急性原发性闭角型青光眼临床前期眼的活体超声测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     原发性闭角型青光眼是我国青光眼的最常见类型,其发病机制一直公认与眼的解剖因素相关。1970年Lowe用A型超声测量活体青光眼解剖结构。1990年Pavlin首先研发超声生物显微镜(Ultrasound biomicroscope UBM),可提供眼前段高分辨率图像,无创伤性探测虹膜后表面结构。近年来20MHz超声应用于眼科,可提供全景眼前节图像。关于闭角型青光眼的解剖研究,国内外学者已做了很多工作。但目前,尚未见报道利用不同频率超声波对急性原发性闭角型青光眼临床前期眼的超声测量。
     本课题应用A型超声、20MHzB型超声、UBM和数学模型来测量急性原发性闭角型青光眼临床前期眼球的解剖结构和虹膜形态,并以正常眼为对照进行分析,验证原发性闭角型青光眼临床前期眼的某些解剖特点,并且进一步研究其虹膜后表面形态和眼后房结构的某些解剖特征,分析各项参数和年龄及眼轴长度的关系,本课题提供了几种新的测量参数来研究眼球的解剖结构。
     资料和方法:
     1.研究对象:正常对照组63只眼,年龄40—70岁,分3个年龄组,每组21只眼,男女比例1∶2,所有研究对象均进行常规眼科检查,排除眼科疾病和屈光不正。急性原发性闭角型青光眼临床前期组63只眼,年龄40—70岁,分3个年龄组,每组21只眼,男女比例1∶2,所有研究对象均进行常规眼科检查,符合急性原发性闭角型青光眼临床前期诊断标准,并排除其他眼科疾病和屈光不正。2.方法:晶状体厚度、眼轴长度采用BVI—Cine Scan S5.03 A型眼科超声诊断仪测量。巩膜晶状体夹角采用其20MHz频率B型超声测量。眼前节各项参数采用Paradigm Model P40型超声生物显微镜。数据作统计分析和比较。
     结果:
     1.原发性闭角型青光眼临床前期眼与正常眼比较:中央前房深度、眼轴长度、晶状体厚度、晶状体相对位置、小梁网虹膜夹角、房角开放距离、房角隐
    
     硕士研究生学位论文
    窝面积、巩膜睫状体夹角、巩膜晶状体夹角、虹膜晶状体夹角、虹膜后表面曲
    率、虹膜悬韧带距离、虹膜晶状体接触距离、睫状体厚度有统计学差异;虹膜
    睫状体夹角、虹膜根部厚度、睫状突厚度和后房截面积无统计学差异。急性原
    发性闭角型青光眼临床前期眼与正常眼比较具有以下解剖特点:前房浅,眼轴
    短,晶状体偏厚、位置前移,房角窄,虹膜晶状体接触距离增大,虹膜后表面
    膨隆,前房拥挤现象,睫状体厚度变薄,睫状体前置,虹膜根部厚度正常,睫
    状突形态正常,睫状沟和后房空间大小无改变,后房结构整体前移。
     2.随着年龄增长,急性原发性闭角型青光眼临床前期眼和正常眼的晶状体
    相对位置、小梁网虹膜夹角、房角开放距离、房角隐窝面积、巩膜睫状体夹角、
    虹膜晶状体夹角、巩膜晶状体夹角无变化趋势;随年龄增长,两组的晶状体厚
    度逐渐增大、前房深度逐渐变浅,虹膜晶状体接触距离增大,并且两组的晶状
    体增厚的程度相同。
     3.年龄组间比较:中央前房深度、小梁网虹膜夹角、房角开放距离、房角
    隐窝面积、虹膜睫状体夹角、晶状体厚度、晶状体相对位置、虹膜晶状体夹角、
    巩膜晶状体夹角、虹膜晶状体接触距离、虹膜后表面曲率有显著差异,病例组
    与正常组比较具有前房浅、晶状体厚、位置前移,房角窄,睫状体位置前移,
    虹膜晶状体接触距离增大,虹膜更膨隆。而两组的眼轴长度在40一组间比较,
    P>0.05,两组差异无统计学意义;50一及60一70组间比较,P<0 .05,两组差异
    有统计学意义,病例组的眼轴长度比正常组的短。
     4.定量测量正常眼的虹膜后表面曲率值是98.363士47.289协m一,,急性原发性
    闭角型青光眼临床前期眼的虹膜后表面曲率值为190.429士75.308娜一,。正常眼
    虹膜后表面曲率随年龄增长无明显变化趋势。急性原发性闭角型青光眼临床前
    期眼的虹膜后表面曲率随年龄增长逐渐增大。
     5.正常组的前房深度、晶状体相对位置和眼轴长度呈正相关;晶状体厚度
    和眼轴长度呈负相关。病例组的前房深度及晶状体厚度、相对位置和眼轴长度
    无相关性,其前房深度、晶状体厚度、相对位置和眼轴长度比例异常。
    结论:
    
