Vol. 94:5955-5960.
    185. Rose JKC.Bennett AB,1999, Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trend Plant Sci.4:176-183.
    186. Saftner RA, Daie J,Wyse RE, 1983, Sucrose uptake and compartmentation in sugar beet taptroot tissue, Plant Physiology,74:951-955.
    187. Seymour GB,Harding SE, Taylor AJ et al., 1987,Polyuronide Solubilization during ripening of normal and mutant tomato fruit, Phytochemistry,26:1871-1875.
    188. Seymour GB, Colquhoun IJ , DuPont MS et al, 1990, Composition and structural features of cell wall polysacchrides from tomato fruits, Phytochemistry, 29(3) :
    
    725-731.
    189. Sheehy RE, Kramer MK, Hiatt WR, 1988, Reduction of polygalacturonase acrivity in tomato fruit by antisense RNA. Proc. Natl. Acad. Sci. USA ,85:8805-8809.
    190. Sherman WB,Topp BL, Lyrene PM,1990,Nonmelting flesh for fresh market peaches, Proc. Fla State Hortic Soc., 103:293-294.
    191. Shewfelt AL, 1965, Changes and variations in the pectic constitution of ripening peaches as related to product firmness, J. of Food Sci., 30: 573-576.
    192. Shewfelt AL, Paynter VA & Jen JJ. 1971, Textural changes and molecular characteristics of pectic constituents in ripening peaches. J. Food Sci.,36:573-574.
    193 . Smith, C.J.S, Watson,C.F..Ray.J..et al, 1988. Antisense RNA inhibition of polygalacturonase gene expression in trangenic tomatos,Nature, 334: 724-726.
    194. Smith CJS, Watson CF, Morris PC, Bird CR, Seymour GB et at., 1990, Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes, Plant Molecular Biology, 14:369-379.
    195. Sozzi GO,Cascone O.Fraschina AA,1996,Effect of a high temperature stress on endo-β-mannanase and a-and β-galactosidase activities during tomato fruit ripening. Postharvest Biology and Technology,9:49-63.
    196. Sterling C & Kalb AJ, 1959,Pectic changes in peach during ripening, Bot Gaz., 121:111-113.
    197. Tong CBS,Gross KC,1988, Glycosyl-linkage composition of tomato fruit cell wall hemicellulosic fractions during ripening. Physiologia Plantarum, 74:365-370.
    198. Tonutti P, Cass LG.Christoffersen RE, 1995, The expression of cellulase gene family members during avocado fruit abscission and ripening. Plant Cell Environment, 18:709-713.
    199. Tonutti,P.,Bonghi,C.,1997,Ethylene evolution and 1-aminocyclopropane-1-carboxyl-ate oxidase gene expression during early development and ripening of peach fruit, J.Amer.Soc. Hort.Sci.,122(5) :642-647.
    200. Trainotti,L.,Spolaore,S.,ea al,1997,Characterization of ppEG1. a member of a multigene family which encodes endo-β-1,4-glucanase in peach, Plant Molecular Biology, 34:791-802.
    201. Trainotti L,Spolaore S, Pavanello A, Baldan B and Casadoro G, 1999, A novel E-type endo-beta-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits, Plant Molecular Biology, 40: 323-332.
    202. Tucker GA,Robertson NG,Grierson D,1982,Puriflcation and changes in activities of tomato pectinesterase isozymes, J. Sci. Food Agric.,33:396-400.
    203. Tucker ML,Durbin ML, Clegg MT, Lewis LN.1987, Avocado cellulase: nucleotide sequence of a putative full-length cDNA clone and evidence for a small gene family. Plant Molecular Biology, 9:197-203.
    204. Tucker,ML,et al,1988,Bean abscission cellulase,Plant Physiology,88:1257-1262;
    
    
    205. Tucker,M.L.,Milligan,S., 1991,Sequence analysis and comparison of avocado fruit and bean abscission cellulases,Plant Physiology, 95:928-933.
    206. Veluthambi K, Poovaiah BW, 1984, Auxin-regulated polypeptide changes at differ-ent stages of strawberry fruit development. Plant Physiology, 75:349-353; 137.
    207. Von Mollendorff LJ, De Villiers OT, 1988, Role of pectolytic enzymes in the development of woolliness in peaches, J. Hortic. Sci. 63:53-58.
    208. Wallner SJ and Walker JE, 1975, Glycosidases in Cell Wall-degrading Extracts of Ripening Tomato Fruits, Plant Physiology, 55:94-98.
    209. Watkins CB, Haki JM, and Frenkel C, 1988, Activities of Polygalacturonase, a-D-Mannosidase, and a-D-and β-D-Galactosidases in Ripening Tomato, HortScience 23(1) :192-194.
    210. Wilkinson,JQ,Lanahan,MB,ea al, 1995,Identification of mRNAs with enhanced expression in ripening strawberry fruit using polymerase chain reaction differential display, Plant Molecular Biology,27:1097-1108.
    211 . Wills RBH,Scriven FM, Greenfield H,1983, Nutrient composition of stone fruit(Prunus spp.) cultivars:apricot,cherry,nectarine,peach and plum, J. Sci. Food Agri.,34:1383-1389.
    212. Woodward JR, 1972, Physical and chemical changes in developing strawberry fruits, J.Sci. Food Agric.,23:465-473.
    213. Wu SC,Blumer JM, Darvill AG, and Albersheim P, 1996, Characterization of an Endo-b-1,4-Glucanase gene induced by auxin in elongating pea epicotyls, Plant Physiology, 110: 163-170.
    214. Yang SF, Hoffman NE,1984, Ethylene biosynthesis and its regulation in higher plants, Annu. Rev. Plant Physiology, 35:155-189.
    215. Zabetakis I, and Holden MA, 1997, Strawberry flavour: Analysis and biosynthesis, J. Sci. Food Agric, 74:421-434.
    216. Zhou H-W, Sonegoi L, Khalchitski A, et al.,2000, Cell Wall Enzymes and Cell Wall Changes in 'Flacortop' Nectarines: mRNA Abundance, Enzyme Activity, and Changes in Pectic and Neutral Polymers during Ripening and in Woolly Fruit, Journal of American Society for Horticultural Science, 125(5) :630-637.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.