     硕士研究生学位论文
     1.验证急性原发性闭角型青光眼临床前期眼发病与自身前房拥挤的解剖特
     点有关,并且发现虹膜根部厚度正常,睫状突形态正常,睫状体变薄前旋,后
    房大小正常而整体前移,增加了瞳孔阻滞力。
     2.随着年龄增长,晶状体厚度增加并且晶状体前表面前移,使眼前房更加
    拥挤、瞳孔阻滞力增加。
     3.虹膜膨隆程度的精确测量有助于了解眼后房压力的变化和分析房角关闭
    机制,对于原发性闭角型青光眼的诊断和治疗有较大的指导意义。
Objective: Primary angle-closure glaucoma (PACG) is the most common type of glaucoma in China, which pathogenesis is associated with the ocular anatomy. Lowe measured the ocular anatomy of glaucoma patients in 1970. In 1990 Ultrasound biomicroscope devised by Pavlin turned up, which can provide high-resolution of anterior segment of eye and explore the posterior chamber. Recently 20MHz ultrasound was applied in clinic with the advantage of overall anterior segment of eye. A large number of work has been done on the anatomy of PACG eyes, but index by internet indicate the absence of variable frequency ultrasonic measurement of pre-clinical acute PACG eyes.
    This study measure some parameters of these patients with standardized A scan, 20MHz B mode Ultrasound, Ultrasound biomicroscope and mathematics model, comparing with the normal subjects, then analyze: the characteristics of ocular anatomic parameters; measurement of iris configuration in quantity; correlation between theses parameters and age, axial length. It provides some new parameters to study ocular anatomy.
    Material and methods: 1. subjects: Normal subjects: 63 eyes, age 40-70,divided averagely into three groups according to patient age ,all subjects is executed uniform eye examination to exclude ocular diseases and refractive error. Pre-clinical acute PACG subjects: 63 eyes, age 40-70,divided into three groups averagely, all subjects is executed uniform eye examination to meet the diagnostic criteria of pre-clinical acute PACG and exclude other ocular diseases and refractive error. There is 21 persons in every subgroup and 1 : 2 is the male-to-female ratio. 2. methods: Lens thickness and axial length is measured by using BVI-Cine Scan S5.03 A-scan ultrasound. Sclera-lens angle is measured by using 20MHz B-scan. The parameters of anterior segment of eyes are measured by using Model P40 Ultrasound
    -4-
    
    
    biomicroscope. Results:
    1 .Comparison between pre-clinical acute PACG subjects and normal ones: these differences are significant statistically on central anterior chamber depth, axial length, lens thickness, lens relative location, trabecular-iris angle, angle-opening distance at 500 micro, angle recess area, iris-ciliary process angle, sclera-lens angle, iris-lens angle, iris curvature, iris-lens contact distance and iris-zonule distance. Other parameters including iris-ciliary process angle, ciliary process thickness, iris root thickness and posterior chamber area, are no difference. The pre-clinical acute PACG eyes have shallower anterior chamber, shorter axial length, thicker lens thickness, forward lens relative location, shallower trabecular-iris angle, forward revolving and thinner ciliary body, increased iris-lens contact distance and iris bombe, so anterior chamber is crowding. Ciliary sulcus and poster chamber area are same in both groups, but the whole posterior chamber moving forward in glaucomatous one.
    2. Age-related, there is no change on lens relative location, trabecular-iris angle angle-opening distance at 500 micro, angle recess area, iris-ciliary process angle, sclera-lens angle and iris-lens angle in both groups. Age-related, thicker lens thickness, increased iris-lens contact distance and shallower anterior chamber exist, but the former change in same degree in both groups.
    3.Comparison between age subgroups: statistic difference occur among three age subgroups on central anterior chamber depth, trabecular-iris angle, angle-opening distance at 500 micro, angle recess area, iris-ciliary process angle, sclera- lens angle, Lens thickness, Len thickness, lens relative location, iris-lens contact distance and iris curvature. Between 40~ subgroups, The difference in axial length is not significant, reversely other subgroups.
    4. Iris curvature is 98.363?7.289um~1 in normal eyes, which is 190.429?5.308jj,m"' in the pre-clinical acute PACG eyes. Age-related, increased iris
    -5-
    
    curvature exists in glaucomatous eyes.
    5.In normal eyes, lens thickness is inversely and lens position central anterior chamber depth directly with axial length
引文
1. Foster PJ, Johnson GJ. Glaucoma in china: how big is the problem? Br J Ophthalmol.2001 ;85:1277-82.
    2. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol. 1996 May;80(5):389-93.
    3. Nolan WP, Bassanhu J, Undraa A, et al. Screening for primary angle closure in Mongolia: a randomized controlled trial to determine whether screening and prophylactic treatment will reduce the incidence of primaryPACG in an east Asian population. Br J Ophthalmol. 2003 Mar;87(3):271-4.
    4. Alsbirk PH. Anatomical risk factors in primary angle-closure glaucoma. A ten year follow up survey based on limbal and axial anterior chamber depths in a high risk population. Int Ophthalmol. 1992 Sep; 16(4-5):265-72.
    5. Pavlin CJ, Sherar MD, Foster FS. Subsurface ultrasound microscopic imaging of the intact eye,Ophthalmology, 1990,97:244-50.
    6. Ishikawa H, Liebmann JM, Ritch R. Quantitative assessment of the anterior segment using ultrasound biomicroscope. Curr Opin Ophthalmol 2000 Apr; 11 (2): 133-9.
    7. Pavlin CJ, Harasiewicz K, Eng P, et al. Ultrasound biomicroscope of anterior segment structures in normal and glaucomatous eyes. Am J Ophthalmol, 1992,113:381-9.
    8.惠延年主编.眼科学(第五版),人民卫生出版社.2001.113.
    9. Bonomi L. Epidemiology of angle-closure glaucoma. Acta Ophthalmol Scand Suppl. 2002;236:11-3.
    10. Dalkowska A. On the problem of fellow eye in primary acute angle-closure glaucoma Klin Oczna. 1978 Jul;48(7):321-3. Klin Oczna. 1978 Jul; 48(7):321-3.
    11.刘杏,赵博,蔡小于,陈秀琦超声生物显微镜和光学测量仪对闭角型青光眼前房深度及角膜厚度测量的比较.中华超声医学杂志,2001,17:816-8.
    
    
    12.赵家良 原发性闭角型青光眼的前房深度.中华眼科杂志,1985 21(1):1-5.
    13. Lowe RF. Primary angle-closure glaucoma family histories and anterior chamber depths. Br J Ophthalmol. 1964 Apr;48:191-5.
    14. Koretz JF, Cook CA, Kaufman PL. Aging of the human lens: changes in lens shape at zero-diopter accommodation. J Opt Soc Am A Opt Image Sci Vis. 2001 Feb; 18(2):265-72.
    15. Lowe RF. Aetiology of the anatomical basis for primary angle-closure glaucoma. Biometrical comparisons between normal eyes and eyes with primary angle-closure glaucoma. Br J Ophthalmol. 1970 Mar;54(3): 161-9.
    16. Saxena S, Agrawal PK, Pratap VB, Nath R, Saxena RC. The predictive value of the relative lens position in primary angle-closure glaucoma. Ann Ophthalmol. 1993 Dec;25(12):453-6.
    17.王宁利,叶天才,赖铭莹等应用超声生物显微镜与房角镜检查眼前房角结果的比较.中华眼科杂志,1999,35:174-8.
    18. Spaeth GL, Azuara-Blanco A, Araujo SV, Augsburger JJ. Intraobserver and interobserver agreement in evaluating the anterior chamber angle configuration by ultrasound biomicroscope. J Glaucoma. 1997 Feb;6(1): 13-7.
    19.王宁利主编.活体超声显微镜眼科学,科学出版社.2002,67.
    20. Ishikawa H, Esaki K, Liebmann JM, et al.Ultrasound biomicroscope dark room provocative testing: a quantitative method for estimating anterior chamber angle width.: Jpn J Ophthalmol, 1999,Nov-Dec;43(6):526-34.
    21. Marchini G, Pagliarusco A, Toscano A, et al.Ultrasound biomicorscopic and conventional ultrasonographic study of ocular dismensions in primary angle-closure glaucoma. Ophthalmology, 1998,105:2091-8.
    22.王宁利,赖铭莹,陈秀琦等.活体人眼虹膜形态实时定量测量方法的研究 中华眼科杂志 1998,34:369-72.
    23. Wyatt H, Ghosh J. Behaviour of an iris model and the pupil block hypothesis. Br J
    
    Ophthalmol. 1970 Mar;54(3): 177-85.
    24. Richard DW.A method for improved biometry of the anterior chamber with a Scheimpflug technique. Invest Ophthalmol Vis Sci, 1998,29:1826-31.
    25. Anderson Dr, Jin JC, Wright MM. The Physical analysis of the factors that determine the concour of the iris. Am J Ophthalmol, 1991,111:334-7.
    26. Tiedmann JS.A physical analysis of the factors that determine the contour of the iris. Am J Ophthalmol, 1991,111:338-41.
    27. Barkan O. Peripheral iridectomy: technique, mechanism and the cause of hemorrhage. Am J Ophthalmol. 1954 Jun; 37(6):889-96.
    28.杨晖,林振德,陈秀琦等.超声生物显微镜对睫状突位置及高度测量重复性研究.眼科学报,1999,15:103-6.
    29. Tamm S, Tamm E, Rohen JW. Age-related changes of the human ciliary muscle. A quantitative morphometric study. Mech Ageing Dev. 1992 Feb; 62(2):209-21.
    30. 30. David MS, Harry AL, Aqueous flow through the iris-lens channel eastimates of differential pressure between the anterior and posterior chambers. J Glaucoma. 2004 Apr; 13(2): 100-7.
    31. Mapstone R. Mechanics of pupil block. Br J Ophthalmol. 1968 Jan;52(1): 19-25.
    32.刘磊主编 眼超声生物显微镜诊断学.北京科学技术出版社.2002,48.
    33. Grosvenor T.Reduction in axial length with age: an emmetropizing mechanism for the adult eye? Am J Optom Physiol Opt. 1987 Sep;64(9):657-63.
    34. Friedman DS, Gazzard G, Foster P, Devereux J, Broman A, Quigley H, Tielsch J, Seah S. Ultrasonographic biomicroscope, Scheimpflug photography, and novel provocative tests in contralateral eyes of Chinese patients initially seen with acute angle closure. Arch Ophthalmol. 2003 May; 121(5):633-42.
    35. Sawada A, Sakuma T, Yamamoto T, Kitazawa Y Appositional angle closure in eyes with narrow angles: comparison between the fellow eyes of acute angle-closure glaucoma and normotensive cases. J Glaucoma. 1997 Oct;6(5):288-92.
    
    
    36.张淑芳 原发性青光眼前房深度的测量及临床应用.中华眼科杂志,1983,19:12-5.
    37. R George, P G Paul, M Baskaran, S Ve Ramesh, P Raju, H Arvind, C McCarty, L Vijaya .Ocular biometry in occludable angles andPACG: a population based survey.Br J Ophthalmol 2003;87:399-402.
    38. Wong TY, Foster P J, Ng TP, Tielsch JM, Johnson G J, Variations in ocular biometry in an adult Chinese population in Singapore: the Tanjong Pagar Survey. Seah SK. Invest Ophthalmol Vis Sci. 2001 Jan;42(1):73-80.
    39. Foster PJ, Alsbirk PH, Baasanhu J, Munkhbayar D, Uranchimeg D, Johnson GJ. Anterior chamber depth in Mongolians: variation with age, sex, and method of measurement. Am J Ophthalmol. 1997 Jul; 124(1):53-60.
    40. Quigley HA, Friedman DS, Congdon NG.Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma. 2003 Apr; 12(2): 167-80.
    41. Wojciechowski R, Congdon N, Anninger W, Teo Broman A. Age, gender, biometry, refractive error, and the anterior chamber angle among Alaskan Eskimos. Ophthalmology. 2003 Feb; 110(2):365-75.
    42.周文炳主编 临床青光眼.人民卫生出版社 2000,166.
    43. Congdon NG, Youlin Q, Quigley H, Hung PT, Wang TH, Ho TC, Tielsch JM. Biometry and primary angle-closure glaucoma among Chinese, white, and black populations. Ophthalmology. 1997 Sep; 104(9): 1489-95.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.